Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Water Res ; 263: 122163, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39111214

RESUMO

Substantial nutrient inputs from reservoir impoundment typically increase sedimentation rate and primary production. This can greatly enhance methane (CH4) production, making reservoirs potentially significant sources of atmospheric CH4. Consequently, elucidating CH4 emissions from reservoirs is crucial for assessing their role in the global methane budget. Reservoir operations can also influence hydrodynamic and biogeochemical processes, potentially leading to pronounced spatiotemporal heterogeneity, especially in reservoirs with complex tributaries, such as the Three Gorges Reservoir (TGR). Although several studies have investigated the spatial and temporal variations in CH4 emissions in the TGR and its tributaries, considerable uncertainties remain regarding the impact of reservoir operations on CH4 dynamics. These uncertainties primarily arise from the limited spatial and temporal resolutions of previous measurements and the complex underlying mechanisms of CH4 dynamics in reservoirs. In this study, we employed a fast-response automated gas equilibrator to measure the spatial distribution and seasonal variations of dissolved CH4 concentrations in XXB, a representative area significantly impacted by TGR operations and known for severe algal blooms. Additionally, we measured CH4 production rates in sediments and diffusive CH4 flux in the surface water. Our multiple campaigns suggest substantial spatial and temporal variability in CH4 concentrations across XXB. Specifically, dissolved CH4 concentrations were generally higher upstream than downstream and exhibited a vertical stratification, with greater concentrations in bottom water compared to surface water. The peak dissolved CH4 concentration was observed in May during the drained period. Our results suggest that the interplay between aquatic organic matter, which promotes CH4 production, and the dilution process caused by intrusion flows from the mainstream primarily drives this spatiotemporal variability. Importantly, our study indicates the feasibility of using strategic reservoir operations to regulate these factors and mitigate CH4 emissions. This eco-environmental approach could also be a pivotal management strategy to reduce greenhouse gas emissions from other reservoirs.


Assuntos
Metano , Monitoramento Ambiental , Estações do Ano , Rios/química , Sedimentos Geológicos/química , China
2.
Huan Jing Ke Xue ; 43(7): 3543-3551, 2022 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-35791538

RESUMO

Taking the Xiaojiang and Xiangxi Rivers, two typical tributaries of the Three Gorges Reservoir, as examples, this study analyzed and compared the hydrodynamic, thermal stratification, and temporal and spatial differences in dissolved oxygen (DO) and their responses to the water storage process in the two tributaries through field monitoring at different stages of the 2020 impoundment period. The results showed that:① at the initial stage of water storage, the DO in the surface layer of the Xiaojiang River was higher (7.00-13.00 mg·L-1) due to atmospheric reoxygenation and phytoplankton photosynthesis, and the oxycline appeared in the water depth of 3-5 m. A large area of anoxia (DO<2.00 mg·L-1) or even an anaerobic sublayer occurred in the water below 5 m. The DO in the Xiangxi River could be divided into three layers vertically:oxygen-rich surface water (8.00-12.00 mg·L-1), middle water (6.00-8.00 mg·L-1), and low-oxygen bottom water (4.00-6.00 mg·L-1). ② Thermal stratification provided a stable physical environment, whereas the upstream inflow and vegetation decomposition in the water-level fluctuation zone increased the content of organic matter, which likely increased the oxygen consumption which was conducive to the formation of an anaerobic bottom layer. In the Xiangxi River, the risk of hypoxia in the bottom water body was low because of the oxygen replenishment from the long-term downslope-bottom density current.③ Continuous monitoring also showed that the storage of the reservoir played a significant role in the replenishment of DO in tributaries, which effectively and rapidly improved the anaerobic phenomenon in the Xiaojiang River. In the Three Gorges Reservoir, it is feasible to ameliorate the water ecological problems such as anoxia and anaerobic conditions in the tributaries via reservoir operation. This study aids understanding of the characteristics and differences of DO stratification in different tributaries of the Three Gorges Reservoir, which can provide theoretical and technical support for reservoir ecological operation.


Assuntos
Monitoramento Ambiental , Oxigênio , Humanos , Hipóxia , Rios , Água
3.
Water Res ; 211: 118030, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35065341

RESUMO

It is essential to understand the mechanism of algal bloom and develop effect measures to control the hazard in aquatic environment, such as large reservoirs. In this study, a series of experiments, along with field observation from 2007 to 2016, were carried out to identify the hydrodynamic parameters that drive the algal bloom in the Three Gorges Reservoir (TGR), China, and their threshold values were determined. The results show that algae concentration was markedly diluted with a short retention time, and the threshold value of the retention time to avoid algal bloom was approximately less than 3 days. With strong stratification, the algae concentration was able to approach to the level of algal bloom in 10 days, even when the water temperature is lower than 12 °C. The ratio of mixing depth to euphotic depth (Zm/Ze) had significant negative correlations with both algae concentration and algae specific growth rate (SGR). The field monitoring data indicated that Zm/Ze is an important hydrodynamic parameter which sensitively affects algae growth and concentration. This study made the first attempt to determine Zm/Ze >2.8 to restrain algal bloom in the TGR. Our findings shed light on the influence of critical depth on the algal bloom in the TGR, and the results can serve to control algal bloom in reservoirs through discharge operation.


Assuntos
Eutrofização , Rios , China , Monitoramento Ambiental
4.
Huan Jing Ke Xue ; 43(1): 295-305, 2022 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-34989514

RESUMO

The hydrodynamics and environmental factors in the Xiangxi River (XXR) and Shennong River (SNR), which are tributaries of the Three Gorges Reservoir (TGR), were monitored from July to August (the low water level period) and in October (the impoundment period) in 2018. The vertical distribution characteristics of chlorophyll a and other indicators of the two tributaries were analyzed during the different operation periods, and the factors that affected the vertical distribution in each period were discussed. The results showed that the vertical distribution of dissolved oxygen, water temperature, pH value, and chlorophyll a of the XXR and SNR during the low water level period was relatively consistent. The indexes 0-10 m (0-5 m for chlorophyll a) from the surface of the XXR and SNR, respectively, showed significant stratification and decreased with increasing water depth; the stability index of thermal stratification (RWCS/H) was 13.71-29.07 m-1, which was stable. After the water depth reached 10 m (5 m for chlorophyll a), the indexes tended to be stable along the water depth. During the impoundment period, there was no obvious stratification for each index; the stability index of thermal stratification was 0-0.5 m-1, the stability of the water body was weak, and the vertical variation of each index was relatively stable. The comprehensive trophic state index (TLI) of the XXR and SNR were 55 and 53 during the low water level period, respectively, indicating that they were in a slightly eutrophic state, and 39 and 46 during the impoundment period, respectively, indicating a mesotrophic state. Linear regression analysis showed that chlorophyll a, dissolved oxygen, water temperature, and pH in the two tributaries were significantly correlated in the vertical direction in the low water level period, indicating that dissolved oxygen, water temperature stratification, and pH were important factors affecting the vertical distribution of chlorophyll a. During the impoundment period, a large amount of backflow from the Yangtze River, a large fluctuation in tributary water level, and the decrease in RWCS/H were the important factors that affected the small vertical change in the water body. The enhancement of vertical mixing and the decrease in Zeu/Zmix were the key factors affecting the nutritional status of the water.


Assuntos
Rios , Poluentes Químicos da Água , China , Clorofila/análise , Clorofila A , Monitoramento Ambiental , Água , Poluentes Químicos da Água/análise
5.
Huan Jing Ke Xue ; 42(2): 688-698, 2021 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-33742863

RESUMO

A comparative analysis of phosphate occurrence and its genesis during different dispatching periods of representative level I tributaries of the Three Gorges Reservoir was conducted. For this, water quality, hydrodynamic force, and environmental data were examined for backwater areas of the Xiangxi River and Shennong River during the low-water-level period (June), storage period (September) and high-water-level period (December) in 2018. The results suggest that the mass concentration of total phosphorus (TP) in the water body of the coves of Xiangxi River and Shennong River range from 0.049 mg·L-1 to 0.168 mg·L-1 and 0.059 mg·L-1 to 0.152 mg·L-1, respectively, surpassing the 0.02 mg·L-1 threshold for algal blooms. The mass concentration of TP, DP (orthophosphate), and PP (particulate phosphorus) in the coves of the tributaries were ranked as follows:storage period > high-water-level period > low-water-level period for TP; storage period > low-water-level period > high-water-level period for DP; low-water-level period > high-water-level period > storage period for PP. Based on Pearson's correlation coefficients, TP and DP were significantly correlated as well as temperature and pH, which are the key factors influencing the phosphorus in soils and sediments in the water-level-fluctuation zone. During the low-water-level and high-water-level periods of the Three Gorges Reservoir, the TP in the coves of the tributaries mainly exists as PP, accounting for more than 75% and 60%, respectively. The flow in the coves of the tributaries slows during storage periods, meaning that settlement of PP is enhanced, changing the dominance of TP to dissolved total phosphorus (DTP).

6.
Huan Jing Ke Xue ; 41(8): 3601-3611, 2020 Aug 08.
Artigo em Chinês | MEDLINE | ID: mdl-33124333

RESUMO

To determine the reasons for the variation in the vertical distribution of nitrogen in sediment interstitial waters between different stratified reservoirs, the characteristics of overlying water-interstitial water in Xiangxi Bay, Yangtze River mainstream, and Xiaowan Reservoir were monitored. The vertical distribution of nitrogen in sediment interstitial waters in these different stratified waters were then analyzed, and the reasons for the variation in this distribution were assessed. The results showed:① the ρ(TN) in the sediment interstitial waters of the Yangtze River mainstream and Xiangxi Bay gradually increased with depth, while that of Xiaowan Reservoir reached its maximum at 12 cm and the bottom layer presented a "C" distribution. The ρ(NH4+) in the sediment interstitial waters of the Yangtze River mainstream and Xiangxi Bay exhibited an increasing trend with depth, while that of Xiaowan Reservoir was slightly higher in the bottom layer than in the surface layer, although the change with depth was not significant. Overall, the ρ(NH4+) in the sediment interstitial waters of the Yangtze River mainstream and Xiangxi Bay was higher than that of Xiaowan Reservoir, and the concentration ranges were as follows:0.512-8.289 mg·L-1, 0.968-9.307 mg·L-1, and 0.950-1.450 mg·L-1. The vertical distribution of the ρ(NO3-) in the sediment interstitial waters of all three waterbodies were opposite to that of ρ(NH4+). Moreover, the ρ(NO3-) in the sediment interstitial waters of Xiangxi Bay and the Yangtze River mainstream was higher than that of Xiaowan Reservoir. The concentration ranges were as follows:0.143-0.674 mg·L-1, 0.107-0.647 mg·L-1, and 0.050-0.051 mg·L-1. ② There were also significant differences in the vertical distribution of physical and chemical indices in the three water bodies. There was no significant change in the vertical distribution of the water temperature in the Yangtze River mainstream and the N2 value was <5×10-5 s-2; hence, the water was well mixed, and the vertical range of the dissolved oxygen content was 6.180-6.318 mg·L-1. The water temperature in the upper and middle reaches of Xiangxi Bay decreased vertically, while the water temperature in the lower reach presented a ladder-like distribution and the N2 values were all>5×10-5 s-2; thus, the water was in a stable stratified state and the dissolved oxygen content presented a "C" distribution. There was obvious stratification at the depths of 5-15 m and 54-70 m in Xiaowan Reservoir. The dissolved oxygen content decreased significantly at higher water temperature gradients, and there was no significant change along the water depth below 80 m. ③ The main reasons for the variation in the vertical distribution of nitrogen in the sediment interstitial waters of the three waterbodies were the differences in the overlying water hydrodynamics, dissolved oxygen distribution, and sediment environment. The ρ(NH4+) and ρ(NO3-) were higher in Xiangxi Bay, which may have increased the denitrification rate and subsequently have helped to remove nitrogen and reduce the nitrogen load in these waters.

7.
J Environ Manage ; 274: 111197, 2020 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-32798850

RESUMO

The Lancang River in China is the headwater of the Mekong River. The impacts of reservoirs on the water, sediment and nutrient trapping in the Lancang River have attracted considerable attention, both locally and abroad. In this research, watershed-scale nitrogen load and nitrate sources along the Lancang River upstream in free-flowing reaches (FFRs) and downstream regulated reaches (RRs) were analyzed using stable nitrogen and oxygen isotopes. The results showed that the nitrogen nutrient (TN, NO3- and NH4+) concentration increased from upstream to downstream along the Lancang River, and the highest values come from large-scale urban samples rather than the reservoirs. Compared to other large rivers in China, such as the Yangtze River, Yellow River and Yalu Tsangpo River, nitrogen nutrient content in the Lancang River is at low level. The nitrate concentration ranged from 0.14 mg/L to 0.63mg/Land increased significantly downstream. The isotopic values ranged from 2.8‰ to 5.2‰ for δ15N-NO3- and from 4‰ to 8.5‰ for δ18O-NO3- along the river, and the δ15N-NO3- value rose significantly downstream. According to the nitrogen and oxygen isotope approach, soil organic nitrogen mineralization was the main source of the nitrate with an average of 51% contribution; domestic sewage was the second largest contributor with an average of 33% but increase downstream, likely due to the significantly larger population in the downstream region. Furthermore, the nitrate concentration decreased and δ15N- and δ18O-NO3- enriched in the Nuozhadu reservoir, indicating that the reservoir may enhance nitrate consumption and reduce nitrogen pollution to downstream reaches. The results provide a perspective of nitrogen nutrient for the trans-border river management and more insight researches are called for understanding the controversial nutrient transport topic in this region.


Assuntos
Nitrogênio/análise , Poluentes Químicos da Água/análise , China , Monitoramento Ambiental , Nitratos/análise , Isótopos de Nitrogênio/análise , Isótopos de Oxigênio/análise
8.
Huan Jing Ke Xue ; 41(5): 2107-2115, 2020 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-32608828

RESUMO

The water quality of the backwater areas in the Xiangxi River and Shennong River, which are typical tributaries of the Three Gorges Reservoir, was monitored in September 2018. The vertical distribution characteristics of dissolved oxygen, chlorophyll a, and other indicators in the two rivers were analyzed and compared, and the environmental factors affecting their vertical distribution were discussed. The results showed that the dissolved oxygen concentration 0-10 m and 0-12 m from the surface of the Xiangxi River and Shennong River, respectively, showed significant stratification and decreased with increasing water depth. The dissolved oxygen saturation of surface water was 139.20% and 107.78%, respectively, reaching a state of supersaturation (SDO>100%).The dissolved oxygen concentration in the middle and bottom water was more stable without stratification. The vertical distribution characteristics of chlorophyll a were consistent with those of dissolved oxygen in the Xiangxi River and Shennong River, and the chlorophyll a concentration in the surface water showed moderate eutrophication (5µg·L-1 < Chl-a < 20 µg·L-1). According to Pearson correlation analysis, the vertical distribution of dissolved oxygen in the Xiangxi River and Shennong River was significantly correlated with that of water temperature and phytoplankton. The stratification of water temperature and the life activities of phytoplankton were the key factors affecting the vertical distribution of dissolved oxygen. Chlorophyll a was positively correlated with water temperature and pH, and negatively correlated with turbidity, indicating that the vertical distribution of phytoplankton was mainly affected by the attenuation of light intensity along the water depth and the stratification of water temperature.

9.
Environ Pollut ; 264: 114626, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32387673

RESUMO

Most aquatic systems show characteristic seasonal fluctuations in the total nutrient pool supporting primary productivity. The nutrient dynamics essentially exacerbate critical demand for the counterpart micronutrients towards achieving ecosystem equilibrium. Herein, the phytoplankton demand for iron (Fe) uptake under high concentration of nitrate-nitrogen during spring in Xiangxi Bay, China, was studied. Our result confirmed that significant Fe concentrations (P = 0.01) in both autumn (0.62 ± 0.02 mgL-1) and winter (0.06 ± 0.03 mgL-1) relative to spring (0.004 ± 0.01 mgL-1) are linked to the low NO3-N paradigms during autumn and winter. As NO3-N showed a sharp increase in spring, a dramatic reduction in the Fe pool was observed in the entire tributary, driving the system to a critical Fe limited condition. Bioassay study involving Fe additions both alone and in combinations led to maximum growth stimulation with biomass as chla (16.44 ± 0.82 µgL-1) and phytoplankton cell density (6.75 × 106 cellsL-1) which differed significantly (P = 0.03) with the control. Further, the study demonstrated that Fe additions triggered biomass productions which increased linearly with cell densities. The P alone addition caused biomass production (15.26 ± 2.51 µgL-1) greater than both NO3-N (9.15 ± 0.66 µgL-1) and NH4+N (13.65 ± 1.68 µgL-1) separate additions but reported a low aggregate cell density (3.18 × 106 cellsL-1). This indicates that nutrient and taxonomic characteristics e.g., high cell pigment contents rather than just the cell bio-volume also determine biomass. The Bacilliarophyta, Chlorophyta, and Cryptophyta with the total extinction of Cyanophyta characterized the bloom in spring. The anthropogenic NO3-N input into XXB would have driven to higher NO3-N than NH4+N situation, and incapacitated the Cyanophyta that preferentially utilize NH4+N. Our study provides a useful report for incorporation into the monitoring programs for prudent management of phytoplankton bloom and pollution across the eutrophic systems.


Assuntos
Fitoplâncton , Rios , Biomassa , China , Clorofila A , Ecossistema , Ferro , Nitrogênio/análise , Estações do Ano
10.
Sci Total Environ ; 724: 138154, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32272401

RESUMO

The stabilization and preservation of soil organic matter have been attributed to the strong reactive sites of mineral surfaces that cause physical isolation and chemical stabilization due to the organic-mineral interface. However, much of the micro-scale knowledge about interactions between organic ligands and minerals largely remains at the qualitative level, and neglects the heterogeneity of functional groups of organic matter. Here, we report the use of molecular-scale technologies of two-dimensional FTIR Correlation Spectroscopy (2D-FTIR-CoS) and X-ray Photoelectron Spectroscopy (XPS) to directly measure the binding processes of humic acid (JGHA) groups onto kaolinite surface. The spectroscopy results showed that the carboxylate groups, aliphatic OH and aromatic structure participate in the binding of JGHA on kaolinite surface. The carboxylic and phenolic hydroxyl interact with kaolinite surface through the interfacial COAl/Si bonds. Kaolinite prefers to adsorb C-groups at pH 4.0 and O-groups at pH 8.0. The interaction of COO- group at 1566 cm-1 of JGHA leads to the formation of inner-sphere complex first and then outer-sphere complex with increasing contact time. The interaction of COOH group at 1261 cm-1 with the AlOH2+ of kaolinite was could be ascribed to ligand exchange and/or electrostatic attraction, whose contribution was evaluated to be 13.90%, 7.65% and 0% at pH 4.0, 6.0 and 8.0, respectively. These results of molecular binding provide quantitative mechanistic insights into organic-mineral interactions and expound the effect of functional groups of HA on binding mechanisms, and thus bring important clues for better understanding the mobility and transformation of land­carbon including mineral-bound carbon.

11.
Sci Total Environ ; 723: 138062, 2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32217395

RESUMO

After the impoundment of the Three Gorges Reservoir (TGR), algal blooms in the sidearm tributaries have resulted from increasing nutrient loads along the major tributaries. Field sampling and in situ nutrient addition bioassay were implemented to examine the nutrient limitation of phytoplankton growth and bloom initiation during autumn in Xiangxi Bay of the TGR. Result shows that P is the primary limiting nutrient for algal growth and bloom in Xiangxi Bay during autumn. The treatment involving the combination of N, P and Si had a significant (p < .05) additional effect on the growth of phytoplankton. The N, P, Si combined treatment increased growth by 10-50% relative to the N and P treatments from day 1 to day 4, respectively. Trace metal additions involving Fe, Zn, Mn, and Cu and/or in combination with N, P, and Si initially resulted in an extremely low growth rate which later increased significantly (p < .05) towards the end of the study. The present study provides an insight into the responses of different phytoplankton taxa in autumn under nutrient conditions in the tributary bay. The nutrient limitation study is recognized as the first step to mitigating the bloom while proposing an effective nutrient control strategy. The outcome of which can provide the basis for formulating sustainable watershed management. Multiple nutrients reductions with P as primary concern are required for a lasting management solution to the risk of bloom in the TGR.


Assuntos
Baías , Fitoplâncton , China , Monitoramento Ambiental , Eutrofização , Nitrogênio/análise , Nutrientes , Fósforo/análise
12.
Chemosphere ; 247: 125960, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32069727

RESUMO

The increasing freshwater ecosystem nutrient budget is a critical anthropogenic factor promoting freshwater eutrophication and episodic bloom of harmful algae which threaten water quality and public health. To understand how the eutrophic freshwater ecosystem responds in term of phytoplankton community structure dynamics to a sudden rise in nutrient concentrations, a microcosm study by nutrient addition bioassay was implemented in Xiangxi Bay (XXB) of Three Gorges Reservoir, China. Our results showed that dissolved trace elements supply adequately altered the phytoplankton community structure creating a regime shift from cyanobacteria-dominated to essentially Chlorophytes-dominated system, relative abundance (>70%). Combined N, P, and Si led to maximum growth stimulation accompanied by the highest chlorophyll yield (82.7 ± 14.01 µgL-1) and growth rate (1.098 ± 0.12 µgL-1d-1). N separate additions resulted in growth responses which did not differ while P -addition differed significantly (p∠0.05) with the control justifying a P limited system. Si enrichment stimulated diatom growth, relative abundance (20.62%) and maximum utility rate (USi = 83.37 ± 0.33%). This study also reveals that increasing nutrient loading from anthropogenic sources adequately decrease the ecological diversity (H < 1) and community overlap (CC ≤ 0.5) intensifying competition and succession which then select the fast-growing taxa to dominate and expand. Result points to the need for multiple nutrient control of N, P and Si loading into XXB through a prudent nutrient management protocol for lasting bloom mitigation in the tributary bay.


Assuntos
Ecossistema , Nutrientes/farmacologia , Fitoplâncton/crescimento & desenvolvimento , Baías , Bioensaio , China , Clorofila/análise , Cianobactérias/crescimento & desenvolvimento , Diatomáceas/crescimento & desenvolvimento , Eutrofização , Água Doce/química
13.
Huan Jing Ke Xue ; 40(11): 4944-4952, 2019 Nov 08.
Artigo em Chinês | MEDLINE | ID: mdl-31854560

RESUMO

The construction of the Three Gorges Reservoir has had certain effects on the ecological environment of the water and serious phytoplankton blooms have occurred in its tributary embayment. To explore the spatial distribution of nitrogen and phosphorus nutrients and chlorophyll-a in different tributaries of the Three Gorges Reservoir, a water quality study (June 2018) was conducted in the Xiangxi River, Shengnongxi River, and Daning River of the Three Gorges Reservoir. The results showed that the average TN in the three tributaries was 1.86 mg·L-1, 1.90 mg·L-1, and 1.43 mg·L-1, respectively, and average TP was 0.09 mg·L-1, 0.07 mg·L-1, and 0.05 mg·L-1, respectively. Single-factor ANOVA analysis showed that the spatial difference in TN was significant and occurred in the following order:Shennongxi River > Xiangxi River > Daning River. There were significant differences in the spatial distribution of TP, which were in the order off Xiangxi River > Shennongxi River > Daning River. The mean concentrations of chlorophyll-a in the three tributaries was 6.41 µg·L-1, 21.39 µg·L-1, and 9.85µg·L-1, respectively. The results from the Pearson correlation analysis, showed that chlorophyll-a concentrations were closely related to TP distribution in all tributaries, but Zeu/Zmix was also correlated with the distribution of chlorophyll-a in the Shennongxi River and Daning River. The ratio of TN and TP concentrations was 22.36, 26.76, and 28.6, respectively, which revealed that TP is a critical and limiting factor affecting phytoplankton growth in its tributary embayment.


Assuntos
Clorofila A , Rios , Sais , China , Clorofila , Monitoramento Ambiental , Eutrofização , Inundações , Nitrogênio , Nutrientes , Fósforo , Estações do Ano
14.
Huan Jing Ke Xue ; 40(8): 3530-3538, 2019 Aug 08.
Artigo em Chinês | MEDLINE | ID: mdl-31854758

RESUMO

After the construction of the Xiangjiaba Dam, the hydrodynamic conditions, nutrient distributions, and transport conditions of the Jinsha River were changed. Here, the nutrient distribution characteristics and retention effects of Xiangjiaba Reservoir were investigated according to the results of water quality monitoring from 2015 to 2016. Spatial and temporal variations in TN, TP, SiO32-Si, and other nutrients, and retention flux and retention rate were analyzed. The results showed that the nutrient mass concentration of TN, TP, and SiO32--Si was 0.905 mg·L-1, 0.034 mg·L-1, and 7.98 mg·L-1, respectively. The distribution of TN was affected by point sources and the concentration of TN was large in urban areas. This distribution of TP was mainly granular and the mass concentrations decreased along the river path. The mass concentration of SiO32--Si did not significantly vary over time and space. Furthermore, Xiangjiaba Reservoir had a persistent effect on nutrient salts; the average annual retention of TN, TP, and SiO32--Si was 2.30×104 t·a-1, 0.146×104 t·a-1, and -2.4×104 t·a-1, respectively. During different seasons, the retention of TN and SiO32--Si varied between positive or negative; however, TP appeared to be consistent. The average monthly retention efficiency of TN, TP, and SiO32--Si was 17.5%, 32.8%, and -2.14%, respectively. Overall, retention efficiencies were higher during the dry season than that wet season, and phosphorus retention was most pronounced. The retention of TN in the reservoir may be related to denitrification and the input of external load; the flux of SiO32--Si was mainly affected by runoff; and the particle morphology of phosphorus, as well as reservoir period, were the main factors affecting TP retention. There were no clear correlations between nutrient retention and the mass concentrations of TN and SiO32--Si, but the nutrient retention effect of Xiangjiaba Reservoir reduced TP concentrations along the river path and increased TP concentration with vertical depth.

15.
Huan Jing Ke Xue ; 40(2): 640-648, 2019 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-30628326

RESUMO

To study the mechanism of phosphorus cycling in sediment during the redox cycle, changes in physicochemical properties of overlying water and various forms of phosphorus in sediments were investigated as a way to quantify the redistribution of phosphorus. Additionally, the effect of the release flux of phosphate from sediments under controlled redox conditions was analyzed. The results showed that the redox potential Eh and the pH system, sulfur system, carbon system, and iron-related changes exhibited periodicity and played an important role in explaining the migration and transformation mechanism in the interface phosphorus of the sediment-water phase. During the redox cycle, the phosphorus content of each species varied with the redox conditions and time. Because of this, quantitative analysis based on changes in water-sediment phosphorus could be obtained. Reducible phosphorus (BD-P) and iron-aluminum-bound phosphorus (NaOH-rP) were reversibly redistributed into weakly adsorbed phosphorus (NH4Cl-P), polyphosphorus/organophosphorous (NaOH-nrP), residual phosphorus (Rest-P), and interstitial water-soluble active phosphorus (SRP). Additionally, 93.7% of phosphorus in the sediment was not released into the water phase during the reduction reaction. The 92% of change in the overlying water total phosphorus (TP) was the SRP of overlying water, which showed that the exchange of the sediment-water phase were mainly soluble active phosphorus in this cycle. According to Fick's First Law, the maximum phosphorus flux was 0.58 mg·(m2·d)-1 during reduction and 0.16-0.22 mg·(m2·d)-1 on day seven of the oxidation phase. In the oxidation stage, the diffusion flux decreased with time, while the opposite trend occurred in the reduction reaction. This indicated that the anaerobic state accelerated the diffusion of phosphorus in sediments, and that oxygen exposure decreased the phosphorus flux in sediments.

16.
Huan Jing Ke Xue ; 39(9): 4169-4178, 2018 Sep 08.
Artigo em Chinês | MEDLINE | ID: mdl-30188058

RESUMO

The sediment storage environment in tributaries has been altered by impoundment of water in the Three Gorges Reservoir area, affecting the distribution of phosphorus forms in sediment and processes at the sediment-water interface. Through collection of sediment and overlying water samples in Xiangxi Bay in August 2016 (before impoundment) and October (after impoundment), the distribution characteristics of sedimentary phosphorus and the environmental conditions of storage before and after impoundment were analyzed. Fluxes of PO43--P at the sediment-water interface were also estimated. Results show that pH increased, alkalinity and reducibility were enhanced, and Eh in sediments decreased after impoundment. The relative content of phosphorus in sediments changed as follows:NaOH-P > HCl-P > OP to HCl-P > OP > NaOH-P; this could be attributed to changes in the depositional environment. Compared to pre-impoundment values, TP values after impoundment in sediment, overlying water ρ(PO43--P), and interstitial water ρ (PO43--P) were 1.3 times, 3.7 times, and 8.3 times higher, increasing the risk of nutrient release in sediments of Xiangxi Bay. The manifestation of PO43--P in sendiments of Xiangxi River generally is "source" pre-impoundment and post-impoundment, but the PO43--P diffusive flux increased from -0.0029-0.0059 mg·(m2·d)-1 pre-impoundment to 0.0067-0.1071 mg·(m2·d)-1 post-impoundment. The release of phosphorus from sediments at the bottom of Xiangxi Bay increased after impoundment.

17.
Huan Jing Ke Xue ; 39(2): 774-782, 2018 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-29964841

RESUMO

There were three rainfall events with different intensity in the Xiangxi Bay (XXB) from May 24 to June 2 in 2016. The factors such as hydrodynamics, water temperature, optical properties, and chlorophyll a concentrations during the rainfall events were analyzed. During the May 27 moderate rain period, the upstream flow of the reservoir bay increased by 1.9 times and the average mixing layer depth in the whole reservoir increased 8.2 m, compared to those before the rainfall event. During the June 1 light rain period, the average mixing layer depth in the whole reservoir increased 1.6 m and the average chlorophyll concentration reduced 2.02 µg·L-1, compared with those before the rainfall event. During the June 2 heavy rain period, the upstream flow of the reservoir bay increased by 4 times, the average mixing layer depth in the whole reservoir increased 7.9 m and the average chlorophyll concentration reduced 14.64 µg·L-1, compared with those before the rainfall event. The algae moved from the upstream to the downstream with water that reduced the concentration of algae in the XXB. The water temperature stratification weakened during the rain event and the average mixing layer depth in the whole reservoir increased, destroying the algal growth environment. After the rainfall, under suitable light and temperature conditions for 2-3 d, the water temperature stratification of the reservoir was recovered and rapid growth and reproduction of algae occurred. As a result, the chlorophyll concentrations in the reservoir increased. Rainfall has a periodic inhibitory effect on the outbreak of algal blooms; however, it cannot fundamentally solve the problem of tribal bay blooms.


Assuntos
Cianobactérias/crescimento & desenvolvimento , Eutrofização , Chuva , Baías , China , Clorofila A/análise
18.
Huan Jing Ke Xue ; 39(3): 1113-1121, 2018 Mar 08.
Artigo em Chinês | MEDLINE | ID: mdl-29965455

RESUMO

Overlying water and sediment interstitial water samples were acquired to study the nitrogen release between sediments and water interfaces in Xiangxi Bay in April 2016 during the Sensitive Period in spring. The spatial distribution of different forms of nitrogen in the sediment was analyzed, the diffusion fluxes of different forms of nitrogen in the sediments and water systems were also measured, and a correlation analysis with environmental factors was conducted. The results show that overlying water and sediment interstitial water ρ(TN) ranges from 1.10 to 6.90 mg·L-1 and 6.19 to 32.57 mg·L-1 respectively; indicating the nitrogen concentrations in the overlying and interstitial water of sediments have a certain variation along the process and vertically. The interstitial water nitrogen concentrations in the upstream area are higher than those in the downstream area. The interstitial water ρ(NH4+-N) in the sediment is significantly larger than that in the overlying water, but the interstitial water ρ(NO3--N) in the sediment is slightly smaller than that in the overlying water. Xiangxi Bay sediment acts as a source of NH4+-N; however, for NO3--N it is a sink. The diffusive fluxes of NH4+-N range from 2.70 to 4.72 mg·(m2·d)-1; and the diffusive fluxes of NO3--N range from -1.61 to -0.62 mg·(m2·d)-1. Nitrogen is mainly present in the form of ammonium nitrogen in the sediment of Xiangxi Bay. The ρ(NH4+-N) in the sediment ranges from 69.97-1185.97 mg·kg-1, ρ(NO3--N) ranges from 2.78-38.17 mg·kg-1, and the ρ(NH4+-N) in sediments in the surface at 0-8 cm changes with the same trend.

19.
Huan Jing Ke Xue ; 39(5): 2135-2144, 2018 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-29965513

RESUMO

This study characterizes the nutrient distribution of the sediment-water system in the Xiangxi River (XXR) during the impoundment of the Three Gorges Reservoir (TGR). In 2016, the research group obtained samples in the Xiangxi River, analyzed the distribution of nitrogen, phosphorus, and O.M. (organic matter) in the sediment-water system, explored the characteristics of "source-sink" between the interstitial water and overlying water, and carried out a cluster analysis for the sampling sites. The results showed that ρ(TN) in the sediments was higher than in the estuary, and the ρ(TN) was close to that in the middle and downstream samples of the river. The ρ(TP) in the upstream sample was the highest of all sites, ρ(O.M.) presented low distribution characteristics in the downstream, and the maximum value of ρ(O.M.) exceeded the critical point (1.5%) within a depth of 10 cm, and there was a certain risk of release. For the distribution in the overlying water, ρ(DTN) and ρ(DTP) were the largest in the estuary, ρ(DTN) decreased from the estuary to the upstream, and ρ(DTP) did not change along the river. During the study, DTN, NH4+-N, and DTP in all sites (except CJ point) were released as nutrients to the overlaying water as the "source," but some points for NO3--N and PO43--P presented as "sources," and some of them presented as "sinks." The "source-sink" process of nitrogen was stronger than that of phosphorus. This was due to the difference between the oxidation environment at the bottom of the XXR and the stream flow backward depth of the Xiangxi bay during impoundment. Based on the results of a cluster analysis, the characteristics of CJ, 1, and 2 indicated similar sediment-water systems, while the characteristics of 3 and 4 were similar.

20.
Sci Total Environ ; 634: 205-213, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29627543

RESUMO

Eutrophication has become a severe environmental problem in some tributaries of the Three Gorges Reservoir (TGR) in China. A two-year field investigation of nutrients, oxygen stable isotopes (δ18O), and hydrogen stable isotopes (δD) was performed from January 2010 to December 2011 to determine the sources of nutrients in Xiangxi Bay (XXB). The results showed that nitrogen, phosphorus and silicon varied seasonally depending on hydrodynamic changes. The bottom-layer intrusive density current decreased nitrogen and silicon concentrations and increase phosphorus concentrations in XXB, while the middle-layer intrusive density current increased nitrogen and silicon concentrations and decrease phosphorus concentrations. The differences in δ18O and δD among the Yangtze River (YR), XXB and the region upstream of XXB were significant, and according to the tracer method, the estimated contribution ratios of nitrogen, phosphorus and silicon from the YR to XXB were much larger than those from the region upstream of XXB. These findings suggest that water quality in the TGR can be improved by reducing the pollution load throughout the upstream basin of the YR but not through decentralized efforts in only one or two tributary basins.


Assuntos
Monitoramento Ambiental , Eutrofização , Nitrogênio/análise , Fósforo/análise , Poluentes Químicos da Água/análise , Baías/química , China
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA