Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Sci Total Environ ; 938: 173331, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38777070

RESUMO

Organic carbon (OC) and elemental carbon (EC) in fine particulate matter (PM2.5) play pivotal roles in impacting human health, air quality, and climate change dynamics. Long-term monitoring datasets of OC and EC in PM2.5 are indispensable for comprehending their temporal variations, spatial distribution, evolutionary patterns, and trends, as well as for assessing the effectiveness of clean air action plans. This study presents and scrutinizes a comprehensive 10-year hourly dataset of PM2.5-bound OC and EC in the megacity of Beijing, China, spanning from 2013 to 2022. Throughout the entire study period, the average concentrations of OC and EC were recorded at 8.8 ± 8.7 and 2.5 ± 3.0 µg/m3, respectively. Employing the seasonal and trend decomposition methodology, specifically the locally estimated scatter plot smoothing method combined with generalized least squares with the autoregressive moving average method, the study observed a significant decline in OC and EC concentrations, reducing by 5.8 % yr-1 and 9.9 % yr-1 at rates of 0.8 and 0.4 µg/m3 yr-1, respectively. These declining trends were consistently verified using Theil-Sen method. Notably, the winter months exhibited the most substantial declining trends, with rates of 9.3 % yr-1 for OC and 10.9 % yr-1 for EC, aligning with the positive impact of the implemented clean air action plan. Weekend spikes in OC and EC levels were attributed to factors such as traffic regulations and residential emissions. Diurnal variations showcased higher concentrations during nighttime and lower levels during daytime. Although meteorological factors demonstrated an overall positive impact with average reduction in OC and EC concentrations by 8.3 % and 8.7 %, clean air action plans including the Air Pollution Prevention and Control Action Plan (2013-2017) and the Three-Year Action Plan to Win the Blue Sky War (2018-2020) have more contributions in reducing the OC and EC concentrations with mass drop rates of 87.1 % and 89.2 % and 76.7 % and 96.7 %, respectively. Utilizing the non-parametric wind regression method, significant concentration hotspots were identified at wind speeds of ≤2 m/s, with diffuse signals recorded in the southwestern wind sectors at wind speeds of approximately 4-5 m/s. Interannual disparities in potential source regions of OC and EC were evident, with high potential source areas observed in the southern and northwestern provinces of Beijing from 2013 to 2018. In contrast, during 2019-2022, potential source areas with relatively high values of potential source contribution function were predominantly situated in the southern regions of Beijing. This analysis, grounded in observational data, provides insights into the decadal changes in the major atmospheric composition of PM2.5 and facilitates the evaluation of the efficacy of control policies, particularly relevant for developing countries.

3.
Biochim Biophys Acta Gen Subj ; 1868(7): 130631, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38685534

RESUMO

BACKGROUND: Vascular endothelial growth factor (VEGF) is overexpressed in most malignant tumors, which has important impact on tumor angiogenesis and development. Its gene promoter i-motif structure formed by C-rich sequence can regulate gene expression, which is a promising new target for anti-tumor therapy. METHODS: We screened various compounds and studied their effects on VEGF through extensive experiments, including SPR, MST, TO displacement, FRET, CD, ESI-MS, NMR, MTT, clone formation, qPCR, Western blot, dual-luciferase reporter assay, immunofluorescence, cell scrape, apoptosis, transwell assay, and animal model. RESULTS: After extensive screening, bisacridine derivative B09 was found to have selective binding and stabilization to VEGF promoter i-motif, which could down-regulate VEGF gene expression. B09 showed potent inhibition on MCF-7 and HGC-27 cell proliferation and metastasis. B09 significantly inhibited tumor growth in xenograft mice model with HGC-27 cells, showing decreased VEGF expression analyzed through immunohistochemistry. CONCLUSION: B09 could specifically regulate VEGF gene expression, possibly through interacting with promoter i-motif structure. As a lead compound, B09 could be further developed for innovative anti-cancer agent targeting VEGF.


Assuntos
Acridinas , Regulação Neoplásica da Expressão Gênica , Regiões Promotoras Genéticas , Fator A de Crescimento do Endotélio Vascular , Humanos , Animais , Regiões Promotoras Genéticas/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Camundongos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Acridinas/farmacologia , Acridinas/química , Proliferação de Células/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Neoplasias/metabolismo , Células MCF-7 , Camundongos Nus , Linhagem Celular Tumoral , Apoptose/efeitos dos fármacos , Feminino , Antineoplásicos/farmacologia , Antineoplásicos/química
4.
Environ Sci Technol ; 58(8): 3629-3640, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38354315

RESUMO

Key stages in people's lives have particular relevance for their health; the life-course approach stresses the importance of these stages. Here, we applied a life-course approach to analyze the health risks associated with PM2.5-bound elements, which were measured at three sites with varying environmental conditions in eastern China. Road traffic was found to be the primary source of PM2.5-bound elements at all three locations, but coal combustion was identified as the most important factor to induce both cancer risk (CR) and noncancer risk (NCR) across all age groups due to the higher toxicity of elements such as As and Pb associated with coal. Nearly half of NCR and over 90% of CR occurred in childhood (1-6 years) and adulthood (>18 years), respectively, and females have slightly higher NCR and lower CR than males. Rural population is found to be subject to the highest health risks. Synthesizing previous relevant studies and nationwide PM2.5 concentration measurements, we reveal ubiquitous and large urban-rural environmental exposure disparities over China.


Assuntos
Poluentes Atmosféricos , Material Particulado , Masculino , Feminino , Humanos , Material Particulado/análise , Poluentes Atmosféricos/análise , Estações do Ano , Monitoramento Ambiental , Medição de Risco , China/epidemiologia , Carvão Mineral/análise
5.
Environ Res ; 248: 118250, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38244964

RESUMO

The persistent O3 pollution in the Beijing-Tianjin-Hebei (BTH) region remains unresolved, largely due to limited comprehension of O3-precursor relationship and photochemistry drivers. In this work, intraday O3 sensitivity evolution from VOC-limited (volatile organic compound) regime in the forenoon to transition regime in the late afternoon was inferred by relative incremental reactivity (RIR) in summer 2019 at Xianghe, a suburban site in BTH region, suggesting that VOC-focused control policy could combine with stringent afternoon NOx control. Then detailed impacts of VOC subgroups on O3 formation were further comprehensively quantified by parametric OH reactivity (KOH), O3 formation potential (OFP), as well as RIR weighted value and O3 formation path tracing (OFPT) approach based on photochemical box model. O3 episode days corresponded to stronger O3 formation, depicted by higher KOH (10.4 s-1), OFP (331.7 µg m-3), RIR weighted value (1.2), and F(O3)-OFPT (15.5 ppbv h-1). High proportions of isoprene and OVOCs (oxygenated VOCs) to the total KOH and the OFPT method were demonstrated whereas results of OFP and RIR-weighted presented extra great impacts of aromatics on O3 formation. The OFPT approach captured the process that has already happened and included final O3 response to the original VOC, thus reliable for replicating VOC impacts. The comparison results of the four methods showed similarities when utilizing KOH and OFPT methods, which reveals that the potential applicability of simple KOH for contingency VOC control and more complex OFPT method for detailed VOC- and source-oriented control during policy-making. To investigate propulsion of VOC-involved O3 photochemistry, atmospheric oxidation capacity (AOC) was quantified by two atmospheric oxidation indexes (AOI). Both AOIp_G (7.0 × 107 molec cm-3 s-1, potential AOC calculated by oxidation reaction rates) and AOIe_G (8.5 µmol m-3, estimated AOC given redox electron transfer for oxidation products) were stronger on O3 episode days, indicating that AOC promoted the radical cycling initiated from VOC oxidation and subsequent O3 production. Result-oriented AOIe_G reasonably characterized actual AOC inferred by good linear correlation between AOIe_G and O3 concentrations compared to process-oriented AOIp_G. Therefore, with continuous NOx abatement, AOIe_G should be considered to represent actual AOC, also O3-inducing ability.


Assuntos
Poluentes Atmosféricos , Ozônio , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Ozônio/análise , Compostos Orgânicos Voláteis/análise , Monitoramento Ambiental , China , Oxirredução
6.
Org Lett ; 26(1): 315-320, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38175121

RESUMO

A protocol was developed to achieve stereodivergent synthesis of stereoisomers of δ-lactam bearing vicinal chiral centers. Organocatalytic cascade reactions were employed to produce the target products as the kinetic products, which exhibited remarkable enantioselectivities. In the presence of DBU, the kinetic product underwent epimerization to form a thermodynamically more stable diastereomer without loss in enantioselectivity. By simply switching the chiral organocatalyst and its enantiomer, we can efficiently obtain four stereoisomers with high enantioselectivities.

7.
Small ; 20(12): e2307800, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37948417

RESUMO

A flexible sensor that simultaneously senses temperature and pressure is crucial in various fields, such as human-machine interaction, artificial intelligence, and biomedical applications. Previous research has mainly focused on single-function flexible sensors for e-skins or smart devices, and integrated bimodal sensing of temperature and pressure without complex crosstalk decoupling algorithms remains challenging. In this work, a flexible bimodal sensor is proposed that utilizes spatial orthogonality between in-plane thermoelectricity and out-plane piezoresistivity, which enables fully decoupled temperature-pressure sensing. The proposed bimodal sensor exhibits a high sensitivity of 281.46 µV K-1 for temperature sensing and 2.181 kPa-1 for pressure sensing. In the bimodal sensing mode, the sensor exhibits negligible mutual interference, providing a measurement error of ± 7% and ± 8% for temperature and pressure, respectively, within a 120 kPa pressure range and a 40 K temperature variation. Additionally, simultaneous spatial mapping of temperature and pressure with a bimodal sensor array enables contact shape identification with enhanced accuracy beyond the limit imposed by the number of sensing units. The proposed integrated bimodal sensing strategy does not require complex crosstalk decoupling algorithms, which represents a significant advancement in flexible sensors for applications that necessitate simultaneous sensing of temperature and pressure.

8.
Environ Sci Technol ; 57(35): 13124-13135, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37616592

RESUMO

Ammonia (NH3) is critical to the nitrogen cycle and PM2.5 formation, yet a great deal of uncertainty exists in its urban emission quantifications. Model-underestimated NH3 concentrations have been reported for cities, yet few studies have provided an explanation. Here, we explore reasons for severe WRF-Chem model underestimations of NH3 concentrations in Beijing in August 2018, including simulated gas-particle partitioning, meteorology, regional transport, and emissions, using spatially refined (3 km resolution) NH3 emission estimates in the agricultural sector for Beijing-Tianjin-Hebei and in the traffic sector for Beijing. We find that simulated NH3 concentrations are significantly lower than ground-based and satellite observations during August in Beijing, while wintertime underestimations are much more moderate. Further analyses and sensitivity experiments show that such discrepancies cannot be attributed to factors other than biases in NH3 emissions. Using site measurements as constraints, we estimate that both agricultural and non-agricultural NH3 emission totals in Beijing shall increase by ∼5 times to match the observations. Future research should be performed to allocate underestimations to urban fertilizer, power, traffic, or residential sources. Dense and regular urban NH3 observations are necessary to constrain and validate bottom-up inventories and NHx simulation.


Assuntos
Agricultura , Amônia , Pequim , China , Cidades
9.
Environ Pollut ; 336: 122437, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37634565

RESUMO

Particulate matter (PM) inhaled into human lungs causes oxidative stress and adverse health effects through antioxidant depletion (oxidative potential, OP). However, there is limited knowledge regarding the association between the lung-deposited dose (LDD) of PM and OP in extrathoracic (ET), tracheobronchial (TB), and pulmonary (P) regions of human lungs. Dithiothreitol (DTT) and ascorbic acid (AA) assays were employed to measure the OP of PM size fractions to investigate OP distribution in human lungs and identify the chemical drivers. Quasi-ultrafine particles (quasi-UFP, ≤0.49 µm) exhibited high OP deposition in the TB and P regions, while coarse particles (CP, ≥3.0 µm) dominated in the ET region. A plot of extrinsic (per air volume) and intrinsic (per PM mass) OP versus LDD revealed that the OP for fine and coarse particles was greatest in the ET region, whereas the OP of quasi-UFP was greatest in alveoli. The study also demonstrated that extrinsic OP and PM doses are not strongly related. The decline in OP with increasing PM dose reveals the need for further investigation of the antagonistic effects of the chemical compositions. Overall, the results presented herein help address the gap in knowledge regarding the association between the OP and LDD of ambient particles in specific regions of human lungs.

10.
Sci Total Environ ; 903: 166162, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37574067

RESUMO

Secondary organic aerosol (SOA) is an important component of atmospheric fine particulate matter (PM2.5), with contributions from anthropogenic and biogenic volatile organic compounds (AVOC and BVOC) and semi- (SVOC) and intermediate volatility organic compounds (IVOC). Policymakers need to know which SOA precursors are important but accurate simulation of SOA magnitude and contributions remain uncertain. Findings from existing SOA modeling studies have many inconsistencies due to differing emission inventory methodologies/assumptions, air quality model (AQM) algorithms, and other aspects of study methodologies. To address some of the inconsistencies, we investigated the role of different AQM SOA algorithms by applying two commonly used models, CAMx and CMAQ, with consistent emission inventories to simulate SOA concentrations and contributions for July and November 2018 in China. Both models have a volatility basis set (VBS) SOA algorithm but with different parameters and treatments of SOA photochemical aging. SOA generated from BVOC (i.e., BSOA) is found to be more important in southern China. In contrast, SOA generated from anthropogenic precursors is more prevalent in the North China Plain (NCP), Yangtze River Delta (YRD), Sichuan Basin and Central China. Both models indicate negligible SOA formation from SVOC emissions compared to other precursors. In July, when BVOC emissions are abundant, SOA is predominantly contributed by BSOA (except for NCP), followed by IVOC-SOA (i.e., SOA produced from IVOC) and ASOA (i.e., SOA produced from anthropogenic VOC). In contrast, in November, IVOC became the leading SOA contributor for all selected regions except PRD, illustrating the important contribution of IVOC emissions to SOA formation. While both models generally agree in terms of the spatial distributions and seasonal variations of different SOA components, CMAQ tends to predict higher BSOA, while CAMx generates higher ASOA concentrations. As a result, CMAQ results suggest that BSOA concentration is always higher than ASOA in November, while CAMx emphasizes the importance of ASOA. Utilizing a conceptual model, we found that different treatment of SOA aging between the two models is a major cause of differences in simulated ASOA concentrations. The step-wise SOA aging scheme implemented in the CAMx VBS (based on gas-phase reactions with OH radical and similar to other models) exhibits a strong enhancement effect on simulated ASOA concentrations, and this effect increases with the ambient organic aerosol (OA) concentrations. The CMAQ aerosol module implements a different SOA aging scheme that represents particle-phase oligomerization and has smaller impacts on total OA. Different structures and/or parameters of the SOA aging schemes are being used in current models, which could greatly affect model simulations of OA in ways that are difficult to anticipate. Our results indicate that future control policies should aim at reducing IVOC emissions as well as traditional VOC emissions. In addition, aging schemes are the major driver in CMAQ vs. CAMx treatments of ASOA and their resulting predicted mass. More sophisticated measurement data (e.g., with resolved OA components) and/or chamber experiments (e.g., investigating how aging influences SOA yields) are needed to better characterize SOA aging and constrain model parameterizations.

11.
Biomed Res Int ; 2023: 1632992, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37234845

RESUMO

Artificial intelligence (AI) scholars and mediciners have reported AI systems that accurately detect medical imaging and COVID-19 in chest images. However, the robustness of these models remains unclear for the segmentation of images with nonuniform density distribution or the multiphase target. The most representative one is the Chan-Vese (CV) image segmentation model. In this paper, we demonstrate that the recent level set (LV) model has excellent performance on the detection of target characteristics from medical imaging relying on the filtering variational method based on the global medical pathology facture. We observe that the capability of the filtering variational method to obtain image feature quality is better than other LV models. This research reveals a far-reaching problem in medical-imaging AI knowledge detection. In addition, from the analysis of experimental results, the algorithm proposed in this paper has a good effect on detecting the lung region feature information of COVID-19 images and also proves that the algorithm has good adaptability in processing different images. These findings demonstrate that the proposed LV method should be seen as an effective clinically adjunctive method using machine-learning healthcare models.


Assuntos
Inteligência Artificial , COVID-19 , Humanos , COVID-19/diagnóstico por imagem , Diagnóstico por Imagem , Algoritmos , Modelos Teóricos , Processamento de Imagem Assistida por Computador/métodos
12.
Bioorg Chem ; 136: 106526, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37058782

RESUMO

Two series of novel acridone derivatives were designed and synthesized, with their anticancer activity evaluated. Most of these compounds showed potent antiproliferative activity against cancer cell lines. Among them, compound C4 with dual 1,2,3-triazol moieties exhibited the most potent activity against Hep-G2 cells with IC50 value determined to be 6.29 ± 0.93 µM. Subsequent experiments showed that C4 could bind to and destabilize Kras gene promoter i-motif structure without significant interaction with its corresponding G-quadruplex. C4 could down-regulate Kras expression in Hep-G2 cells, possibly due to its interaction with the Kras i-motif. Further cellular studies indicated that C4 could induce apoptosis of Hep-G2 cells, possibly related to its effect on mitochondrial dysfunction. These results indicated that C4 could be further developed as a promising anticancer agent.


Assuntos
Antineoplásicos , Estrutura Molecular , Relação Estrutura-Atividade , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Antineoplásicos/farmacologia , Antineoplásicos/química , Acridonas/farmacologia , Proliferação de Células , Apoptose
13.
Biochim Biophys Acta Gene Regul Mech ; 1866(2): 194912, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36754277

RESUMO

BACKGROUND: c-Kit protein is a signal transduction protein involved in multiple signal pathways, which play an important role in a variety of cellular events such as cell proliferation, apoptosis and differentiation. Special DNA secondary structures on the promoter of c-Kit gene, including G-quadruplex and i-motif structures, could act as "molecular switch" for gene transcriptional regulation, which are potentially important target for development of new anti-cancer drugs. METHODS: We screened and evaluated the effect of compounds on c-Kit through several experiments, including SPR, FRET, CD, MST, NMR, dual-luciferase reporter assay, Western blot, qPCR, immunofluorescence, MTT assay, colony formation, cell scrape, cell apoptosis, cell cycle analysis, and transwell assay. RESULTS: After extensive screening, we found that bisacridine derivative B05 had selective binding and stabilization to dual i-motif structures on c-Kit gene promoter, which could down-regulate c-Kit gene transcription and translation, resulting in inhibition of cell proliferation and metastasis. B05 exhibited potent anti-tumor activity on HGC-27 cells, and strongly suppressed tumor growth in HGC-27 xenograft mice model. CONCLUSIONS: B05 could interact with c-Kit promoter dual i-motif structures with excellent selectivity, which make it possible for selective regulation of gene transcription and translation. B05 could be further developed for selective anti-cancer agent targeting c-Kit promoter i-motifs. GENERAL SIGNIFICANCE: i-Motifs on different proto-oncogene promoters are diversified, and especially binding of dual i-motifs on the same promoter simultaneously could significantly down-regulate gene transcription with decreased dosage, and therefore increasing the selectivity. This new strategy shed bight light on development of selective DNA-targeting ligands.


Assuntos
Regulação da Expressão Gênica , Neoplasias , Humanos , Camundongos , Animais , Regiões Promotoras Genéticas , Neoplasias/genética , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , DNA/genética , Transcrição Gênica
14.
Int J Biol Macromol ; 230: 123125, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36603725

RESUMO

The purpose of this study was to construct a transmembrane peptide-chondroitin sulphate­gold nanoparticle (TAT-CS@Au) delivery system and investigate its activity as an anti-Alzheimer's disease (AD) drug. We successfully prepared TAT-CS@Au nanoparticles, investigated their anti-AD effects, and explored the possible mechanisms in in vitro models. TAT-CS@Au exhibited excellent cellular uptake and transport capacity, effectively inhibited the accumulation of Aß1-40, and significantly reduced Aß1-40-induced apoptosis in SH-SY5Y cells. Furthermore, TAT-CS@Au significantly reduced oxidative stress damage and cholinergic injury induced by Aß1-40 by regulating intracellular concentrations of reactive oxygen species (ROS), malondialdehyde (MDA), glutathione peroxidase (GSH-Px), and acetylcholine (ACh). Western blotting results demonstrated that TAT-CS@Au inhibited aberrant tau phosphorylation (Ser199, Thr205, Ser404, and Ser396) through GSK3ß inactivation. TAT-CS@Au decreased the levels of inflammatory factors, specifically TNF-α, IL-6, and IL-1ß, by inhibiting NF-κB nuclear translocation by activating MAPK signalling pathways. Overall, these results indicate that TAT-CS@Au exhibits excellent transmembrane ability, inhibits Aß1-40 accumulation, antagonises oxidative stress, reduces aberrant tau phosphorylation, and suppresses the expression of inflammatory factors. TAT-CS@Au may be a multi-target anti-AD drug with good cell permeability, providing new insights into the design and research of anti-AD therapeutics.


Assuntos
Doença de Alzheimer , Nanopartículas Metálicas , Neuroblastoma , Humanos , Ouro/farmacologia , Sulfatos de Condroitina/farmacologia , Preparações Farmacêuticas , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Fragmentos de Peptídeos/farmacologia , Fragmentos de Peptídeos/metabolismo , Estresse Oxidativo
15.
Sci Total Environ ; 857(Pt 1): 159232, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36208733

RESUMO

Limited by the scarcity of in situ vertical observation data, the influences of biomass burning in Southeast Asia on major atmospheric carbonaceous compositions in downwind regions have not been thoroughly studied. In this study, aircraft observations were performed to obtain high time-resolved in situ vertical distributions of black carbon (BC) as well as carbon monoxide (CO) and carbon dioxide (CO2). Four types of profiles were revealed: Mode I (from 2000 to 3000 m, the BC, CO and CO2 concentrations were enhanced), Mode II (with increasing altitude, the BC, CO and CO2 concentrations almost decreased), Mode III (inhomogeneous vertical BC, CO and CO2 profiles with BC peaks were observed from 2500 to 3000 m) and Mode IV (the BC, CO and CO2 concentrations increased above 1500 m). Furthermore, simulations were conducted to calculate radiative forcing (RF) caused by BC and study the heating rate (HR) of BC in combination with the vertical BC profiles. A larger BC distribution in the atmosphere resulted in a sharp RF change from negative to positive values, imposing a nonnegligible influence on the atmospheric temperature profile, with maximum HR values ranging from 0.4 to 5.8 K/day. The values of the absorption Ångström exponent (AAE) were 1.46 ± 0.11 and 1.48 ± 0.17 at altitudes from 1000 to 2000 and 2000-3000 m, respectively. The average BC light absorption coefficient at the 370 nm wavelength (α BC (370)) accounted for 50.3 %-76.8 % of the α (370), while the brown carbon (BrC) light absorption coefficient at the 370 nm wavelength (α BrC (370)) contributed 23.2 %-49.7 % to the α (370) at altitudes of 1000-2000 m. At altitudes of 2000-3000 m, α BC (370) and α BrC (370) contributed 43.8 %-88.2 % and 11.8 %-56.2 % to the α (370), respectively. These findings show that calculations that consider the surface BC concentration but ignore the vertical BC distribution could result in massive uncertainties in estimating the RF and HR caused by BC. This study helped achieve a deeper understanding of the influences of biomass burning over the region of Southeast Asia on the profiles of atmospheric carbonaceous compositions and atmospheric BC absorption and its warming effect.


Assuntos
Poluentes Atmosféricos , Poluentes Atmosféricos/análise , Aerossóis/análise , Biomassa , Monitoramento Ambiental/métodos , Dióxido de Carbono , Fuligem/análise , China , Sudeste Asiático , Aeronaves
16.
Environ Pollut ; 316(Pt 1): 120710, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36414162

RESUMO

The atmospheric chemistry of nitrous acid (HONO) has received extensive attention because of its significant contribution to hydroxyl (OH) radicals. Heterogeneous reaction of NO2 is an important HONO source, and its reaction mechanism is affected by many factors, such as concentration of gaseous NO2, surface adsorbed water, relative humidity and temperature. Although laboratory studies have confirmed the effect of temperature on heterogeneous reaction of NO2, there are few field observations reporting about it. We have conducted a field observation in the early spring 2021 when the temperature ranges widely (-0.1-24.7 °C). Concentrations of HONO and related pollutants at the urban area of Beijing are obtained. The hourly averaged HONO concentration reaches 4.87 ppb with a mean value of 1.48 ± 1.09 ppb. Combined with box model and RACM2 mechanism, we found an optimal temperature (∼10 °C) existing for heterogeneous reaction of NO2 during this measurement. When considering the promotion effect of optimal temperature, the contribution of heterogeneous reaction of NO2 to HONO can increase by 10%. This result will provide essential information for developing an accurate model of HONO chemistry in the atmosphere especially for certain periods or regions with temperature changing largely. Moreover, heterogeneous reaction of NO2 is the vital source of HONO, contributing 63-76% to simulated HONO during this measurement. Note that HONO photolysis is the most important formation pathway of OH radicals, and ambient HONO concentration is the obbligato constraint for evaluating atmospheric oxidation by model simulations.


Assuntos
Ácido Nitroso , Ozônio , Radical Hidroxila , Dióxido de Nitrogênio , Pequim
17.
J Environ Manage ; 325(Pt A): 116534, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36419282

RESUMO

Long-term continuous hourly measurements of ambient volatile organic compounds (VOCs) are scarce at the regional scale. In this study, a one-year hourly measurement campaign of VOCs was performed in Lvliang, Linfen, and Yuncheng in the heavily polluted Fenhe Plain region in China. The VOC average (±standard deviation, std) concentrations in Lvliang, Linfen, and Yuncheng were 44.4 ± 24.9, 45.7 ± 24.9, and 37.5 ± 25.0 ppbv, respectively. Compared to published data from the past two decades in China, the observed VOCs were at high concentration levels. VOCs in the Fenhe Plain cities were significantly impacted by industrial sources according to calculated emission ratios but were less affected by liquefied petroleum gas and natural gas (LPG/NG) and traffic emissions than those in megacities abroad. The emission inventories and observation data were combined for verification and identification of the key VOC species and sources controlling ozone (O3). Industrial emissions were the largest source of VOCs, accounting for 65%-79% of the total VOC emissions, while the coking industry accounted for 45.2%-66.0%. The emission inventories significantly underestimated oxygenated VOC (OVOC) emissions through the verification of VOC emission ratios. O3 control scenarios were analyzed by changing VOC/NOX reduction ratios through a photochemical box model. O3 control strategies were formulated considering local pollution control plans, emission inventories, and O3 formation regimes. The O3 reduction of reactivity-control measures was comparable with emission-control measures, ranging from 16% to 41%, which was contrary to the general perception that ozone formation potential (OFP)-based measures were more efficient for O3 reduction. Sources with high VOC emissions are accompanied by high OFP on the Fenhe Plain, indicating that the control of high-emission sources can effectively mitigate O3 pollution on this region.


Assuntos
Ozônio , Compostos Orgânicos Voláteis , Cidades , China , Poluição Ambiental
18.
Environ Pollut ; 315: 120389, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36223855

RESUMO

Fireworks are widely used in celebrations worldwide. The effects of fireworks on the physicochemical characteristics of atmospheric particles are well documented. However, the influence of firework burning on ambient volatile organic compound (VOC) emissions remains unclear. To determine the impact of firework-burning events on VOC emissions, ambient VOCs were measured at a receptor site on the Fenwei Plain during the Chinese Spring Festival period. Firework-burning plumes were identified by using potassium ions (K+) as tracers, and twenty VOC species were obtained as firework tracers. The emission ratios of the VOC species relative to K+ were in a range of 5.40 × 10-3-1.41 µg m-3/µg m-3 and were first estimated through the linear fitting method and source-tracer-ratio method. The VOC contributions of firework burning during the Lantern Festival (31.7 ± 8.3%) were higher than the levels during the Chinese New Year (28.6 ± 7.5%). The daytime net ozone (O3) formation rates during the Spring Festival and Lantern Festival increased by 11.4% and 15.2%, respectively, on average due to firework emissions. Secondary organic aerosol formation potential (SOAP) increased by 18.2% and 34.1% on average, respectively. These results can provide the source tracers of fireworks, and can subsequently help assess their impact on regional air quality and public health.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Aerossóis/análise , China , Emissões de Veículos/análise
19.
Environ Sci Technol ; 56(12): 7588-7597, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35544717

RESUMO

Online detection of bioaerosols based on the light-induced fluorescence (LIF) technique is still challenging due to the complexity of bioaerosols and the external/internal mixing with nonbiological fluorescent compositions. Although many lab studies have measured the fluorescence properties of the biological and nonbiological materials, there is still a scarcity of knowledge of the sources of fluorescent aerosol particles (FAP) in the ambient atmosphere. Here, we fill this gap by combining the online measurement of an LIF-based instrument (wideband integrated bioaerosol sensor, WIBS, 0.8-20 µm) with the measurements of typical biological matter and the compositions related to major nonbiological FAP from May to July in the megacity Beijing. We find that fungal spores and pollen are widely observed in all types of FAP using a WIBS. Bacteria are suggested to be associated with the fine mode FAP (excitation/emission: 280 nm/310-400 nm; 0.8-3 µm). The FL-B and -BC particles (emission in 420-650 nm) contributing the most to FAP are strongly associated with humic-like substances, dust, burning and combustion emissions, and secondary organic aerosols (SOA). This study provides a guide for interpreting individual FAP measured by LIF instruments and points to the applicability of online LIF instruments to characterize nonbiological compositions including SOA.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Aerossóis/análise , Poluentes Atmosféricos/análise , Atmosfera , Bactérias , Monitoramento Ambiental/métodos , Material Particulado/análise , Pólen/química
20.
J Environ Sci (China) ; 114: 422-433, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35459505

RESUMO

Particulate matter (PM) pollution in high emission regions will affect air quality, human health and climate change on both local and regional scales, and thus attract worldwide attention. In this study, a comprehensive study on PM2.5 and its chemical composition were performed in Yuncheng (the most polluted city of Fen-Wei Plain of China) from November 28, 2020 to January 24, 2021. The average concentration of PM2.5 was 87.8 ± 52.0 µg/m3, which were apparently lower than those observed during the same periods of past five years, attributable to the clean air action plan implemented in this region. NO3- and organic carbon (OC) were the dominant particulate components, which on average contributed 22.6% and 16.5% to PM2.5, respectively. The fractions of NO3-, NH4+, OC and trace metals increased while those of crustal materials and elemental carbon decreased with the degradation of PM2.5 pollution. Six types of PM2.5 sources were identified by the PMF model, including secondary inorganic aerosol (35.3%), coal combustion (28.7%), vehicular emission (20.7%), electroplating industry (8.6%), smelt industry (3.9%) and dust (2.8%). Locations of each identified source were pinpointed based on conditional probability function, potential source contribution function and concentration weighted trajectory, which showed that the geographical distribution of the sources of PM2.5 roughly agreed with the areas of high emission. Overall, this study provides valuable information on atmospheric pollution and deems beneficial for policymakers to take informed action to sustainably improve air quality in highly polluted region.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Aerossóis/análise , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Carbono/análise , China , Carvão Mineral/análise , Poeira/análise , Monitoramento Ambiental , Humanos , Material Particulado/análise , Estações do Ano , Emissões de Veículos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA