Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2404230, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984451

RESUMO

Glioblastoma multiforme (GBM) is the most common primary malignant brain tumor and known for its challenging prognosis. Sonodynamic therapy (SDT) is an innovative therapeutic approach that shows promise in tumor elimination by activating sonosensitizers with low-intensity ultrasound. In this study, a novel sonosensitizer is synthesized using Cu-doped carbon dots (Cu-CDs) for the sonodynamic treatment of GBM. Doping with copper transforms the carbon dots into a p-n type semiconductor having a bandgap of 1.58 eV, a prolonged lifespan of 10.7 µs, and an improved electron- and hole-separation efficiency. The sonodynamic effect is efficiency enhanced. Western blot analysis reveals that the Cu-CDs induces a biological response leading to cell death, termed as cuproptosis. Specifically, Cu-CDs upregulate dihydrosulfanyl transacetylase expression, thereby establishing a synergistic therapeutic effect against tumor cell death when combined with SDT. Furthermore, Cu-CDs exhibit excellent permeability through the blood-brain barrier and potent anti-tumor activity. Importantly, the Cu-CDs effectively impede the growth of glioblastoma tumors and prolong the survival of mice bearing these tumors. This study provides support for the application of carbon-based nanomaterials as sonosensitizers in tumor therapy.

2.
iScience ; 27(5): 109324, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38706854

RESUMO

Digital liquid sample handling is an enabling tool for cutting-edge life-sciences research. We present here an active-matrix thin-film transistor (TFT) based digital microfluidics system, referred to as Field Programmable Droplet Array (FPDA). The system contains 256 × 256 pixels in an active area of 10.65 cm2, which can manipulate thousands of addressable liquid droplets simultaneously. By leveraging a novel TFT device and circuits design solution, we manage to programmatically manipulate droplets at single-pixel level. The minimum achievable droplet volume is around 0.5 nL, which is two orders of magnitude smaller than the smallest droplet ever reported on active-matrix digital microfluidics. The movement of droplets can be either pre-programmed or controlled in real-time. The FPDA system shows great potential of the ubiquitous thin-film electronics technology in digital liquid handling. These efforts will make it possible to create a true programmable lab-on-a-chip device to enable great advances in life science research.

3.
ACS Omega ; 9(9): 10937-10944, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38463286

RESUMO

In this paper, a digital microfluidic thermal control system was introduced for the stable polymerase chain reaction (PCR). The system consists of a thermoelectric cooler unit, a thermal control board, and graphical-user-interface software capable of simultaneously achieving temperature control and on-chip droplet observation. A fuzzy proportional-integral-derivative (PID) method was developed for this system. The simulation analysis was performed to evaluate the temperature of different reagents within the chip. Based on the results, applying fuzzy PID control for PCR will enhance the thermal stability by 67.8% and save the time by 1195 s, demonstrating excellent dynamic response capability and thermal robustness. The experimental results are consistent with the simulation results on the planar temperature distribution, with a data consistency rate of over 99%. The PCR validation was carried out on this system, successfully amplifying the rat GAPDH gene at a concentration of 193 copies/µL. This work has the potential to be useful in numerous existing lab-on-a-chip applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA