Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Adv Sci (Weinh) ; : e2403095, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38867614

RESUMO

Intrauterine growth restriction (IUGR), when a fetus does not grow as expected, is associated with a reduction in hepatic functionality and a higher risk for chronic liver disease in adulthood. Utilizing early developmental plasticity to reverse the outcome of poor fetal programming remains an unexplored area. Focusing on the biochemical profiles of neonates and previous transcriptome findings, piglets from the same fetus are selected as models for studying IUGR. The cellular landscape of the liver is created by scRNA-seq to reveal sex-dependent patterns in IUGR-induced hepatic injury. One week after birth, IUGR piglets experience hypoxic stress. IUGR females exhibit fibroblast-driven T cell conversion into an immune-adapted phenotype, which effectively alleviates inflammation and fosters hepatic regeneration. In contrast, males experience even more severe hepatic injury. Prolonged inflammation due to disrupted lipid metabolism hinders intercellular communication among non-immune cells, which ultimately impairs liver regeneration even into adulthood. Additionally, Apolipoprotein A4 (APOA4) is explored as a novel biomarker by reducing hepatic triglyceride deposition as a protective response against hypoxia in IUGR males. PPARα activation can mitigate hepatic damage and meanwhile restore over-expressed APOA4 to normal in IUGR males. The pioneering study offers valuable insights into the sexually dimorphic responses to hepatic injury during IUGR.

2.
Nat Commun ; 15(1): 4995, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862474

RESUMO

RNF214 is an understudied ubiquitin ligase with little knowledge of its biological functions or protein substrates. Here we show that the TEAD transcription factors in the Hippo pathway are substrates of RNF214. RNF214 induces non-proteolytic ubiquitylation at a conserved lysine residue of TEADs, enhances interactions between TEADs and YAP, and promotes transactivation of the downstream genes of the Hippo signaling. Moreover, YAP and TAZ could bind polyubiquitin chains, implying the underlying mechanisms by which RNF214 regulates the Hippo pathway. Furthermore, RNF214 is overexpressed in hepatocellular carcinoma (HCC) and inversely correlates with differentiation status and patient survival. Consistently, RNF214 promotes tumor cell proliferation, migration, and invasion, and HCC tumorigenesis in mice. Collectively, our data reveal RNF214 as a critical component in the Hippo pathway by forming a signaling axis of RNF214-TEAD-YAP and suggest that RNF214 is an oncogene of HCC and could be a potential drug target of HCC therapy.


Assuntos
Carcinoma Hepatocelular , Proliferação de Células , Proteínas de Ligação a DNA , Neoplasias Hepáticas , Transdução de Sinais , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição , Ubiquitinação , Proteínas de Sinalização YAP , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Humanos , Animais , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Camundongos , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Sinalização YAP/metabolismo , Linhagem Celular Tumoral , Fatores de Transcrição de Domínio TEA/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Progressão da Doença , Camundongos Nus , Movimento Celular/genética , Masculino , Regulação Neoplásica da Expressão Gênica , Via de Sinalização Hippo , Células HEK293 , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Feminino , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética
3.
Adv Sci (Weinh) ; 11(21): e2309010, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38526177

RESUMO

Intrahepatic cholangiocarcinoma (iCCA) is a highly lethal biliary epithelial cancer in the liver. Here, Laminin subunit gamma-2 (LAMC2) with important oncogenic roles in iCCA is discovered. In a total of 231 cholangiocarcinoma patients (82% of iCCA patients) across four independent cohorts, LAMC2 is significantly more abundant in iCCA tumor tissue compared to normal bile duct and non-tumor liver. Among 26.3% of iCCA patients, LAMC2 gene is amplified, contributing to its over-expression. Functionally, silencing LAMC2 significantly blocks tumor formation in orthotopic iCCA mouse models. Mechanistically, it promotes EGFR protein translation via interacting with nascent unglycosylated EGFR in the endoplasmic reticulum (ER), resulting in activated EGFR signaling. LAMC2-mediated EGFR translation also depends on its interaction with the ER chaperone BiP via their C-terminus. Together LAMC2 and BiP generate a binding "pocket" of nascent EGFR and facilitate EGFR translation. Consistently, LAMC2-high iCCA patients have poor prognosis in two iCCA cohorts. LAMC2-high iCCA cells are highly sensitive to EGFR tyrosine kinase inhibitors (TKIs) treatment both in vitro and in vivo. Together, these data demonstrate LAMC2 as an oncogenic player in iCCA by promoting EGFR translation and an indicator to identify iCCA patients who may benefit from available EGFR-targeted TKIs therapies.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Receptores ErbB , Laminina , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Humanos , Receptores ErbB/metabolismo , Receptores ErbB/genética , Animais , Camundongos , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/patologia , Laminina/metabolismo , Laminina/genética , Modelos Animais de Doenças , Masculino , Feminino , Linhagem Celular Tumoral
4.
Dev Cell ; 59(1): 48-63.e8, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38103553

RESUMO

Loss of TGF-ß growth-inhibitory responses is a hallmark of human cancer. However, the molecular mechanisms underlying the TGF-ß resistance of cancer cells remain to be fully elucidated. Splicing factor proline- and glutamine-rich (SFPQ) is a prion-like RNA-binding protein that is frequently upregulated in human cancers. In this study, we identified SFPQ as a potent suppressor of TGF-ß signaling. The ability of SFPQ to suppress TGF-ß responses depends on its prion-like domain (PrLD) that drives liquid-liquid phase separation (LLPS). Mechanistically, SFPQ physically restrained Smad4 in its condensates, which excluded Smad4 from the Smad complex and chromatin occupancy and thus functionally dampened Smad-dependent transcriptional responses. Accordingly, SFPQ deficiency or loss of phase separation activities rendered human cells hypersensitive to TGF-ß responses. Together, our data identify an important function of SFPQ through LLPS that suppresses Smad transcriptional activation and TGF-ß tumor-suppressive activity.


Assuntos
Neoplasias , Príons , Humanos , Ativação Transcricional , Proteína Smad4/genética , Proteína Smad4/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Proteínas de Ligação a RNA
5.
Sci Adv ; 9(51): eadh1442, 2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38134284

RESUMO

Large-scale chromosomal aberrations are prevalent in human cancer, but their function remains poorly understood. We established chromosome-engineered hepatocellular carcinoma cell lines using CRISPR-Cas9 genome editing. A 33-mega-base pair region on chromosome 8p (chr8p) was heterozygously deleted, mimicking a frequently observed chromosomal deletion. Using this isogenic model system, we delineated the functional consequences of chr8p loss and its impact on metastatic behavior and patient survival. We found that metastasis-associated genes on chr8p act in concert to induce an aggressive and invasive phenotype characteristic for chr8p-deleted tumors. Genome-wide CRISPR-Cas9 viability screening in isogenic chr8p-deleted cells served as a powerful tool to find previously unidentified synthetic lethal targets and vulnerabilities accompanying patient-specific chromosomal alterations. Using this target identification strategy, we showed that chr8p deletion sensitizes tumor cells to targeting of the reactive oxygen sanitizing enzyme Nudix hydrolase 17. Thus, chromosomal engineering allowed for the identification of novel synthetic lethalities specific to chr8p loss of heterozygosity.


Assuntos
Neoplasias Hepáticas , Mutações Sintéticas Letais , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Deleção Cromossômica , Aberrações Cromossômicas , Cromossomos , Sistemas CRISPR-Cas
7.
Essays Biochem ; 66(4): 345-358, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-35996948

RESUMO

Cancer stem cells (CSCs) are a subgroup of tumor cells, possessing the abilities of self-renewal and generation of heterogeneous tumor cell lineages. They are believed to be responsible for tumor initiation, metastasis, as well as chemoresistance in human malignancies. MicroRNAs (miRNAs) are small noncoding RNAs that play essential roles in various cellular activities including CSC initiation and CSC-related properties. Mature miRNAs with ∼22 nucleotides in length are generated from primary miRNAs via its precursors by miRNA-processing machinery. Extensive studies have demonstrated that mature miRNAs modulate CSC initiation and stemness features by regulating multiple pathways and targeting stemness-related factors. Meanwhile, both miRNA precursors and miRNA-processing machinery can also affect CSC properties, unveiling a new insight into miRNA function. The present review summarizes the roles of mature miRNAs, miRNA precursors, and miRNA-processing machinery in regulating CSC properties with a specific focus on the related molecular mechanisms, and also outlines the potential application of miRNAs in cancer diagnosis, predicting prognosis, as well as clinical therapy.


Assuntos
MicroRNAs , Neoplasias , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Nucleotídeos/metabolismo
8.
Sci Adv ; 8(25): eabn5683, 2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35731873

RESUMO

Mechanistic study and precision treatment of primary liver cancer (PLC) are hindered by marked heterogeneity, which is challenging to recapitulate in any given liver cancer mouse model. Here, we report the generation of 25 mouse models of PLC by in situ genome editing of hepatocytes recapitulating 25 single or combinations of human cancer driver genes. These mouse tumors represent major histopathological types of human PLCs and could be divided into three human-matched molecular subtypes based on transcriptomic and proteomic profiles. Phenotypical characterization identified subtype- or genotype-specific alterations in immune microenvironment, metabolic reprogramming, cell proliferation, and expression of drug targets. Furthermore, single-cell analysis and expression tracing revealed spatial and temporal dynamics in expression of pyruvate kinase M2 (Pkm2). Tumor-specific knockdown of Pkm2 by multiplexed genome editing reversed the Warburg effect and suppressed tumorigenesis in a genotype-specific manner. Our study provides mouse PLC models with defined genetic drivers and characterized phenotypical heterogeneity suitable for mechanistic investigation and preclinical testing.

9.
Cancers (Basel) ; 14(5)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35267462

RESUMO

Liver cancers, which are mostly hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA), are very aggressive tumors with poor prognosis. Therapeutic options with curative intent are largely limited to surgery and available systemic therapies show limited benefit. Signal transducer and activator of transcription 1 (STAT1) and 3 (STAT3) are key transcription factors activated by pro-inflammatory cytokines such as interferon-γ (IFN-γ) and interleukin-6 (IL-6). In this study, we combined in vitro cell culture experiments and immunohistochemical analyses of human HCC (N = 124) and CCA (N = 138) specimens. We observed that in the absence of STAT3, IL-6 induced the activation of STAT1 and its target genes suggesting that IL-6 derived from the tumor microenvironment may activate both STAT1 and STAT3 target genes in HCC tumor cells. In addition, STAT1 and STAT3 were highly activated in a subset of HCC, which exhibited a high degree of infiltrating CD8- and FOXP3-positive immune cells and PD-L1 expression. Our results demonstrate that STAT1 and STAT3 are expressed and activated in HCC and tumor infiltrating immune cells. In addition, HCC cases with high STAT1 and STAT3 expression also exhibited a high degree of immune cell infiltration, suggesting increased immunological tolerance.

10.
Gut ; 71(11): 2313-2324, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-34996827

RESUMO

OBJECTS: The incidence of hepatocellular carcinoma (HCC) shows an obvious male dominance in rodents and humans. We aimed to identify the key autosomal liver-specific sex-related genes and investigate their roles in hepatocarcinogenesis. DESIGN: Two HCC cohorts (n=551) with available transcriptome and metabolome data were used. Class comparisons of omics data and ingenuity pathway analysis were performed to explore sex-related molecules and their associated functions. Functional assays were employed to investigate roles of the key candidates, including cellular assays, molecular assays and multiple orthotopic HCC mouse models. RESULTS: A global comparison of multiple omics data revealed 861 sex-related molecules in non-tumour liver tissues between female and male HCC patients, which denoted a significant suppression of cancer-related diseases and functions in female liver than male. A member of cytochrome P450 family, CYP39A1, was one of the top liver-specific candidates with significantly higher levels in female vs male liver. In HCC tumours, CYP39A1 expression was dramatically reduced in over 90% HCC patients. Exogenous CYP39A1 significantly blocked tumour formation in both female and male mice and partially reduced the sex disparity of hepatocarcinogenesis. The HCC suppressor role of CYP39A1 did not rely on its known P450 enzyme activity but its C-terminal region, by which CYP39A1 impeded the transcriptional activation activity of c-Myc, leading to a significant inhibition of hepatocarcinogenesis. CONCLUSIONS: The liver-specific CYP39A1 with female-preferential expression was a strong suppressor of HCC development. Strategies to up-regulate CYP39A1 might be promising methods for HCC treatment in both women and men in future.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinoma Hepatocelular/patologia , Sistema Enzimático do Citocromo P-450/genética , Família , Feminino , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Esteroide Hidroxilases
11.
Ann N Y Acad Sci ; 1506(1): 142-163, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34850398

RESUMO

The test for the cancer stem cell (CSC) hypothesis is to find a target expressed on all, and only CSCs in a patient tumor, then eliminate all cells with that target that eliminates the cancer. That test has not yet been achieved, but CSC diagnostics and targets found on CSCs and some other cells have resulted in a few clinically relevant therapies. However, it has become apparent that eliminating the subset of tumor cells characterized by self-renewal properties is essential for long-term tumor control. CSCs are able to regenerate and initiate tumor growth, recapitulating the heterogeneity present in the tumor before treatment. As great progress has been made in identifying and elucidating the biology of CSCs as well as their interactions with the tumor microenvironment, the time seems ripe for novel therapeutic strategies that target CSCs to find clinical applicability. On May 19-21, 2021, researchers in cancer stem cells met virtually for the Keystone eSymposium "Cancer Stem Cells: Advances in Biology and Clinical Translation" to discuss recent advances in the understanding of CSCs as well as clinical efforts to target these populations.


Assuntos
Congressos como Assunto/tendências , Neoplasias/genética , Células-Tronco Neoplásicas/fisiologia , Relatório de Pesquisa , Pesquisa Translacional Biomédica/tendências , Microambiente Tumoral/fisiologia , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Humanos , Neoplasias/metabolismo , Pesquisa Translacional Biomédica/métodos
13.
Transl Oncol ; 14(1): 100880, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33074128

RESUMO

Ras mutations are present in only a subset of sporadic human cutaneous squamous cell carcinomas (cSCC) even though Ras is activated in most. This suggests that other mechanisms of Ras activation play a role in the disease. The aberrant expression of RasGRP1, a guanyl nucleotide exchange factor for Ras, is critical for mouse cSCC development through its ability to increase Ras activity. However, the role of RasGRP1 in human keratinocyte carcinogenesis remains unknown. Here we report that RasGRP1 is significantly elevated in human cSCC and that high RasGRP1 expression in human primary keratinocytes triggered activation of endogenous Ras and significant morphological changes including cytoplasmic vacuole formation and growth arrest. Moreover, RasGRP1-expressing cells were autophagic as indicated by LC3-II increase and the formation of LC3 punctae. In an in vitro organotypic skin model, wild type keratinocytes generated a well-stratified epithelium, while RasGRP1-expressing cells failed to do so. Finally, RasGRP1 induced transformation-like changes in skin cells from Li-Fraumeni patients with inactivating p53 mutations, demonstrating the oncogenic potential of this protein. These results support a role for RasGRP1 in human epidermal keratinocyte carcinogenesis and might serve as an important new therapeutic target.

14.
Hepatology ; 73(4): 1381-1398, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32609900

RESUMO

BACKGROUND AND AIMS: Transarterial chemoembolization (TACE) is a standard locoregional therapy for patients with hepatocellular carcinoma (HCC) patients with a variable overall response in efficacy. We aimed to identify key molecular signatures and related pathways leading to HCC resistance to TACE, with the hope of developing effective approaches in preselecting patients with survival benefit from TACE. APPROACH AND RESULTS: Four independent HCC cohorts with 680 patients were used. MicroRNA (miRNA) transcriptome analysis in patients with HCC revealed a 41-miRNA signature related to HCC recurrence after adjuvant TACE, and miR-125b was the top reduced miRNA in patients with HCC recurrence. Consistently, patients with HCC with low miR-125b expression in tumor had significantly shorter time to recurrence following adjuvant TACE in two independent cohorts. Loss of miR-125b in HCC noticeably activated the hypoxia inducible factor 1 alpha subunit (HIF1α)/pAKT loop in vitro and in vivo. miR-125b directly attenuated HIF1α translation through binding to HIF1A internal ribosome entry site region and targeting YB-1, and blocked an autocrine HIF1α/platelet-derived growth factor ß (PDGFß)/pAKT/HIF1α loop of HIF1α translation by targeting the PDGFß receptor. The miR-125b-loss/HIF1α axis induced the expression of CD24 and erythropoietin (EPO) and enriched a TACE-resistant CD24-positive cancer stem cell population. Consistently, patients with high CD24 or EPO in HCC had poor prognosis following adjuvant TACE therapy. Additionally, in patients with HCC having TACE as their first-line therapy, high EPO in blood before TACE was also noticeably related to poor response to TACE. CONCLUSIONS: MiR-125b loss activated the HIF1α/pAKT loop, contributing to HCC resistance to TACE and the key nodes in this axis hold the potential in assisting patients with HCC to choose TACE therapy.


Assuntos
Carcinoma Hepatocelular/terapia , Quimioembolização Terapêutica/métodos , Resistencia a Medicamentos Antineoplásicos/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Hepáticas/terapia , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/genética , Células A549 , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/genética , Estudos de Coortes , Feminino , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Neoplasias Hepáticas/genética , Masculino , Camundongos , MicroRNAs/genética , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/metabolismo , Transcriptoma , Transfecção , Adulto Jovem
15.
J Exp Clin Cancer Res ; 39(1): 268, 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33256802

RESUMO

BACKGROUND: Emerging studies revealed that cancer stem cells (CSCs) possessed peculiar metabolic properties, which however remained largely unknown in hepatocellular carcinoma (HCC). Genetic silencing of liver-abundant miR-192-5p was a key feature for multiple groups of CSC-positive HCCs. We thus aimed to investigate essential metabolic features of hepatic CSCs via using HCCs with miR-192-5p silencing as a model. METHODS: Datasets from two independent HCC cohorts were used. Data integration analyses of miR-192-5p with metabolome and mRNA transcriptome data in HCC Cohort 1 were performed to investigate miR-192-5p related metabolic features, which was further validated in Cohort 2. Cellular and molecular assays were performed to examine whether and how miR-192-5p regulated the identified metabolic features. Co-culture systems consisting of HCC cells and LX2 (human hepatic stellate cell line) or THP1 (human monocyte cell line) were established to explore effects of the identified metabolic properties on stemness features of HCC cells via interacting with co-cultured non-tumor cells. RESULTS: High levels of glycolysis-related metabolites and genes were present in HCCs with low miR-192-5p and CSC-positive HCCs in two independent HCC cohorts. miR-192-5p knockout cells displayed CSC features and miR-192-5p loss led to an enhanced glycolytic phenotype via upregulating three bona fide targets, GLUT1 and PFKFB3 (two glycolytic enzymes) and c-Myc (regulating glycolytic genes' expression). Meanwhile, c-Myc suppressed miR-192-5p transcription, ensuring a low-miR-192-5p/high-c-Myc loop to maintain hyperglycolysis. Moreover, over-produced lactic acid from hyperglycolytic HCC cells stimulated the ERK phosphorylation of co-cultured LX2 and THP1 non-tumor cells partially via NDRG3 and MCT1, which in turn promoted cell malignancy and stemness of HCC cells. Consistently, HCC patients with low level of miR-192-5p in their tumor tissues and high level of NDRG3 or MCT1 in their non-tumor tissues had the shortest overall survival. CONCLUSIONS: In CSC-positive HCCs, miR-192-5p loss enhanced glycolysis and over produced lactate might further increase HCC malignant features via interacting with environmental non-tumor cells.


Assuntos
Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , MicroRNAs/metabolismo , Células-Tronco Neoplásicas/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Retroalimentação , Feminino , Glicólise , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , MicroRNAs/genética , Transfecção
16.
Genome Med ; 12(1): 102, 2020 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-33225985

RESUMO

BACKGROUND: The gut-liver axis plays a pivotal role in the pathogenesis of hepatocellular carcinoma (HCC). However, the correlations between the gut microbiome and the liver tumor transcriptome in patients with HCC and the impact of the gut microbiota on clinical outcome are less well-understood. METHODS: Fecal samples collected from HBV-related HCC patients (n = 113) and healthy volunteers (n = 100) were subjected to 16S rRNA sequencing of the microbiome. After a rigorous selection process, 32 paired tumor and adjacent non-tumor liver tissues from the HCC group were subjected to next-generation sequencing (NGS) RNA-seq. The datasets were analyzed individually and integrated with clinical characteristics for combined analysis using bioinformatics approaches. We further verified the potential of the gut microbiota to predict clinical outcome by a random forest model and a support vector machine model. RESULTS: We found that Bacteroides, Lachnospiracea incertae sedis, and Clostridium XIVa were enriched in HCC patients with a high tumor burden. By integrating the microbiome and transcriptome, we identified 31 robust associations between the above three genera and well-characterized genes, indicating possible mechanistic relationships in tumor immune microenvironment. Clinical characteristics and database analysis suggested that serum bile acids may be important communication mediators between these three genera and the host transcriptome. Finally, among these three genera, six important microbial markers associated with tumor immune microenvironment or bile acid metabolism showed the potential to predict clinical outcome (AUC = 81%). CONCLUSIONS: This study revealed that changes in tumor immune microenvironment caused by the gut microbiota via serum bile acids may be important factors associated with tumor burden and adverse clinical outcome. Gut microbes can be used as biomarkers of clinical features and outcomes, and the microbe-associated transcripts of host tumors can partly explain how gut microbiota promotes HCC pathogenesis.


Assuntos
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Microbioma Gastrointestinal , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Transcriptoma , Adulto , Idoso , Bactérias/classificação , Bactérias/genética , Biomarcadores Tumorais , Biologia Computacional , Fezes , Microbioma Gastrointestinal/genética , Regulação Neoplásica da Expressão Gênica , Vírus da Hepatite B , Interações entre Hospedeiro e Microrganismos , Humanos , Fígado/metabolismo , Masculino , Pessoa de Meia-Idade , Prognóstico , Estudos Prospectivos , RNA Ribossômico 16S/genética
17.
J Pathol ; 252(3): 239-251, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32710569

RESUMO

Distal cholangiocarcinoma (dCCA) is a biliary tract cancer with a dismal prognosis and is often preceded by biliary intraepithelial neoplasia (BilIN), representing the most common biliary non-invasive precursor lesion. BilIN are histologically well defined but have not so far been characterised systematically at the molecular level. The aim of this study was to determine miRNA-regulated genes in cholangiocarcinogenesis via BilIN. We used a clinicopathologically well-characterised cohort of 12 dCCA patients. Matched samples of non-neoplastic biliary epithelia, BilIN and invasive tumour epithelia of each patient were isolated from formalin-fixed paraffin-embedded tissue sections by laser microdissection. The resulting 36 samples were subjected to total RNA extraction and the expression of 798 miRNAs was assessed using the Nanostring® technology. Candidate miRNAs were validated by RT-qPCR and functionally investigated following lentiviral overexpression in dCCA-derived cell lines. Potential direct miRNA target genes were identified by microarray and prediction algorithms and were confirmed by luciferase assay. We identified 49 deregulated miRNAs comparing non-neoplastic and tumour tissue. Clustering of these miRNAs corresponded to the three stages of cholangiocarcinogenesis, supporting the concept of BilIN as a tumour precursor. Two downregulated miRNAs, i.e. miR-451a (-10.9-fold down) and miR-144-3p (-6.3-fold down), stood out by relative decrease. Functional analyses of these candidates revealed a migration inhibitory effect in dCCA cell lines. Activating transcription factor 2 (ATF2) and A disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) were identified as direct miR-451a target genes. Specific ATF2 inhibition by pooled siRNAs reproduced the inhibitory impact of miR-451a on cancer cell migration. Thus, our data support the concept of BilIN as a direct precursor of invasive dCCA at the molecular level. In addition, we identified miR-451a and miR-144-3p as putative tumour suppressors attenuating cell migration by inhibiting ATF2 in the process of dCCA tumorigenesis. © The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Fator 2 Ativador da Transcrição/metabolismo , Neoplasias dos Ductos Biliares/genética , Biomarcadores Tumorais/genética , Carcinoma in Situ/genética , Colangiocarcinoma/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/metabolismo , Proteína ADAM10/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Extra-Hepáticos/metabolismo , Ductos Biliares Extra-Hepáticos/patologia , Biomarcadores Tumorais/metabolismo , Carcinogênese/genética , Carcinoma in Situ/metabolismo , Carcinoma in Situ/patologia , Estudos de Casos e Controles , Movimento Celular/genética , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Regulação para Baixo , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Proteínas de Membrana/metabolismo
18.
Acta Biochim Biophys Sin (Shanghai) ; 52(7): 723-735, 2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32490517

RESUMO

Cancer stem cells (CSCs) are cells possessing abilities of self-renewal, differentiation, and tumorigenicity in NOD/SCID mice. Based on this definition, multiple cell surface markers (such as CD24, CD133, CD90, and EpCAM) as well as chemical methods are discovered to enrich liver CSCs in the recent decade. Accumulated studies have revealed molecular signatures and signaling pathways involved in regulating different liver CSCs. Among liver CSCs positive for different markers, some molecular features and regulatory pathways are commonly shared, while some are only unique in certain CSC populations. These studies imply that liver CSCs exhibit diverse heterogeneity, while a functional relationship also exists. The aim of this review is to revisit the society of liver CSCs and summarize the common or unique molecular features of known liver CSCs. We hope to call for attention of researchers on the relationship of the liver CSC subgroups and to provide clues on the hierarchical structure of the liver CSC society.


Assuntos
Carcinogênese/metabolismo , Neoplasias Hepáticas/metabolismo , Células-Tronco Neoplásicas/metabolismo , Nicho de Células-Tronco , Microambiente Tumoral , Animais , Antígenos de Diferenciação/metabolismo , Carcinogênese/patologia , Humanos , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Proteínas de Neoplasias/metabolismo , Células-Tronco Neoplásicas/patologia
19.
Int J Biol Sci ; 15(12): 2654-2663, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31754337

RESUMO

Transarterial chemoembolization (TACE) is a commonly used treatment modality in hepatocellular carcinoma (HCC). The ability to identify patients who will respond to TACE represents an important clinical need, and tumor gene expression patterns may be associated with TACE response. We investigated whether tumor transcriptome is associated with TACE response in patients with HCC. We analyzed transcriptome data of treatment-naïve tumor tissues from a Chinese cohort of 191 HCC patients, including 105 patients who underwent TACE following resection with curative intent. We then developed a gene signature, TACE Navigator, which was associated with improved survival in patients that received either adjuvant or post-relapse TACE. To validate our findings, we applied our signature in a blinded manner to three independent cohorts comprising an additional 130 patients with diverse ethnic backgrounds enrolled in three different hospitals who received either adjuvant TACE or palliative TACE. TACE Navigator stratified patients into Responders and Non-Responders which was associated with improved survival following TACE in our test cohort (Responders: 67 months vs Non-Responders: 39.5 months, p<0.0001). In addition, multivariable Cox model demonstrates that TACE Navigator was independently associated with survival (HR: 9.31, 95% CI: 3.46-25.0, p<0.001). In our validation cohorts, the association between TACE Navigator and survival remained robust in both Asian patients who received adjuvant TACE (Hong Kong: 60 months vs 25.6 months p=0.007; Shandong: 61.3 months vs 32.1 months, p=0.027) and European patients who received TACE as primary therapy (Mainz: 60 months vs 41.5 months, p=0.041). These results indicate that a TACE-specific molecular classifier is robust in predicting TACE response. This gene signature can be used to identify patients who will have the greatest survival benefit after TACE treatment and enable personalized treatment modalities for patients with HCC.


Assuntos
Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Quimioembolização Terapêutica , Predisposição Genética para Doença , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
20.
Nat Cell Biol ; 21(2): 179-189, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30664791

RESUMO

Loss of TGF-ß tumour suppressive response is a hallmark of human cancers. As a central player in TGF-ß signal transduction, SMAD4 (also known as DPC4) is frequently mutated or deleted in gastrointestinal and pancreatic cancer. However, such genetic alterations are rare in most cancer types and the underlying mechanism for TGF-ß resistance is not understood. Here we describe a mechanism of TGF-ß resistance in ALK-positive tumours, including lymphoma, lung cancer and neuroblastoma. We demonstrate that, in ALK-positive tumours, ALK directly phosphorylates SMAD4 at Tyr 95. Phosphorylated SMAD4 is unable to bind to DNA and fails to elicit TGF-ß gene responses and tumour suppressing responses. Chemical or genetic interference of the oncogenic ALK restores TGF-ß responses in ALK-positive tumour cells. These findings reveal that SMAD4 is tyrosine-phosphorylated by an oncogenic tyrosine kinase during tumorigenesis. This suggests a mechanism by which SMAD4 is inactivated in cancers and provides guidance for targeted therapies in ALK-positive cancers.


Assuntos
Quinase do Linfoma Anaplásico/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias/genética , Proteína Smad4/genética , Fator de Crescimento Transformador beta/farmacologia , Quinase do Linfoma Anaplásico/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Perfilação da Expressão Gênica/métodos , Células HEK293 , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias/metabolismo , Neoplasias/patologia , Fosforilação , Proteína Smad4/metabolismo , Transplante Heterólogo , Tirosina/genética , Tirosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA