Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Front Immunol ; 14: 1181561, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37138875

RESUMO

Objective: The aim of this study is to explore the prevalence and clinicopathological associations between anti-C1qA08 antibodies and anti-monomeric CRP (mCRP) a.a.35-47 antibodies and to explore the interaction between C1q and mCRP. Methods: Ninety patients with biopsy-proven lupus nephritis were included from a Chinese cohort. Plasma samples collected on the day of renal biopsy were tested for anti-C1qA08 antibodies and anti-mCRP a.a.35-47 antibodies. The associations between these two autoantibodies and clinicopathologic features and long-term prognosis were analyzed. The interaction between C1q and mCRP was further investigated by ELISA, and the key linear epitopes of the combination of cholesterol binding sequence (CBS; a.a.35-47) and C1qA08 were tested by competitive inhibition assays. The surface plasmon resonance (SPR) was used to further verify the results. Results: The prevalence of anti-C1qA08 antibodies and anti-mCRP a.a.35-47 antibodies were 50/90 (61.1%) and 45/90 (50.0%), respectively. Levels of anti-C1qA08 antibodies and anti-mCRP a.a.35-47 antibodies were negatively correlated with serum C3 concentrations ((0.5(0.22-1.19) g/L vs. 0.39(0.15-1.38) g/L, P=0.002) and (0.48(0.44-0.88) g/L vs. 0.41(0.15-1.38) g/L, P=0.028), respectively. Levels of anti-C1qA08 antibodies were correlated with the score of fibrous crescents and tubular atrophy (r=-0.256, P=0.014 and r=-0.25, P=0.016, respectively). The patients with double positive antibodies showed worse renal prognosis than that of the double negative group (HR 0.899 (95% CI: 0.739-1.059), P=0.0336). The binding of mCRP to C1q was confirmed by ELISA. The key linear epitopes of the combination were a.a.35-47 and C1qA08, which were confirmed by competitive inhibition experiments and SPR. Conclusion: The combination of anti-C1qA08 and anti-mCRP a.a.35-47 autoantibodies could predict a poor renal outcome. The key linear epitopes of the combination of C1q and mCRP were C1qA08 and a.a.35-47. A08 was an important epitope for the classical pathway complement activation and a.a.35-47 could inhibit this process.


Assuntos
Nefropatias , Nefrite Lúpica , Humanos , Rim , Prognóstico , Autoanticorpos , Epitopos
2.
Mol Immunol ; 157: 158-166, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37028130

RESUMO

Bystander activation of T cells is defined as induction of effector responses by innate cytokines in the absence of cognate antigens and independent of T cell receptor (TCR) signaling. Here we show that C-reactive protein (CRP), a soluble pattern-recognition receptor assembled noncovalently by five identical subunits, can instead trigger bystander activation of CD4 + T cells by evoking allosteric activation and spontaneous signaling of TCR in the absence of cognate antigens. The actions of CRP depend on pattern ligand-binding induced conformational changes that result in the generation of monomeric CRP (mCRP). mCRP binds cholesterol in plasma membranes of CD4 + T cells, thereby shifting the conformational equilibrium of TCR to the cholesterol-unbound, primed state. The spontaneous signaling of primed TCR leads to productive effector responses manifested by upregulation of surface activation markers and release of IFN-γ. Our results thus identify a novel mode of bystander T cell activation triggered by allosteric TCR signaling, and reveal an interesting paradigm wherein innate immune recognition of CRP transforms it to a direct activator that evokes immediate adaptive immune responses.


Assuntos
Proteína C-Reativa , Linfócitos T CD4-Positivos , Transdução de Sinais , Comunicação Celular , Ativação Linfocitária , Receptores de Antígenos de Linfócitos T
3.
Kardiologiia ; 63(3): 55-60, 2023 Mar 31.
Artigo em Russo | MEDLINE | ID: mdl-37061861

RESUMO

Aim    To study platelet adhesion mediated by von Willebrand factor (VWF) in patients with premature ischemic heart disease (IHD).Material and methods    This study enrolled 58 patients with stable IHD, including 45 men younger than 55 years with the first manifestation of IHD at the age of <50 years and 13 women younger than 65 years with the first manifestation of IHD at the age of <60 years. The control group consisted of 33 patients, 13 men younger than 55 years and 20 women younger than 65 years without IHD. Platelet adhesion to the collagen surface at the shear rate of 1300 s-1 was studied by evaluating the intensity of scattered laser light from the collagen-coated optical substrate in a flow chamber of a microfluidic device after 15-min circulation of whole blood in the chamber. Decreases in platelet adhesion after addition to the blood of monoclonal antibodies (mAb) to platelet receptors glycoproteins Ib (GPIb) to inhibit the receptor interaction with VWF were compared for patients of both groups. Results    In patients with premature IHD, the decrease in platelet adhesion following the platelet GPIb receptor inhibition was significantly less than in patients of the control group (74.8 % (55.6; 82.7) vs. 28.9 % (-9.8; 50,5), p <0.001). For the entire sample, the median decrease in platelet adhesion following the GPIb receptor inhibition was 62.8 % (52.2; 71.2). With an adjustment for traditional risk factors of IHD, a decrease in platelet adhesion of >62.8% after blocking GPIb receptors increased the likelihood of premature IHD (OR=9.84, 95 % CI: 2.80-34.59; p <0.001).Conclusion    Blocking the interaction of GPIb receptors with VWF in patients with premature IHD and increased shear rate induced a greater decrease in platelet adhesion than in patients without this disease. This suggested that an excessive interaction of VWF with platelets might contribute to the pathogenesis of premature IHD.


Assuntos
Doença da Artéria Coronariana , Fator de von Willebrand , Humanos , Feminino , Pessoa de Meia-Idade , Fator de von Willebrand/farmacologia , Fator de von Willebrand/fisiologia , Doença da Artéria Coronariana/diagnóstico , Adesividade Plaquetária/fisiologia , Plaquetas , Complexo Glicoproteico GPIb-IX de Plaquetas , Colágeno
4.
J Immunol ; 210(6): 699-707, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36881905

RESUMO

C-reactive protein (CRP) is a highly conserved pentraxin with pattern recognition receptor-like activities. However, despite being used widely as a clinical marker of inflammation, the in vivo functions of CRP and its roles in health and disease remain largely unestablished. This is, to certain extent, due to the drastically different expression patterns of CRP in mice and rats, raising concerns about whether the functions of CRP are essential and conserved across species and how these model animals should be manipulated to examine the in vivo actions of human CRP. In this review, we discuss recent advances highlighting the essential and conserved functions of CRP across species, and propose that appropriately designed animal models can be used to understand the origin-, conformation-, and localization-dependent actions of human CRP in vivo. The improved model design will contribute to establishing the pathophysiological roles of CRP and facilitate the development of novel CRP-targeting strategies.


Assuntos
Proteína C-Reativa , Inflamação , Humanos , Animais , Camundongos , Ratos , Modelos Animais
5.
J Biol Chem ; 298(8): 102160, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35724961

RESUMO

C-reactive protein (CRP) is a major acute phase protein and inflammatory marker, the expression of which is largely liver specific and highly inducible. Enhancers are regulatory elements critical for the precise activation of gene expression, yet the contributions of enhancers to the expression pattern of CRP have not been well defined. Here, we identify a constitutively active enhancer (E1) located 37.7 kb upstream of the promoter of human CRP in hepatocytes. By using chromatin immunoprecipitation, luciferase reporter assay, in situ genetic manipulation, CRISPRi, and CRISPRa, we show that E1 is enriched in binding sites for transcription factors STAT3 and C/EBP-ß and is essential for the full induction of human CRP during the acute phase. Moreover, we demonstrate that E1 orchestrates with the promoter of CRP to determine its varied expression across tissues and species through surveying activities of E1-promoter hybrids and the associated epigenetic modifications. These results thus suggest an intriguing mode of molecular evolution wherein expression-changing mutations in distal regulatory elements initiate subsequent functional selection involving coupling among distal/proximal regulatory mutations and activity-changing coding mutations.


Assuntos
Proteína C-Reativa , Elementos Facilitadores Genéticos , Sítios de Ligação , Proteína C-Reativa/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Regulação da Expressão Gênica , Hepatócitos , Humanos , Regiões Promotoras Genéticas , Fator de Transcrição STAT3/metabolismo , Transcrição Gênica
6.
Commun Biol ; 5(1): 268, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35338247

RESUMO

Biophysical models suggest a dominant role of structural over functional constraints in shaping protein evolution. Selection on structural constraints is linked closely to expression levels of proteins, which together with structure-associated activities determine in vivo functions of proteins. Here we show that despite the up to two orders of magnitude differences in levels of C-reactive protein (CRP) in distinct species, the in vivo functions of CRP are paradoxically conserved. Such a pronounced level-function mismatch cannot be explained by activities associated with the conserved native structure, but is coupled to hidden activities associated with the unfolded, activated conformation. This is not the result of selection on structural constraints like foldability and stability, but is achieved by folding determinants-mediated functional selection that keeps a confined carrier structure to pass the stringent eukaryotic quality control on secretion. Further analysis suggests a folding threshold model which may partly explain the mismatch between the vast sequence space and the limited structure space of proteins.


Assuntos
Proteína C-Reativa , Dobramento de Proteína , Controle de Qualidade
7.
J Chromatogr Sci ; 60(8): 750-759, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-34625786

RESUMO

C-reactive protein (CRP) is a circulating marker of inflammation yet with ill-defined biological functions. This is partly due to the uncharacterized activities of endogenous CRP in mice, the major animal model used to define protein function. The hurdles for purification and characterization of mouse CRP are its low circulating levels and the lack of specific antibodies. To clear these hurdles, here we developed an efficient expression system by constructing recombinant Pichia pastoris cells for secretion of native conformation mouse CRP. The recombinant expression of mouse CRP in Escherichia coli failed to yield sufficient amount of native protein, reflecting the importance of post-translational modification of glycosylation in aiding proper folding. By contrast, sufficient amount of native mouse CRP was successfully purified from P. pastoris. Preliminary purification was performed by Nickel Chelating Sepharose Fast-Flow affinity chromatography with 6 × His tags attached to the protein. Subsequently, p-Aminophenyl Phosphoryl Choline Agarose resin affinity chromatography was used for tandem purification. The purified mouse CRP showed native pentamer and capabilities of PC binding. Moreover, the 6 × His tag provides a convenient tool for detecting the interactions of mouse CRP with ligands.


Assuntos
Níquel , Pichia , Animais , Proteína C-Reativa/metabolismo , Colina , Cromatografia de Afinidade/métodos , Escherichia coli/genética , Ligantes , Camundongos , Pichia/química , Pichia/genética , Pichia/metabolismo , Saccharomycetales , Sefarose/metabolismo
8.
Cell Mol Gastroenterol Hepatol ; 13(1): 289-307, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34536564

RESUMO

BACKGROUND AND AIMS: C-reactive protein (CRP) is a hepatocyte-produced marker of inflammation yet with undefined function in liver injury. We aimed to examine the role of CRP in acetaminophen-induced liver injury (AILI). METHODS: The effects of CRP in AILI were investigated using CRP knockout mice and rats combined with human CRP rescue. The mechanisms of CRP action were investigated in vitro and in mice with Fcγ receptor 2B knockout, C3 knockout, or hepatic expression of CRP mutants defective in complement interaction. The therapeutic potential of CRP was investigated by intraperitoneal administration at 2 or 6 hours post-AILI induction in wild-type mice. RESULTS: CRP knockout exacerbated AILI in mice and rats, which could be rescued by genetic knock-in, adeno-associated virus-mediated hepatic expression or direct administration of human CRP. Mechanistically, CRP does not act via its cellular receptor Fcγ receptor 2B to inhibit the early phase injury to hepatocytes induced by acetaminophen; instead, CRP acts via factor H to inhibit complement overactivation on already injured hepatocytes, thereby suppressing the late phase amplification of inflammation likely mediated by C3a-dependent actions of neutrophils. Importantly, CRP treatment effectively alleviated AILI with a significantly extended therapeutic time window than that of N-acetyl cysteine. CONCLUSION: Our results thus identify CRP as a crucial checkpoint that limits destructive activation of complement in acute liver injury, and we argue that long-term suppression of CRP expression or function might increase the susceptibility to AILI.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Acetaminofen/efeitos adversos , Animais , Proteína C-Reativa , Camundongos , Camundongos Endogâmicos C57BL , Ratos
10.
Front Immunol ; 11: 926, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32477370

RESUMO

Background: The association of genetically elevated levels of circulating C-reactive protein (CRP) with cancer risk has been extensively investigated in European populations; however, there are conflicting conclusions. The tri-allelic rs3091244 is a functionally validated genetic variant, and its allelic frequencies differ significantly between European and Asian populations. Here, we examined the association of rs3091244 with cancer risk in a Chinese population. Methods: rs3091244 was genotyped by Sanger sequencing in 4,971 cancer cases and 2,485 controls. The rs1205 and rs2794521 gene variants were also genotyped using TaqMan assays in subgroups. Results: No association was detected between the genotyped CRP variants and cancer risk, with or without distinguishing cancer types, suggesting that circulating CRP is not causally involved in tumorigenesis in Chinese populations.


Assuntos
Proteína C-Reativa/genética , Neoplasias/genética , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Adulto , Idoso , Povo Asiático/genética , Estudos de Casos e Controles , China/epidemiologia , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias/diagnóstico , Neoplasias/etnologia , Medição de Risco , Fatores de Risco
11.
Elife ; 92020 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-32223889

RESUMO

Acute phase reactants (APRs) are secretory proteins exhibiting large expression changes in response to proinflammatory cytokines. Here we show that the expression pattern of a major human APR, that is C-reactive protein (CRP), is casually determined by DNMT3A and TET2-tuned promoter methylation status. CRP features a CpG-poor promoter with its CpG motifs located in binding sites of STAT3, C/EBP-ß and NF-κB. These motifs are highly methylated at the resting state, but undergo STAT3- and NF-κB-dependent demethylation upon cytokine stimulation, leading to markedly enhanced recruitment of C/EBP-ß that boosts CRP expression. Withdrawal of cytokines, by contrast, results in a rapid recovery of promoter methylation and termination of CRP induction. Further analysis suggests that reversible methylation also regulates the expression of highly inducible genes carrying CpG-poor promoters with APRs as representatives. Therefore, these CpG-poor promoters may evolve CpG-containing TF binding sites to harness dynamic methylation for prompt and reversible responses.


Assuntos
Proteínas de Fase Aguda/genética , Proteínas de Fase Aguda/metabolismo , Proteína C-Reativa/genética , Metilação de DNA , Regiões Promotoras Genéticas , Linhagem Celular Tumoral , Ilhas de CpG/genética , Citocinas/imunologia , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Dioxigenases , Expressão Gênica , Regulação da Expressão Gênica , Humanos , Processamento de Proteína Pós-Traducional , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo
12.
Protein Sci ; 28(5): 889-899, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30825227

RESUMO

Amyloid-ß peptides (Aßs) are generated in a membrane-embedded state by sequential processing of amyloid precursor protein (APP). Although shedding of membrane-embedded Aß is essential for its secretion and neurotoxicity, the mechanism behind shedding regulation is not fully elucidated. Thus, we devised a Langmuir film balance-based assay to uncover this mechanism. We found that Aß shedding was enhanced under acidic pH conditions and in lipid compositions resembling raft microdomains, which are directly related to the microenvironment of Aß generation. Furthermore, Aß shedding efficiency was determined by the length of the C-terminal membrane-spanning region, whereas pH responsiveness appears to depend on the N-terminal ectodomain. These findings indicate that Aß shedding may be directly coupled to its generation and represents an unrecognized control mechanism regulating the fate of membrane-embedded products of APP processing.


Assuntos
Peptídeos beta-Amiloides/química , Micropartículas Derivadas de Células/metabolismo , Endossomos/química , Peptídeos beta-Amiloides/metabolismo , Animais , Micropartículas Derivadas de Células/química , Dicroísmo Circular , Endossomos/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Microdomínios da Membrana/metabolismo , Domínios Proteicos
13.
FASEB J ; 33(5): 6551-6563, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30794428

RESUMO

Previous studies have reported the pathogenic role of C-reactive protein (CRP) during diabetic kidney disease (DKD) in human CRP transgenic and Crp-/- mice. However, because humans and mice have inverse acute phase expression patterns of CRP and serum amyloid P component, this could lead to the inaccurate evaluation of CRP function with the above-mentioned CRP transgenic mouse. But different from mice, rats have the same acute phase protein expression pattern as human, which might avoid this problem and be a better choice for CRP function studies. To dispel this doubt and accurately define the role of CRP during diabetic nephropathy, we created the first Crp-/- rat model, which we treated with streptozocin to induce DKD for in vivo studies. Moreover, an established cell line (human kidney 2) was used to further investigate the pathologic mechanisms of CRP. We found that CRP promotes epithelial-mesenchymal transition (EMT) through Wnt/ß-catenin and ERK1/2 signaling, which are dependent on CRP binding to FcγRII on apoptotic cells. By promoting EMT, CRP was demonstrated to accelerate the development of DKD. We thus present convincing evidence demonstrating CRP as a therapeutic target for DKD treatment.-Zhang, L., Shen, Z.-Y., Wang, K., Li, W., Shi, J.-M., Osoro, E. K., Ullah, N., Zhou, Y., Ji, S.-R. C-reactive protein exacerbates epithelial-mesenchymal transition through Wnt/ß-catenin and ERK signaling in streptozocin-induced diabetic nephropathy.


Assuntos
Proteína C-Reativa/metabolismo , Diabetes Mellitus Experimental/metabolismo , Nefropatias Diabéticas/metabolismo , Transição Epitelial-Mesenquimal , Sistema de Sinalização das MAP Quinases , Via de Sinalização Wnt , Animais , Proteína C-Reativa/genética , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/patologia , Humanos , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , beta Catenina/genética , beta Catenina/metabolismo
14.
Cardiovasc Res ; 115(2): 440-452, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29992240

RESUMO

Aims: Circulating proteins larger than 3 nm can be transported across continuous endothelial barrier of blood vessels via transcytosis. However, excessive accumulation of serum proteins within the vessel walls is uncommon even for those abundant in the circulation. The aim of this study was to investigate how transcytosis regulates tissue accumulation of the prototypical acute-phase reactant C-reactive protein (CRP) and other serum proteins. Methods and results: Transcytosis of CRP as well as of transferrin and low-density lipoprotein across aortic endothelial cells is bidirectional with directional preference from the apical (blood) to basolateral (tissue) direction both in vitro and in vivo. This directional preference is, however, reversed by the basement membrane (BM) matrix underlying the basolateral surface of endothelial cells. This is due to the sieving effect of the BM that physically hinders the diffusion of transcytosed proteins from the apical compartment towards underlying tissues, resulting in immediate retrograde transcytosis that limits basolateral protein accumulation. Conversely, CRP produced within vessel wall lesions can also be transported into the circulation. Conclusion: Our findings identify matrix sieving-enforced retrograde transcytosis as a general mechanism that prevents excessive tissue accumulation of blood-borne proteins and suggest that lesion-derived CRP might also contribute to elevated serum CRP levels associated with increased risk for cardiovascular diseases.


Assuntos
Membrana Basal/metabolismo , Proteína C-Reativa/metabolismo , Células Endoteliais/metabolismo , Mediadores da Inflamação/metabolismo , Transcitose , Animais , Polaridade Celular , Células Cultivadas , Difusão , Homeostase , Humanos , Mediadores da Inflamação/sangue , Masculino , Camundongos , Porosidade
15.
Front Immunol ; 9: 234, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29520264

RESUMO

C-reactive protein (CRP) is an established marker of rheumatoid arthritis (RA) but with ill-defined actions in the pathogenesis. Here, we show that CRP regulates the differentiation of osteoclasts, a central mediator of joint inflammation and bone erosion in RA, in a conformation- and receptor activator of NF-κB ligand (RANKL)-dependent manner. CRP in the native conformation is ineffective, whereas the monomeric conformation (mCRP) actively modulates osteoclast differentiation through NF-κB and phospholipase C signaling. Moreover, mCRP can bind RANKL, the major driver of osteoclast differentiation, and abrogate its activities. The binding and inhibition of RANKL are mediated by the cholesterol binding sequence (CBS) of mCRP. Corroborating the in vitro results, CRP knockout exacerbates LPS-induced bone resorption in mice. These results suggest that mCRP may be protective in joint inflammation by inhibiting pathological osteoclast differentiation and that the CBS peptide could be exploited as a potential RANKL inhibitor.


Assuntos
Proteína C-Reativa/imunologia , Diferenciação Celular/imunologia , Osteoclastos/fisiologia , Osteólise/imunologia , Ligante RANK/imunologia , Animais , Artrite Reumatoide/imunologia , Artrite Reumatoide/patologia , Proteína C-Reativa/genética , Proteína C-Reativa/metabolismo , Modelos Animais de Doenças , Humanos , Lipopolissacarídeos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Cultura Primária de Células , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas/imunologia , Ligante RANK/antagonistas & inibidores , Ligante RANK/metabolismo , Células RAW 264.7 , Membrana Sinovial/imunologia , Membrana Sinovial/patologia
16.
Front Immunol ; 9: 511, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29593741

RESUMO

Native C-reactive protein (nCRP) is a non-specific marker of inflammation being claimed as a bystander in several chronic disorders. Accumulating evidence indicates that nCRP dissociates to and acts primarily as the monomeric conformation (mCRP) at inflammatory loci. This suggests that mCRP may be a superior disease marker with improved specificity and clear causality to the underlying pathogenesis. However, the lack of a feasible assay to quantify mCRP in clinical samples precludes the assessment of that suggestion. Here we report the development of a sandwich ELISA assay for quantification of plasma mCRP using commercially available reagents. Our assay is reproducible and highly conformation-specific showing a reliable detection limit of 1 ng/mL. We further show that mCRP appears to be a better marker than nCRP in several skin-related autoimmune disorders. This assay thus provides a useful tool to examine the clinical significance and utility of mCRP.


Assuntos
Proteína C-Reativa/análise , Anticorpos/imunologia , Proteína C-Reativa/imunologia , Eczema/sangue , Ensaio de Imunoadsorção Enzimática , Humanos , Psoríase/sangue , Urticária/sangue
17.
Sci Rep ; 8(1): 1494, 2018 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-29367639

RESUMO

The causal relationship between conformational folding and disulfide bonding in protein oxidative folding remains incompletely defined. Here we show a stage-dependent interplay between the two events in oxidative folding of C-reactive protein (CRP) in live cells. CRP is composed of five identical subunits, which first fold spontaneously to a near-native core with a correctly positioned C-terminal helix. This process drives the formation of the intra-subunit disulfide bond between Cys36 and Cys97. The second stage of subunit folding, however, is a non-spontaneous process with extensive restructuring driven instead by the intra-subunit disulfide bond and guided by calcium binding-mediated anchoring. With the folded subunits, pentamer assembly ensues. Our results argue that folding spontaneity is the major determinant that dictates which event acts as the driver. The stepwise folding pathway of CRP further suggests that one major route might be selected out of the many in theory for efficient folding in the cellular environment.


Assuntos
Proteína C-Reativa/química , Dissulfetos/química , Conformação Proteica , Dobramento de Proteína , Humanos , Modelos Moleculares , Oxirredução
18.
J Biol Chem ; 291(16): 8795-804, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26907682

RESUMO

Most proinflammatory actions of C-reactive protein (CRP) are only expressed following dissociation of its native pentameric assembly into monomeric form (mCRP). However, little is known about what underlies the greatly enhanced activities of mCRP. Here we show that a single sequence motif, i.e. cholesterol binding sequence (CBS; a.a. 35-47), is responsible for mediating the interactions of mCRP with diverse ligands. The binding of mCRP to lipoprotein component ApoB, to complement component C1q, to extracellular matrix components fibronectin and collagen, to blood coagulation component fibrinogen, and to membrane lipid component cholesterol, are all found to be markedly inhibited by the synthetic CBS peptide but not by other CRP sequences tested. Likewise, mutating CBS in mCRP also greatly impairs these interactions. Functional experiments further reveal that CBS peptide significantly reduces the effects of mCRP on activation of endothelial cells in vitro and on acute induction of IL-6 in mice. The potency and specificity of CBS are critically determined by the N-terminal residues Cys-36, Leu-37, and His-38; while the versatility of CBS appears to originate from its intrinsically disordered conformation polymorphism. Together, these data unexpectedly identify CBS as the major recognition site of mCRP and suggest that this motif may be exploited to tune the proinflammatory actions of mCRP.


Assuntos
Proteína C-Reativa/metabolismo , Células Endoteliais/metabolismo , Motivos de Aminoácidos , Animais , Apolipoproteína B-100 , Apolipoproteínas B/genética , Apolipoproteínas B/metabolismo , Sítios de Ligação , Proteína C-Reativa/genética , Complemento C1q/genética , Complemento C1q/metabolismo , Células Endoteliais/patologia , Humanos , Inflamação/metabolismo , Inflamação/patologia , Interleucina-6/genética , Interleucina-6/metabolismo , Camundongos
19.
J Immunol ; 194(11): 5243-52, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25917100

RESUMO

Human C-reactive protein (CRP) is a serum-soluble pattern recognition receptor that serves as a marker of inflammation and directly contributes to innate immunity. In this study, we show that human CRP also directly contributes to adaptive immunity, that is, native CRP binds specifically to human Jurkat T cells and to mouse naive CD4(+) T cells and modulates their Th1 and Th2 responses. In vitro both exogenously added (purified) and endogenously expressed (via transfection) human CRP inhibited Th1 differentiation and augmented Th2 differentiation of naive CD4(+) T cells. In vivo for human CRP transgenic compared with wild-type mice, a lesser proportion of the T cells recovered from the spleens of healthy animals were Th1 cells. Moreover, in both CRP transgenic mice and in wild-type mice treated with human CRP, during myelin oligodendrocyte glycoprotein peptide-induced experimental autoimmune encephalomyelitis both the Th1 cell response and disease severity were inhibited. These pattern recognition-independent actions of CRP directly on T cells highlights the potential for this soluble pattern recognition receptor to act as a tonic regulator of immunity, shaping global adaptive immune responses during both homeostasis and disease.


Assuntos
Imunidade Adaptativa/imunologia , Proteína C-Reativa/imunologia , Encefalomielite Autoimune Experimental/imunologia , Células Th1/imunologia , Animais , Proteína C-Reativa/genética , Diferenciação Celular/imunologia , Encefalomielite Autoimune Experimental/genética , Humanos , Células Jurkat , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Glicoproteína Mielina-Oligodendrócito , Ligação Proteica/imunologia , Células Th1/citologia , Células Th2/citologia , Células Th2/imunologia
20.
Biophys Rep ; 1: 18-33, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26942216

RESUMO

The precise function of C-reactive protein (CRP) as a regulator of inflammation in health and disease continues to evolve. The true understanding of its role in host defense responses has been hampered by numerous reports of comparable systems with contradictory interpretations of CRP as a stimulator, suppressor, or benign contributor to such processes. These discrepancies may be explained in part by the existence of a naturally occurring CRP isoform, termed modified CRP (i.e., mCRP), that is expressed when CRP subunits are dissociated into monomeric structures. The free mCRP subunit undergoes a non-proteolytic conformational change that has unique solubility, antigenicity, and bioactivity compared to the subunits that remain associated in the native, pentameric CRP molecule (i.e., pCRP). As specific reagents have been developed to identify and quantify mCRP, it has become apparent that this isoform can be formed spontaneously in calcium-free solutions. Furthermore, mCRP can be expressed on perturbed cell membranes with as little as 24-48 h incubation in tissue culture. Because mCRP has the same size as pCRP subunits as evaluated by SDS-PAGE, its presence in a pCRP reagent would not be apparent using this technique to evaluate purity. Finally, because many antibody reagents purported to be specific for "CRP" contains some, or substantial specificity to mCRP, antigen-detection techniques using such reagents may fail to distinguish the specific CRP isoform detected. All these caveats concerning CRP structures and measurements suggest that the aforementioned contradictory studies may reflect to some extent on distinctive bioactivities of mCRP rather than on pCRP. To provide a reliable, abundant supply of mCRP for separate and comparable studies, a recombinant protein was engineered and expressed in E. coli (i.e., recombinant mCRP or rmCRP). Synthesized protein was produced as inclusion bodies which proved difficult to solubilize for purification and characterization. Herein, we describe a method using anhydride reagents to effectively solubilize rmCRP and allow for chromatographic purification in high yield and free of contaminating endotoxin. Furthermore, the purified rmCRP reagent represents an excellent comparable protein to the biologically produced mCRP and as a distinctive reagent from pCRP. Deciphering the true function of CRP in both health and disease requires a knowledge, understanding, and reliable supply of each of its structures so to define the distinctive effects of each on the body's response to tissue damaging events.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA