Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
J Transl Med ; 22(1): 177, 2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38369503

RESUMO

BACKGROUND: Human health is seriously threatened by antibiotic-induced intestinal disorders. Herein, we aimed to determine the effects of Autoinducer-2 (AI-2) combined with Lactobacillus rhamnosus GG (LGG) on the intestinal barrier function of antibiotic-induced intestinal dysbiosis neonatal mice. METHODS: An antibiotic-induced intestinal dysbiosis neonatal mouse model was created using antibiotic cocktails, and the model mice were randomized into the control, AI-2, LGG, and LGG + AI-2 groups. Intestinal short-chain fatty acids and AI-2 concentrations were detected by mass spectrometry and chemiluminescence, respectively. The community composition of the gut microbiota was analyzed using 16S rDNA sequencing, and biofilm thickness and bacterial adhesion in the colon were assessed using scanning electron microscopy. Transcriptome RNA sequencing of intestinal tissues was performed, and the mRNA and protein levels of HCAR2 (hydroxycarboxylic acid receptor 2), claudin3, and claudin4 in intestinal tissues were determined using quantitative real-time reverse transcription PCR and western blotting. The levels of inflammatory factors in intestinal tissues were evaluated using enzyme-linked immunosorbent assays (ELISAs). D-ribose, an inhibitor of AI-2, was used to treat Caco-2 cells in vitro. RESULTS: Compared with the control, AI-2, and LGG groups, the LGG + AI-2 group showed increased levels of intestinal AI-2 and proportions of Firmicutes and Lacticaseibacillus, but a reduced fraction of Proteobacteria. Specifically, the LGG + AI-2 group had considerably more biofilms and LGG on the colon surface than those of other three groups. Meanwhile, the combination of AI-2 and LGG markedly increased the concentration of butyric acid and promoted Hcar2, claudin3 and claudin4 expression levels compared with supplementation with LGG or AI-2 alone. The ELISAs revealed a significantly higher tumor necrosis factor alpha (TNF-α) level in the control group than in the LGG and LGG + AI-2 groups, whereas the interleukin 10 (IL-10) level was significantly higher in the LGG + AI-2 group than in the other three groups. In vitro, D-ribose treatment dramatically suppressed the increased levels of Hcar2, claudin3, and claudin4 in Caco-2 cells induced by AI-2 + LGG. CONCLUSIONS: AI-2 promotes the colonization of LGG and biofilm formation to improve intestinal barrier function in an antibiotic-induced intestinal dysbiosis neonatal mouse model.


Assuntos
Lacticaseibacillus rhamnosus , Probióticos , Camundongos , Humanos , Animais , Animais Recém-Nascidos , Células CACO-2 , Função da Barreira Intestinal , Disbiose , Antibacterianos/farmacologia , Claudina-4/metabolismo , Ribose
2.
J Biomed Sci ; 30(1): 63, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537557

RESUMO

BACKGROUND: Leber's hereditary optic neuropathy (LHON) is a maternally inherited eye disease due to mutations in mitochondrial DNA. However, there is no effective treatment for this disease. LHON-linked ND6 14484T > C (p.M64V) mutation caused complex I deficiency, diminished ATP production, increased production of reactive oxygen species (ROS), elevated apoptosis, and impaired mitophagy. Here, we investigated if the allotopic expression of human mitochondrial ND6 transgene corrected the mitochondrial dysfunctions due to LHON-associated m.14484T > C mutation. METHODS: Nucleus-versions of ND6 was generated by changing 6 non-universal codons with universal codons and added to mitochondrial targeting sequence of COX8. Stable transfectants were generated by transferring human ND6 cDNA expressed in a pCDH-puro vector into mutant cybrids carrying the m.14484T > C mutation and control cybrids. The effect of allotopic expression of ND6 on oxidative phosphorylation (OXPHOS) was evaluated using Blue Native gel electrophoresis and extracellular flux analyzer. Assessment of ROS production in cell lines was performed by flow cytometry with MitoSOX Red reagent. Analyses for apoptosis and mitophagy were undertaken via flow cytometry, TUNEL and immunofluorescence assays. RESULTS: The transfer of human ND6 into the cybrids carrying the m.14484T > C mutation raised the levels of ND6, ND1 and ND4L but did not change the levels of other mitochondrial proteins. The overexpression of ND6 led to 20~23% increases in the assembly and activity of complex I, and ~ 53% and ~ 33% increases in the levels of mitochondrial ATP and ΔΨm in the mutant cybrids bearing m.14484T > C mutation. Furthermore, mutant cybrids with overexpression of ND6 exhibited marked reductions in the levels of mitochondrial ROS. Strikingly, ND6 overexpression markedly inhibited the apoptosis process and restored impaired mitophagy in the cells carrying m.14484T > C mutation. However, overexpression of ND6 did not affect the ND6 level and mitochondrial functions in the wild-type cybrids, indicating that this ND6 level appeared to be the maximum threshold level to maintain the normal cell function. CONCLUSION: We demonstrated that allotopic expression of nucleus-versions of ND6 restored complex I, apoptosis and mitophagy deficiencies caused by the m.14484T > C mutation. The restoration of m.14484T > C mutation-induced mitochondrial dysfunctions by overexpression of ND6 is a step toward therapeutic interventions for LHON and mitochondrial diseases.


Assuntos
NADH Desidrogenase , Atrofia Óptica Hereditária de Leber , Humanos , Trifosfato de Adenosina , Apoptose/genética , DNA Mitocondrial/genética , Mutação , Atrofia Óptica Hereditária de Leber/genética , Atrofia Óptica Hereditária de Leber/metabolismo , Espécies Reativas de Oxigênio , NADH Desidrogenase/genética
3.
Hum Mol Genet ; 32(9): 1539-1551, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-36611011

RESUMO

Leber's hereditary optic neuropathy (LHON) is a maternally transmitted eye disease due to the degeneration of retinal ganglion cells (RGCs). Mitochondrial 11778G > A mutation is the most common LHON-associated mitochondrial DNA (mtDNA) mutation. Our recent studies demonstrated some LHON families manifested by synergic interaction between m.11778G > A mutation and YARS2 allele (c.572G > T, p.Gly191Val) encoding mitochondrial tyrosyl-tRNA synthetase. However, the RGC-specific effects of LHON-associated mtDNA mutations remain elusive and there is no highly effective therapy for LHON. Here, we generated patients-derived induced pluripotent stem cells (iPSCs) from fibroblasts derived from a Chinese LHON family (both m.11778G > A and c.572G > T mutations, only m.11778G > A mutation, and control subject). The c.572G > T mutation in iPSC lines from a syndromic individual was corrected by CRISPR/Cas9. Those iPSCs were differentiated into neural progenitor cells and subsequently induced RGC-like cells using a stepwise differentiation procedure. Those RGC-like cells derived from symptomatic individual harboring both m.11778G > A and c.572G > T mutations exhibited greater defects in neuronal differentiation, morphology including reduced area of soma, numbers of neurites and shortened length of axons, electrophysiological properties than those in cells bearing only m.11778G > A mutation. Furthermore, these RGC-like cells revealed more drastic reductions in oxygen consumption rates, levels of mitochondrial ATP and increasing productions of reactive oxygen species than those in other cell models. These mitochondrial dysfunctions promoted the apoptotic process for RGC degenerations. Correction of YARS2 c.572G > T mutation rescued deficiencies of patient-derived RGC-like cells. These findings provide new insights into pathophysiology of LHON arising from RGC-specific mitochondrial dysfunctions and step toward therapeutic intervention for this disease.


Assuntos
DNA Mitocondrial , Atrofia Óptica Hereditária de Leber , Células Ganglionares da Retina , Tirosina-tRNA Ligase , Humanos , Alelos , DNA Mitocondrial/genética , Células-Tronco Pluripotentes Induzidas/fisiologia , Células-Tronco Pluripotentes Induzidas/transplante , Mitocôndrias/genética , Mutação , Atrofia Óptica Hereditária de Leber/genética , Atrofia Óptica Hereditária de Leber/fisiopatologia , Atrofia Óptica Hereditária de Leber/terapia , Tirosina-tRNA Ligase/genética
4.
Hum Mol Genet ; 32(2): 231-243, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-35947995

RESUMO

Leber's hereditary optic neuropathy (LHON) is a maternally inherited eye disease that results from degeneration of retinal ganglion cells (RGC). Mitochondrial ND4 11778G > A mutation, which affects structural components of complex I, is the most prevalent LHON-associated mitochondrial DNA (mtDNA) mutation worldwide. The m.11778G > A mutation is the primary contributor underlying the development of LHON and X-linked PRICKLE3 allele (c.157C > T, p.Arg53Trp) linked to biogenesis of ATPase interacts with m.11778G > A mutation to cause LHON. However, the lack of appropriate cell and animal models of LHON has been significant obstacles for deep elucidation of disease pathophysiology, specifically the tissue-specific effects. Using RGC-like cells differentiated from induced pluripotent stem cells (iPSCs) from members of one Chinese family (asymptomatic subjects carrying only m.11778G > A mutation or PRICKLE3 p.Arg53Trp mutation, symptomatic individuals bearing both m.11778G > A and PRICKLE3 p.Arg53Trp mutations and control lacking these mutations), we demonstrated the deleterious effects of mitochondrial dysfunctions on the morphology and functions of RGCs. Notably, iPSCs bearing only m.11778G > A or p.Arg53Trp mutation exhibited mild defects in differentiation to RGC-like cells. The RGC-like cells carrying only m.11778G > A or p.Arg53Trp mutation displayed mild defects in RGC morphology, including the area of soma and numbers of neurites, electrophysiological properties, ATP contents and apoptosis. Strikingly, those RGC-like cells derived from symptomatic individuals harboring both m.11778G > A and p.Arg53Trp mutations displayed greater defects in the development, morphology and functions than those in cells bearing single mutation. These findings provide new insights into pathophysiology of LHON arising from RGC deficiencies caused by synergy between m.11778G > A and PRICKLE3 p.Arg53Trp mutation.


Assuntos
Células-Tronco Pluripotentes Induzidas , Atrofia Óptica Hereditária de Leber , Animais , Células Ganglionares da Retina , Atrofia Óptica Hereditária de Leber/genética , NADH Desidrogenase/genética , DNA Mitocondrial/genética , Mutação
5.
Nucleic Acids Res ; 50(16): 9453-9469, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-36039763

RESUMO

In this report, we investigated the molecular mechanism underlying a deafness-associated m.5783C > T mutation that affects the canonical C50-G63 base-pairing of TΨC stem of tRNACys and immediately adjacent to 5' end of light-strand origin of mitochondrial DNA (mtDNA) replication (OriL). Two dimensional agarose gel electrophoresis revealed marked decreases in the replication intermediates including ascending arm of Y-fork arcs spanning OriL in the mutant cybrids bearing m.5783C > T mutation. mtDNA replication alterations were further evidenced by decreased levels of PolγA, Twinkle and SSBP1, newly synthesized mtDNA and mtDNA contents in the mutant cybrids. The m.5783C > T mutation altered tRNACys structure and function, including decreased melting temperature, conformational changes, instability and deficient aminoacylation of mutated tRNACys. The m.5783C > T mutation impaired the 5' end processing efficiency of tRNACys precursors and reduced the levels of tRNACys and downstream tRNATyr. The aberrant tRNA metabolism impaired mitochondrial translation, which was especially pronounced effects in the polypeptides harboring higher numbers of cysteine and tyrosine codons. These alterations led to deficient oxidative phosphorylation including instability and reduced activities of the respiratory chain enzyme complexes I, III, IV and intact supercomplexes overall. Our findings highlight the impact of mitochondrial dysfunction on deafness arising from defects in mitochondrial DNA replication and tRNA metabolism.


Assuntos
DNA Mitocondrial , Surdez , Humanos , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , RNA de Transferência de Cisteína/metabolismo , Surdez/genética , Surdez/metabolismo , Mitocôndrias/metabolismo , Mutação , Replicação do DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas Mitocondriais/metabolismo
6.
Nucleic Acids Res ; 50(16): 9368-9381, 2022 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-36018806

RESUMO

Pseudouridine (Ψ) at position 55 in tRNAs plays an important role in their structure and function. This modification is catalyzed by TruB/Pus4/Cbf5 family of pseudouridine synthases in bacteria and yeast. However, the mechanism of TRUB family underlying the formation of Ψ55 in the mammalian tRNAs is largely unknown. In this report, the CMC/reverse transcription assays demonstrated the presence of Ψ55 in the human mitochondrial tRNAAsn, tRNAGln, tRNAGlu, tRNAPro, tRNAMet, tRNALeu(UUR) and tRNASer(UCN). TRUB1 knockout (KO) cell lines generated by CRISPR/Cas9 technology exhibited the loss of Ψ55 modification in mitochondrial tRNAAsn, tRNAGln, tRNAGlu and tRNAPro but did not affect other 18 mitochondrial tRNAs. An in vitro assay revealed that recombinant TRUB1 protein can catalyze the efficient formation of Ψ55 in tRNAAsn and tRNAGln, but not in tRNAMet and tRNAArg. Notably, the overexpression of TRUB1 cDNA reversed the deficient Ψ55 modifications in these tRNAs in TRUB1KO HeLa cells. TRUB1 deficiency affected the base-pairing (18A/G-Ψ55), conformation and stability but not aminoacylation capacity of these tRNAs. Furthermore, TRUB1 deficiency impacted mitochondrial translation and biogenesis of oxidative phosphorylation system. Our findings demonstrated that human TRUB1 is a highly conserved mitochondrial pseudouridine synthase responsible for the Ψ55 modification in the mitochondrial tRNAAsn, tRNAGln, tRNAGlu and tRNAPro.


Assuntos
Transferases Intramoleculares , RNA de Transferência de Ácido Glutâmico , Animais , Humanos , RNA de Transferência de Glutamina , RNA de Transferência de Prolina , RNA de Transferência de Asparagina , RNA de Transferência de Metionina , Células HeLa , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo , Pseudouridina/genética , Pseudouridina/metabolismo , RNA de Transferência/metabolismo , Mamíferos/genética
7.
Hum Mol Genet ; 31(19): 3299-3312, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-35567411

RESUMO

Leber's hereditary optic neuropathy (LHON) is a maternally inherited eye disease due to mitochondrial DNA (mtDNA) mutations. LHON-linked ND6 14484T > C (p.M64V) mutation affected structural components of complex I but its pathophysiology is poorly understood. The structural analysis of complex I revealed that the M64 forms a nonpolar interaction Y59 in the ND6, Y59 in the ND6 interacts with E34 of ND4L, and L60 of ND6 interacts with the Y114 of ND1. These suggested that the m.14484T > C mutation may perturb the structure and function of complex I. Mutant cybrids constructed by transferring mitochondria from lymphoblastoid cell lines of one Chinese LHON family into mtDNA-less (ρo) cells revealed decreases in the levels of ND6, ND1 and ND4L. The m.14484T > C mutation may affect mitochondrial mRNA homeostasis, supported by reduced levels of SLIRP and SUPV3L1 involved in mRNA degradation and increasing expression of ND6, ND1 and ND4L genes. These alterations yielded decreased activity of complex I, respiratory deficiency, diminished mitochondrial ATP production and reduced membrane potential, and increased production of reactive oxygen species in the mutant cybrids. Furthermore, the m.14484T > C mutation promoted apoptosis, evidenced by elevating Annexin V-positive cells, release of cytochrome c into cytosol, levels in apoptotic proteins BAX, caspases 3, 7, 9 and decreasing levels in anti-apoptotic protein Bcl-xL in the mutant cybrids. Moreover, the cybrids bearing the m.14484T > C mutation exhibited the reduced levels of autophagy protein LC3, increased levels of substrate P62 and impaired PINK1/Parkin-dependent mitophagy. Our findings highlighted the critical role of m.14484T > C mutation in the pathogenesis of LHON.


Assuntos
Atrofia Óptica Hereditária de Leber , Trifosfato de Adenosina , Anexina A5/genética , Apoptose/genética , Caspases , Citocromos c , DNA Mitocondrial/genética , Complexo I de Transporte de Elétrons/genética , Homeostase/genética , Humanos , Mitofagia/genética , Mutação , NADH Desidrogenase , Atrofia Óptica Hereditária de Leber/genética , Atrofia Óptica Hereditária de Leber/patologia , Proteínas Quinases/genética , RNA , RNA Mensageiro , RNA Mitocondrial , Proteínas de Ligação a RNA , Espécies Reativas de Oxigênio , Ubiquitina-Proteína Ligases/genética , Proteína X Associada a bcl-2/genética
8.
Mitochondrion ; 65: 56-66, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35623556

RESUMO

Leber's hereditary optic neuropathy (LHON) is the maternal inheritance of eye disorder. LHON-linked mitochondrial DNA (mtDNA) mutations affect the ND1, ND4 or ND6 genes encoding essential subunits of complex I. However, the role of mitochondrial tRNA defects in the pathogenesis of LHON is poorly understood. In this report, Sanger sequence analysis of 22 mitochondrial tRNA genes identified 139 variants in a cohort of 811 Han Chinese probands and 485 control Chinese subjects. Among these, 32 (4 known and 28 novel/putative) tRNA variants in 71 probands may contribute to pathogenesis of LHON, as these exhibited (1) present in < 1% of controls; (2) evolutionary conservation; (3) potential and significance of structural and functional modifications. Such variants may have potentially compromised structural and functional aspects in the processing of tRNAs, structure stability, tRNA charging, or codon-anticodon interactions during translation. These 32 variants presented either singly or with multiple mutations, with the primary LHON-linked ND1 3640G > A, ND4 11778G > A or ND6 14484 T > C mutations in the probands. The thirty-eight pedigrees carrying only one of tRNA variants exhibited relatively low penetrances of LHON, ranging from 5.7% to 42.9%, with an average of 19%. Strikingly, the average penetrances of optic neuropathy among 33 Chinese families carrying both a known/putative tRNA variant and a primary LHON-associated mtDNA mutation were 40.1%. These findings suggested that mitochondrial tRNA variants represent a significant causative factor for LHON, accounting for 8.75% cases in this cohort. These new insights may lead to beneficial applications in the pathophysiology, disease management, and genetic counseling of LHON.


Assuntos
Atrofia Óptica Hereditária de Leber , China , DNA Mitocondrial/genética , Humanos , Mutação , NADH Desidrogenase/genética , Atrofia Óptica Hereditária de Leber/genética , Atrofia Óptica Hereditária de Leber/patologia , Linhagem , RNA de Transferência
9.
Front Cell Infect Microbiol ; 12: 726322, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35252022

RESUMO

OBJECTIVE: To explore the main variations in gut microbiota compositions, short-chain fatty acids (SCFAs) concentrations and autoinducer-2 (AI-2) levels in very-low-birth-weight (VLBW) infants with feeding intolerance (FI). METHODS: Twenty-seven VLBW infants with gestational ages of ≤30 weeks were divided into the FI group (n=14) and feeding tolerance (FT) group (n=13). The gut microbiota composition and SCFAs concentrations and AI-2 levels in feces were detected at 2 and 4 weeks after birth. RESULTS: There was no difference in alpha diversity between the two groups at 2 and 4 weeks after birth (P>0.05). Although the Chao index decreased (P<0.05), there was no difference in the Shannon index from 2 weeks to 4 weeks in either the FI or FT group (P>0.05). Additionally, there was no difference in beta diversity between the FI and FT groups at 2 weeks (P>0.05), but there was a significant difference in beta diversity between the two groups at 4 weeks (P<0.05) and a large difference from 2 weeks to 4 weeks in both the FI and FT groups (P<0.05). Furthermore, the composition of the microbiota at 4 weeks was significantly different from that at 2 weeks in the FI group (P<0.05). The Veillonella abundance was lower at 4 weeks in the FI group (P<0.05), but there were no differences in the compositions of the other main microbes between the two groups (P>0.05). Proteobacteria and Firmicutes were dominant in both the FI and FT groups. The concentrations of propanoic, valeric and hexanoic acids were lower in the FI group at 2 weeks, and the levels of isobutyric and valeric acids were lower at 4 weeks after birth (P<0.05). The areas under the curves (AUCs) of propanoic, butanoic and valeric acids in predicting FI were 0.878, 0.816 and 0.744, respectively. Compared with that in the FT group, the relative bioluminescence of AI-2 was lower in the FI group at 2 weeks (P<0.05), and the AUC was 0.736. CONCLUSIONS: The main composition of the microbiota was not obviously different in infants with FI. Some SCFAs and AI-2 have moderate value in predicting FI.


Assuntos
Microbioma Gastrointestinal , Fezes/microbiologia , Idade Gestacional , Humanos , Lactente , Recém-Nascido , Recém-Nascido de muito Baixo Peso , Projetos Piloto , RNA Ribossômico 16S
10.
Zhongguo Dang Dai Er Ke Za Zhi ; 23(10): 1008-1014, 2021 Oct 15.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-34719415

RESUMO

OBJECTIVES: To study the effect of the course of treatment with broad-spectrum antibiotics on intestinal flora and short-chain fatty acids (SCFAs) in feces of very low birth weight (VLBW) infants. METHODS: A total of 29 VLBW infants who were admitted to the Neonatal Diagnosis and Treatment Center of Children's Hospital Affiliated to Chongqing Medical University from June to December 2020 were enrolled as subjects for this prospective study. According to the course of treatment with broad-spectrum antibiotics, they were divided into two groups: ≤7 days (n=9) and >7 days (n=20). Fecal samples were collected on days 14 and 28 of hospitalization, and 16S rDNA high-throughput sequencing and gas chromatography-mass spectrometry were used to analyze the flora and SCFAs in fecal samples. RESULTS: There was a significant reduction in Chao index of the intestinal flora in the ≤7 days group and the >7 days group from week 2 to week 4 (P<0.05). In the ≤7 days group, there were significant increases in the proportions of Firmicutes and Clostridium_sensu_stricto_1 and a significant reduction in the proportion of Proteobacteria from week 2 to week 4 (P<0.05). At week 4, compared with the ≤7 days group, the >7 days group had significant reductions in the proportions of Firmicutes and Clostridium_sensu_stricto_1 and a significant increase in the proportion of Proteobacteria (P<0.05), as well as significant reductions in the content of isobutyric acid and valeric acid (P<0.05). CONCLUSIONS: The course of treatment with broad-spectrum antibiotics can affect the abundance, colonization, and evolution of intestinal flora and the content of their metabolites SCFAs in VLBW infants. The indication and treatment course for broad-spectrum antibiotics should be strictly controlled in clinical practice.


Assuntos
Microbioma Gastrointestinal , Antibacterianos , Criança , Ácidos Graxos Voláteis , Fezes , Humanos , Lactente , Recém-Nascido , Recém-Nascido de muito Baixo Peso , Estudos Prospectivos
11.
Mediators Inflamm ; 2021: 6259381, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34675753

RESUMO

OBJECTIVE: To determine the role of sodium butyrate in intestinal inflammation via regulation of high-mobility group box-1 (HMGB1), we analyzed the potential mechanism in necrotizing enterocolitis (NEC) in a neonatal mouse model. METHODS: A NEC model was created with hypoxia and cold exposure and artificial overfeeding. C57BL/6 neonatal mice were randomized into three groups: the control, untreated NEC, and sodium butyrate (150 mM)-pretreated NEC groups. Pathological variations in ileocecal intestinal tissue were observed by HE staining and scored in a double-blind manner. The mRNA expression levels of HMGB1, Toll-like receptor 4 (TLR4), nuclear factor-κB (NF-κB), and inflammatory cytokines in intestinal tissues were determined by quantitative real-time PCR. The protein levels of HMGB1 and associated cytokines in intestinal tissues were evaluated using ELISA. The relative protein expression levels of TLR4 and NF-κB in intestinal tissues were quantified by western blot. RESULTS: Sodium butyrate administration improved the body weight and survival rate of NEC mice; relieved intestinal pathological injury; reduced the intestinal expression of HMGB1, TLR4, NF-κB, interleukin- (IL-) 1ß, IL-6, IL-8, and TNF-α; and increased the intestinal expression of IL-10 (P < 0.05). Treatment with butyrate decreased the proportion of opportunistic Clostridium_sensu_stricto_1 and Enterococcus and increased the proportion of beneficial Firmicutes and Lactobacillus in the NEC model. CONCLUSIONS: Sodium butyrate intervention relieves intestinal inflammation and partially corrects the disrupted intestinal flora in mice with NEC.


Assuntos
Ácido Butírico/uso terapêutico , Enterocolite Necrosante/tratamento farmacológico , Animais , Ácido Butírico/farmacologia , Modelos Animais de Doenças , Enterocolite Necrosante/imunologia , Enterocolite Necrosante/patologia , Feminino , Proteína HMGB1/genética , Proteína HMGB1/fisiologia , Intestinos/microbiologia , Intestinos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/genética , NF-kappa B/fisiologia , Distribuição Aleatória , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/fisiologia
12.
Front Cell Infect Microbiol ; 11: 694395, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34422680

RESUMO

Autoinducer-2 (AI-2) is believed to be a bacterial interspecies signaling molecule that plays an important role in the regulation of the physiological behaviors of bacteria. The effect of AI-2 on the process of necrotizing enterocolitis (NEC) is unknown, and the aim of this study was to study the effect of AI-2 in a mouse NEC model. C57BL/6 mouse pups were randomly divided into three groups: the control group, the NEC group, and the NEC+AI-2 (NA) group. Exogenous AI-2 (500 nM) was added to the formula milk of the NA group. The concentrations of fecal AI-2 and flora were tested. The expression of cytokines, TLR4 and NF-κB in intestinal tissue was detected. The AI-2 level was significantly decreased in the NEC group (P<0.05). Compared with the NEC group, the intestinal injury scores, expression of TLR4, NF-kB, and proinflammatory factors (IL-1ß, IL-6, IL-8 and TNF-α) were reduced, and expression of anti-inflammatory factor (IL-10) was increased in the NA group mice (P<0.05). At the phylum level, the Proteobacteria abundance in the NA group was significantly increased, while the Bacteroidota abundance in the control group was significantly increased (P<0.05). At the genus level, Helicobacter and Clostridium_sensu_stricto_1 exhibited significantly greater abundance in the NEC group than in the other two groups, while Lactobacillus had the opposite trend (P<0.05). In addition, the abundances of Klebsiella, Rodentibacter and Enterococcus were significantly higher in the NA group than in the NEC and control groups (P < 0.05). Exogenous AI-2 partially reverses flora disorder and decreases inflammation in an NEC mouse model.


Assuntos
Enterocolite Necrosante , Animais , Animais Recém-Nascidos , Disbiose , Enterocolite Necrosante/tratamento farmacológico , Inflamação/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL
13.
Invest Ophthalmol Vis Sci ; 62(9): 38, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-34311469

RESUMO

Purpose: To investigate the molecular mechanism underlying the Leber's hereditary optic neuropathy (LHON)-linked MT-ND1 3460G>A mutation. Methods: Cybrid cell models were generated by fusing mitochondrial DNA-less ρ0 cells with enucleated cells from a patient carrying the m.3460G>A mutation and a control subject. The impact of m.3460G>A mutations on oxidative phosphorylation was evaluated using Blue Native gel electrophoresis, and measurements of oxygen consumption were made with an extracellular flux analyzer. Assessment of reactive oxygen species (ROS) production in cell lines was performed by flow cytometry with MitoSOX Red reagent. Assays for apoptosis and mitophagy were undertaken via immunofluorescence analysis. Results: Nineteen Chinese Han pedigrees bearing the m.3460G>A mutation exhibited variable penetrance and expression of LHON. The m.3460G>A mutation altered the structure and function of MT-ND1, as evidenced by reduced MT-ND1 levels in mutant cybrids bearing the mutation. The instability of mutated MT-ND1 manifested as defects in the assembly and activity of complex I, respiratory deficiency, diminished mitochondrial adenosine triphosphate production, and decreased membrane potential, in addition to increased production of mitochondrial ROS in the mutant cybrids carrying the m.3460G>A mutation. The m.3460G>A mutation mediated apoptosis, as evidenced by the elevated release of cytochrome c into the cytosol and increasing levels of the apoptotic-associated proteins BAK, BAX, and PARP, as well as cleaved caspases 3, 7, and 9, in the mutant cybrids. The cybrids bearing the m.3460G>A mutation exhibited reduced levels of autophagy protein light chain 3, accumulation of autophagic substrate P62, and impaired PTEN-induced kinase 1/parkin-dependent mitophagy. Conclusions: Our findings highlight the critical role of m.3460G>A mutation in the pathogenesis of LHON, manifested by mitochondrial dysfunction and alterations in apoptosis and mitophagy.


Assuntos
DNA Mitocondrial/genética , Mitocôndrias/metabolismo , Mutação , NADH Desidrogenase/genética , Atrofia Óptica Hereditária de Leber/genética , Apoptose , Células Cultivadas , Análise Mutacional de DNA , Feminino , Humanos , Masculino , Mitocôndrias/patologia , Mitofagia , NADH Desidrogenase/metabolismo , Atrofia Óptica Hereditária de Leber/diagnóstico , Atrofia Óptica Hereditária de Leber/metabolismo , Linhagem
14.
Invest Ophthalmol Vis Sci ; 62(7): 22, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34156427

RESUMO

Purpose: To investigate the mechanism underlying the synergic interaction between Leber's hereditary optic neuropathy (LHON)-associated ND1 and mitochondrial tyrosyl-tRNA synthetase (YARS2) mutations. Methods: Molecular dynamics simulation and differential scanning fluorimetry were used to evaluate the structure and stability of proteins. The impact of ND1 3635G>A and YARS2 p.G191V mutations on the oxidative phosphorylation machinery was evaluated using blue native gel electrophoresis and enzymatic activities assays. Assessment of reactive oxygen species (ROS) production in cell lines was performed by flow cytometry with MitoSOX Red reagent. Analysis of effect of mutations on autophagy was undertaken via flow cytometry for autophagic flux. Results: Members of one Chinese family bearing both the YARS2 p.191Gly>Val and m.3635G>A mutations exhibited much higher penetrance of optic neuropathy than those pedigrees carrying only the m.3635G>A mutation. The m.3635G>A (p.Ser110Asn) mutation altered the ND1 structure and function, whereas the p.191Gly>Val mutation affected the stability of YARS2. Lymphoblastoid cell lines harboring both m.3635G>A and p.191Gly>Val mutations revealed more reductions in the levels of mitochondrion-encoding ND1 and CO2 than cells bearing only the m.3635G>A mutation. Strikingly, both m.3635G>A and p.191Gly>Val mutations exhibited decreases in the nucleus-encoding subunits of complex I and IV. These deficiencies manifested greater defects in the stability and activities of complex I and complex IV and overproduction of ROS and promoted greater autophagy in cell lines harboring both m.3635G>A and p.191Gly>Val mutations compared with cells bearing only the m.3635G>A mutation. Conclusions: Our findings provide new insights into the pathophysiology of LHON arising from the synergy between ND1 3635G>A mutation and mitochondrial YARS2 mutations.


Assuntos
NADH Desidrogenase/genética , Atrofia Óptica Hereditária de Leber , Tirosina-tRNA Ligase/genética , Adulto , Autofagia/genética , Linhagem Celular , China , Ensaios Enzimáticos/métodos , Família , Feminino , Testes Genéticos/métodos , Humanos , Masculino , Proteínas Mitocondriais/genética , Mutação , Atrofia Óptica Hereditária de Leber/diagnóstico , Atrofia Óptica Hereditária de Leber/genética , Fosforilação Oxidativa , Linhagem , Índice de Gravidade de Doença , Acuidade Visual
15.
J Biol Chem ; 297(1): 100816, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34023389

RESUMO

Mitochondrial tRNA 3'-end metabolism is critical for the formation of functional tRNAs. Deficient mitochondrial tRNA 3'-end metabolism is linked to an array of human diseases, including optic neuropathy, but their pathophysiology remains poorly understood. In this report, we investigated the molecular mechanism underlying the Leber's hereditary optic neuropathy (LHON)-associated tRNAAla 5587A>G mutation, which changes a highly conserved adenosine at position 73 (A73) to guanine (G73) on the 3'-end of the tRNA acceptor stem. The m.5587A>G mutation was identified in three Han Chinese families with suggested maternal inheritance of LHON. We hypothesized that the m.5587A>G mutation altered tRNAAla 3'-end metabolism and mitochondrial function. In vitro processing experiments showed that the m.5587A>G mutation impaired the 3'-end processing of tRNAAla precursors by RNase Z and inhibited the addition of CCA by tRNA nucleotidyltransferase (TRNT1). Northern blot analysis revealed that the m.5587A>G mutation perturbed tRNAAla aminoacylation, as evidenced by decreased efficiency of aminoacylation and faster electrophoretic mobility of mutated tRNAAla in these cells. The impact of m.5587A>G mutation on tRNAAla function was further supported by increased melting temperature, conformational changes, and reduced levels of this tRNA. Failures in tRNAAla metabolism impaired mitochondrial translation, perturbed assembly and activity of oxidative phosphorylation complexes, diminished ATP production and membrane potential, and increased production of reactive oxygen species. These pleiotropic defects elevated apoptotic cell death and promoted mitophagy in cells carrying the m.5587A>G mutation, thereby contributing to visual impairment. Our findings may provide new insights into the pathophysiology of LHON arising from mitochondrial tRNA 3'-end metabolism deficiency.


Assuntos
Mitocôndrias/metabolismo , RNA de Transferência de Alanina/metabolismo , Trifosfato de Adenosina/metabolismo , Apoptose , Sequência de Bases , Citocromos c/metabolismo , Transporte de Elétrons , Humanos , Potencial da Membrana Mitocondrial , Proteínas Mitocondriais/metabolismo , Mitofagia , Mutação/genética , Conformação de Ácido Nucleico , Fosforilação Oxidativa , Processamento Pós-Transcricional do RNA/genética , Estabilidade de RNA/genética , RNA Mitocondrial/genética , RNA de Transferência de Alanina/química , Espécies Reativas de Oxigênio/metabolismo , Aminoacilação de RNA de Transferência
16.
Biosci Rep ; 2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33289513

RESUMO

AIMS: To conduct the clinical, genetic and molecular characterization of 494 Han Chinese subjects with Tic disorders (TD). METHODS: In this study, we performed the mutational analysis of 22 mitochondrial tRNA genes in a large cohort of 494 Han Chinese subjects with TD via Sanger sequencing. These variants were then assessed for their pathogenic potential via phylogenetic, functional, and structural analyses. RESULTS: A total of 73 tRNA gene variants (49 known and 24 novel) on 22 tRNA genes were identified. Among these, 18 tRNA variants that were absent or present in <1% of 485 Chinese control patient samples were localized to highly conserved nucleotides, or changed the modified nucleotides, and had the potential structural to alter tRNA structure and function. These variants were thus considered to be TD-associated mutations. In total, 25 subjects carried one of these 18 putative TD-associated tRNA variants with the total prevalence of 4.96%. LIMITATIONS: The phenotypic variability and incomplete penetrance of tic disorders in pedigrees carrying these tRNA mutations suggested the involvement of modifier factors, such as nuclear encoded genes associated mitochondrion, mitochondrial haplotypes, epigenetic and environmental factors. CONCLUSION: Our data provide the evidence that mitochondrial tRNA mutations are the important causes of tic disorders among Chinese population. These findings also advance current understanding regarding the clinical relevance of tRNA mutations, and will guide future studies aimed at elucidating the pathophysiology of maternal tic disorders.

17.
J Biol Chem ; 295(38): 13224-13238, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32723871

RESUMO

Leber's hereditary optic neuropathy (LHON) is a maternal inheritance of eye disease because of the mitochondrial DNA (mtDNA) mutations. We previously discovered a 3866T>C mutation within the gene for the ND1 subunit of complex I as possibly amplifying disease progression for patients bearing the disease-causing 11778G>A mutation within the gene for the ND4 subunit of complex I. However, whether and how the ND1 mutation exacerbates the ND4 mutation were unknown. In this report, we showed that four Chinese families bearing both m.3866T>C and m.11778G>A mutations exhibited higher penetrances of LHON than 6 Chinese pedigrees carrying only the m.3866T>C mutation or families harboring only the m.11778G>A mutation. The protein structure analysis revealed that the m.3866T>C (I187T) and m.11778G>A (R340H) mutations destabilized the specific interactions with other residues of ND1 and ND4, thereby altering the structure and function of complex I. Cellular data obtained using cybrids, constructed by transferring mitochondria from the Chinese families into mtDNA-less (ρ°) cells, demonstrated that the mutations perturbed the stability, assembly, and activity of complex I, leading to changes in mitochondrial ATP levels and membrane potential and increasing the production of reactive oxygen species. These mitochondrial dysfunctions promoted the apoptotic sensitivity of cells and decreased mitophagy. Cybrids bearing only the m.3866T>C mutation displayed mild mitochondrial dysfunctions, whereas those harboring both m.3866T>C and m.11778G>A mutations exhibited greater mitochondrial dysfunctions. These suggested that the m.3866T>C mutation acted in synergy with the m.11778G>A mutation, aggravating mitochondrial dysfunctions and contributing to higher penetrance of LHON in these families carrying both mtDNA mutations.


Assuntos
DNA Mitocondrial/genética , NADH Desidrogenase/genética , Atrofia Óptica Hereditária de Leber , Fenótipo , Mutação Puntual , Linhagem Celular , Feminino , Humanos , Masculino , Atrofia Óptica Hereditária de Leber/enzimologia , Atrofia Óptica Hereditária de Leber/genética , Atrofia Óptica Hereditária de Leber/patologia
18.
J Clin Invest ; 130(9): 4935-4946, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32516135

RESUMO

Leber's hereditary optic neuropathy (LHON) is a maternally inherited eye disease. X-linked nuclear modifiers were proposed to modify the phenotypic manifestation of LHON-associated mitochondrial DNA (mtDNA) mutations. By whole-exome sequencing, we identified the X-linked LHON modifier (c.157C>T, p.Arg53Trp) in PRICKLE3 encoding a mitochondrial protein linked to biogenesis of ATPase in 3 Chinese families. All affected individuals carried both ND4 11778G>A and p.Arg53Trp mutations, while subjects bearing only a single mutation exhibited normal vision. The cells carrying the p.Arg53Trp mutation exhibited defective assembly, stability, and function of ATP synthase, verified by PRICKLE3-knockdown cells. Coimmunoprecipitation indicated the direct interaction of PRICKLE3 with ATP synthase via ATP8. Strikingly, cells bearing both p.Arg53Trp and m.11778G>A mutations displayed greater mitochondrial dysfunction than those carrying only a single mutation. This finding indicated that the p.Arg53Trp mutation acted in synergy with the m.11778G>A mutation and deteriorated mitochondrial dysfunctions necessary for the expression of LHON. Furthermore, we demonstrated that Prickle3-deficient mice exhibited pronounced ATPase deficiencies. Prickle3-knockout mice recapitulated LHON phenotypes with retinal deficiencies, including degeneration of retinal ganglion cells and abnormal vasculature. Our findings provided new insights into the pathophysiology of LHON that were manifested by interaction between mtDNA mutations and X-linked nuclear modifiers.


Assuntos
Adenosina Trifosfatases , Proteínas com Domínio LIM , Proteínas Mitocondriais , Mutação de Sentido Incorreto , Atrofia Óptica Hereditária de Leber , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Substituição de Aminoácidos , Animais , Criança , Feminino , Humanos , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/metabolismo , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Atrofia Óptica Hereditária de Leber/genética , Atrofia Óptica Hereditária de Leber/metabolismo , Atrofia Óptica Hereditária de Leber/patologia
19.
Mitochondrion ; 52: 163-172, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32169613

RESUMO

Mutations in the mitochondrial tRNAs have been reported to be the important cause of hearing loss. However, only a few cases have been identified thus far and the prevalence of mitochondrial tRNA mutations in hearing-impaired patients remain unclear. Here we performed the mutational analysis of 22 mitochondrial tRNA genes in a large cohort of 887 Han Chinese subjects with hearing loss by Sanger sequencing. The systemic evaluation of putative pathogenic variants was further carried out by frequency in controls (<1%), phylogenetic analysis, structural analysisandfunctionalprediction. As a result, a total of 147 variants on 22 tRNA genes were identified. Among these, 39 tRNA mutations (10 pathogenic and 29 likely pathogenic) which absent or present <1% in 773 Chinese controls, localized at highly conserved nucleotides, or changed the modified nucleotides, could have potential structural alterations and functional significance, thereby considered to be deafness-associated mutations. Furthermore, 44 subjects carried one of these 39 pathogenic/likely pathogenic tRNA mutations with a total prevalence of 4.96%. However, the phenotypic variability and incomplete penetrance of hearing loss in pedigrees carrying these tRNA mutations indicate the involvement of modifier factors, such as nuclear encoded genes associated with mitochondrion biogenesis, mitochondrial haplotypes, epigenetic and environmental factors. Thus, our data provide the evidence that mitochondrial tRNA mutations are the important causes of hearing loss among Chinese population. These findings further increase our knowledge on the clinical relevance of tRNA mutations in the mitochondrial genome, and should be helpful to elucidate the pathogenesis of maternal hearing loss.


Assuntos
Povo Asiático/genética , Perda Auditiva/genética , Mutação , RNA de Transferência/genética , Análise de Sequência de DNA/métodos , Adolescente , Adulto , Idoso , Povo Asiático/etnologia , Criança , Pré-Escolar , China/etnologia , Epigênese Genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Taxa de Mutação , Conformação de Ácido Nucleico , Filogenia , RNA Mitocondrial/química , RNA Mitocondrial/genética , RNA de Transferência/química , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA