Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
ACS Sens ; 2024 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-39373016

RESUMO

Love-mode surface acoustic wave (SAW) sensors show great promise for biodetection applications owing to their low cost, digital output, and wireless passive capability, but their performance is often restricted by the availability of suitable sensitive membrane layers. Herein, a composite layer of electrospun fibers made from cellulose acetate and polyethylenimine, coated with gold nanoparticles, is proposed as a porous and sensitive membrane coated onto a love-mode SAW biosensor for monitoring gene sequences of Staphylococcus aureus. The results showed that the developed sensor exhibited an impressive sensitivity of 122.56 Hz/(nmol/L) for detecting gene sequences of S. aureus, surpassing the sensitivity of conventional SAW sensors employing a bare Au film as the sensitive layer by 5-fold. The analysis revealed a remarkably linear detection (R2 of 0.97827) of S. aureus gene sequences within the range of 0 to 100 nmol/L. The limit of detection was impressively low at 0.9116 nmol/L. The good stability and specificity of the biosensor in liquid environments were demonstrated for clinical diagnostics.

2.
Microsyst Nanoeng ; 10: 94, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38974058

RESUMO

Flexible surface acoustic wave technology has garnered significant attention for wearable electronics and sensing applications. However, the mechanical strains induced by random deformation of these flexible SAWs during sensing often significantly alter the specific sensing signals, causing critical issues such as inconsistency of the sensing results on a curved/flexible surface. To address this challenge, we first developed high-performance AlScN piezoelectric film-based flexible SAW sensors, investigated their response characteristics both theoretically and experimentally under various bending strains and UV illumination conditions, and achieved a high UV sensitivity of 1.71 KHz/(mW/cm²). To ensure reliable and consistent UV detection and eliminate the interference of bending strain on SAW sensors, we proposed using key features within the response signals of a single flexible SAW device to establish a regression model based on machine learning algorithms for precise UV detection under dynamic strain disturbances, successfully decoupling the interference of bending strain from target UV detection. The results indicate that under strain interferences from 0 to 1160 µÎµ the model based on the extreme gradient boosting algorithm exhibits optimal UV prediction performance. As a demonstration for practical applications, flexible SAW sensors were adhered to four different locations on spacecraft model surfaces, including flat and three curved surfaces with radii of curvature of 14.5, 11.5, and 5.8 cm. These flexible SAW sensors demonstrated high reliability and consistency in terms of UV sensing performance under random bending conditions, with results consistent with those on a flat surface.

3.
ACS Appl Mater Interfaces ; 15(29): 35422-35429, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37462178

RESUMO

Humidity sensing and water molecule monitoring have become hot research topics attributed to their potential applications in monitoring breathing/physiological conditions of humans, air conditioning in greenhouses, and soil moisture in agriculture. However, there is a huge challenge for highly sensitive and precision humidity detection with wireless and fast responsive capabilities. In this work, a hybrid/synergistic strategy was proposed using a LiNbO3/SiO2/SiC heterostructure to generate shear-horizontal (SH) surface acoustic waves (SAWs) and using a nanocomposite of polyethylenimine-silicon dioxide nanoparticles (PEI-SiO2 NPs) to form a sensitive layer, thus achieving an ultrahigh sensitivity of SAW humidity sensors. Ultrahigh frequencies (1∼15 GHz) of SAW devices were obtained on a high-velocity heterostructure of LiNbO3/SiO2/SiC. Among the multimodal wave modes, we selected SH waves for humidity sensing and achieved a high mass-sensitivity of 5383 MHz · mm2 · µg-1. With the PEI-SiO2 NP composite as the sensitive layer, an ultrahigh sensitivity of 2.02 MHz/% RH was obtained, which is two orders of magnitude higher than those of the conventional SAW humidity sensors (∼202.5 MHz frequency) within a humidity range of 20-80% RH.

4.
Microsyst Nanoeng ; 8: 121, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36407888

RESUMO

Surface acoustic wave (SAW) technology has been widely developed for ultraviolet (UV) detection due to its advantages of miniaturization, portability, potential to be integrated with microelectronics, and passive/wireless capabilities. To enhance UV sensitivity, nanowires (NWs), such as ZnO, are often applied to enhance SAW-based UV detection due to their highly porous and interconnected 3D network structures and good UV sensitivity. However, ZnO NWs are normally hydrophilic, and thus, changes in environmental parameters such as humidity will significantly influence the detection precision and sensitivity of SAW-based UV sensors. To solve this issue, in this work, we proposed a new strategy using ZnO NWs wrapped with hydrophobic silica nanoparticles as the effective sensing layer. Analysis of the distribution and chemical bonds of these hydrophobic silica nanoparticles showed that numerous C-F bonds (which are hydrophobic) were found on the surface of the sensitive layer, which effectively blocked the adsorption of water molecules onto the ZnO NWs. This new sensing layer design minimizes the influence of humidity on the ZnO NW-based UV sensor within the relative humidity range of 10-70%. The sensor showed a UV sensitivity of 9.53 ppm (mW/cm2)-1, with high linearity (R 2 value of 0.99904), small hysteresis (<1.65%) and good repeatability. This work solves the long-term dilemma of ZnO NW-based sensors, which are often sensitive to humidity changes.

5.
Microsyst Nanoeng ; 7: 97, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34900331

RESUMO

Flexible surface acoustic wave (SAW) devices have recently attracted tremendous attention for their widespread application in sensing and microfluidics. However, for these applications, SAW devices often need to be bent into off-axis deformations between the acoustic wave propagation direction and bending direction. Currently, there are few studies on this topic, and the bending mechanisms during off-axis bending deformations have remained unexplored for multisensing applications. Herein, we fabricated aluminum nitride (AlN) flexible SAW devices by using high-quality AlN films deposited on flexible glass substrates and systematically investigated their complex deformation behaviors. A theoretical model was first developed using coupling wave equations and the boundary condition method to analyze the characteristics of the device with bending and off-axis deformation under elastic strains. The relationships between the frequency shifts of the SAW device and the bending strain and off-axis angle were obtained, and the results were identical to those from the theoretical calculations. Finally, we performed proof-of-concept demonstrations of its multisensing potential by monitoring human wrist movements at various off-axis angles and detecting UV light intensities on a curved surface, thus paving the way for the application of versatile flexible electronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA