Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Toxicology ; 505: 153831, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38768701

RESUMO

Cadmium (Cd) is a common pollutant with reproductive toxicity. Our previous study revealed that Cd triggered spermatogonia ferroptosis. However, the underlying mechanisms remain unclear. Nuclear receptor coactivator 4 (NCOA4) mediates ferritinophagy and specific degradation of ferritin through lysosomes, resulting in the release of ferrous ions. Excessive autophagy can lead to ferroptosis. This study investigated the role of autophagy in Cd-triggered ferroptosis using GC-1 spermatogonial (spg) cells which exposed to CdCl2 (5 µM, 10 µM, or 20 µM) for 24 without/with CQ. The cells which transfected with Ncoa4-siRNA were used to explore the role of NCOA4-mediated ferritinophagy in Cd-triggered ferroptosis. The results revealed that Cd caused mitochondrial swelling, rupture of cristae, and vacuolar-like changes. The Cd-treated cells exhibited more autophagosomes. Simultaneously, Cd increased intracellular iron, reactive oxygen species, and malondialdehyde concentrations while decreasing glutathione content and Superoxide Dismutase-2 activity. Moreover, Cd upregulated mRNA levels of ferritinophagy-associated genes (Ncoa4, Lc3b and Fth1), as well as enhanced protein expression of NCOA4, LC3B, and FTH1. While Cd decreased the mRNA and protein expression of p62/SQSTM1. These results showed that Cd caused ferritinophagy and ferroptosis. The use of chloroquine to inhibit autophagy ameliorated Cd-induced iron overload and ferroptosis. Moreover, Ncoa4 knockdown in spermatogonia significantly reduced intracellular iron concentration and alleviated Cd-triggered ferroptosis. In conclusion, our findings demonstrate that Cd activates the ferritinophagy pathway mediated by NCOA4, resulting in iron accumulation through ferritin degradation. This causes oxidative stress, ultimately initiating ferroptosis in spermatogonia. Our results may provide new perspectives and potential strategies for preventing and treating Cd-induced reproductive toxicity.


Assuntos
Autofagia , Cádmio , Ferritinas , Ferroptose , Coativadores de Receptor Nuclear , Espermatogônias , Ferroptose/efeitos dos fármacos , Coativadores de Receptor Nuclear/metabolismo , Coativadores de Receptor Nuclear/genética , Masculino , Espermatogônias/efeitos dos fármacos , Espermatogônias/metabolismo , Ferritinas/metabolismo , Autofagia/efeitos dos fármacos , Cádmio/toxicidade , Animais , Linhagem Celular , Camundongos , Espécies Reativas de Oxigênio/metabolismo
2.
Environ Pollut ; 325: 121434, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36907243

RESUMO

Cadmium (Cd) is a widespread environmental pollutant and a reproductive toxicant. It has been proved that Cd can reduce male fertility, however, the molecular mechanisms remain unveiled. This study aims to explore the effects and mechanisms of pubertal Cd exposure on testicular development and spermatogenesis. The results showed that Cd exposure during puberty could cause pathological damage to testes and reduce sperm counts in mice in adulthood. Moreover, Cd exposure during puberty reduced GSH content, induced iron overload and ROS production in testes, suggesting that Cd exposure during puberty may induce testicular ferroptosis. The results in vitro experiments further strengthened that Cd caused iron overload and oxidative stress, and decreased MMP in GC-1 spg cells. In addition, Cd disturbed intracellular iron homeostasis and peroxidation signal pathway based on transcriptomics analysis. Interestingly, these changes induced by Cd could be partially suppressed by pretreated with ferroptotic inhibitors, Ferrostatin-1 and Deferoxamine mesylate. In conclusion, the study demonstrated that Cd exposure during puberty maybe disrupted intracellular iron metabolism and peroxidation signal pathway, triggered ferroptosis in spermatogonia, and ultimately damaged testicular development and spermatogenesis in mice in adulthood.


Assuntos
Ferroptose , Sobrecarga de Ferro , Masculino , Camundongos , Animais , Cádmio/metabolismo , Maturidade Sexual , Sêmen/metabolismo , Espermatogênese , Testículo , Estresse Oxidativo , Ferro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA