Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Lung ; 202(3): 269-273, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38753183

RESUMO

INTRODUCTION: Pulmonary fibrosis is a characteristic of various interstitial lung diseases (ILDs) with differing etiologies. Clinical trials in progressive pulmonary fibrosis (PPF) enroll patients based on previously described clinical criteria for past progression, which include a clinical practice guideline for PPF classification and inclusion criteria from the INBUILD trial. In this study, we compared the ability of past FVC (forced vital capacity) progression and baseline biomarker levels to predict future progression in a cohort of patients from the PFF Patient Registry. METHODS: Biomarkers previously associated with pathobiology and/or progression in pulmonary fibrosis were selected to reflect cellular senescence (telomere length), pulmonary epithelium (SP-D, RAGE), myeloid activation (CXCL13, YKL40, CCL18, OPN) and fibroblast activation (POSTN, COMP, PROC3). RESULTS: PFF or INBUILD-like clinical criteria was used to separate patients into past progressor and non-past progressor groups, and neither clinical criterion appeared to enrich for patients with greater future lung function decline. All baseline biomarkers measured were differentially expressed in patient groups compared to healthy controls. Baseline levels of SP-D and POSTN showed the highest correlations with FVC slope over one year, though correlations were low. CONCLUSIONS: Our findings provide further evidence that prior decline in lung function may not predict future disease progression for ILD patients, and elevate the need for molecular definitions of a progressive phenotype. Across ILD subtypes, certain shared pathobiologies may be present based on the molecular profile of certain biomarker groups observed. In particular, SP-D may be a common marker of pulmonary injury and future lung function decline across ILDs.


Assuntos
Biomarcadores , Progressão da Doença , Doenças Pulmonares Intersticiais , Sistema de Registros , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Capacidade Vital , Idoso , Doenças Pulmonares Intersticiais/fisiopatologia , Doenças Pulmonares Intersticiais/diagnóstico , Fibrose Pulmonar/fisiopatologia , Fibrose Pulmonar/diagnóstico , Proteína D Associada a Surfactante Pulmonar/sangue , Pulmão/fisiopatologia , Valor Preditivo dos Testes , Proteína 1 Semelhante à Quitinase-3/sangue , Quimiocinas CC , Osteopontina , Receptor para Produtos Finais de Glicação Avançada/sangue , Fibrose Pulmonar Idiopática/fisiopatologia , Fibrose Pulmonar Idiopática/diagnóstico
2.
Med ; 5(2): 132-147.e7, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38272035

RESUMO

BACKGROUND: Transforming growth factor ß (TGF-ß) is implicated as a key mediator of pathological fibrosis, but its pleiotropic activity in a range of homeostatic functions presents challenges to its safe and effective therapeutic targeting. There are three isoforms of TGF-ß, TGF-ß1, TGF-ß2, and TGF-ß3, which bind to a common receptor complex composed of TGF-ßR1 and TGF-ßR2 to induce similar intracellular signals in vitro. We have recently shown that the cellular expression patterns and activation thresholds of TGF-ß2 and TGF-ß3 are distinct from those of TGF-ß1 and that selective short-term TGF-ß2 and TGF-ß3 inhibition can attenuate fibrosis in vivo without promoting excessive inflammation. Isoform-selective inhibition of TGF-ß may therefore provide a therapeutic opportunity for patients with chronic fibrotic disorders. METHODS: Transcriptomic profiling of skin biopsies from patients with systemic sclerosis (SSc) from multiple clinical trials was performed to evaluate the role of TGF-ß3 in this disease. Antibody humanization, biochemical characterization, crystallization, and pre-clinical experiments were performed to further characterize an anti-TGF-ß3 antibody. FINDINGS: In the skin of patients with SSc, TGF-ß3 expression is uniquely correlated with biomarkers of TGF-ß signaling and disease severity. Crystallographic studies establish a structural basis for selective TGF-ß3 inhibition with a potent and selective monoclonal antibody that attenuates fibrosis effectively in vivo at clinically translatable exposures. Toxicology studies suggest that, as opposed to pan-TGF-ß inhibitors, this anti-TGF-ß3 antibody has a favorable safety profile for chronic administration. CONCLUSION: We establish a rationale for targeting TGF-ß3 in SSc with a favorable therapeutic index. FUNDING: This study was funded by Genentech, Inc.


Assuntos
Escleroderma Sistêmico , Fator de Crescimento Transformador beta3 , Humanos , Fator de Crescimento Transformador beta3/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta2/metabolismo , Fibrose , Escleroderma Sistêmico/tratamento farmacológico , Isoformas de Proteínas/metabolismo
3.
iScience ; 26(11): 108133, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37867940

RESUMO

Systemic sclerosis (SSc) interstitial lung disease (ILD) is among the leading causes of SSc-related morbidity and mortality. Tocilizumab (TCZ, anti-IL6RA) has demonstrated a reduced rate of pulmonary function decline in two phase 2/3 trials (faSScinate and focuSSced) in SSc-ILD patients. We performed transcriptome analysis of skin biopsy samples collected in the studies to decipher gene networks that were potentially associated with clinical responses to TCZ treatment. One module correlated with disease progression showed pharmacodynamic changes with TCZ treatment, and was characterized by plasma cell (PC) genes. PC signature gene expression levels were also significantly increased in both fibrotic SSc and IPF lungs compared to controls. scRNAseq analyses confirmed that PC signature genes were co-expressed in CD38 and CD138 expressing PC subsets in SSc lungs. These data provide insights into the potential role of PC in disease progression and mechanisms of action of TCZ in fibrotic interstitial lung diseases.

4.
J Lipid Res ; 64(6): 100375, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37075981

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive disease with significant mortality. Prognostic biomarkers to identify rapid progressors are urgently needed to improve patient management. Since the lysophosphatidic acid (LPA) pathway has been implicated in lung fibrosis in preclinical models and identified as a potential therapeutic target, we aimed to investigate if bioactive lipid LPA species could be prognostic biomarkers that predict IPF disease progression. LPAs and lipidomics were measured in baseline placebo plasma of a randomized IPF-controlled trial. The association of lipids with disease progression indices were assessed using statistical models. Compared to healthy, IPF patients had significantly higher levels of five LPAs (LPA16:0, 16:1, 18:1, 18:2, 20:4) and reduced levels of two triglycerides species (TAG48:4-FA12:0, -FA18:2) (false discovery rate < 0.05, fold change > 2). Patients with higher levels of LPAs had greater declines in diffusion capacity of carbon monoxide over 52 weeks (P < 0.01); additionally, LPA20:4-high (≥median) patients had earlier time to exacerbation compared to LPA20:4-low (

Assuntos
Fibrose Pulmonar Idiopática , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Progressão da Doença , Lisofosfolipídeos , Biomarcadores
6.
Cell Metab ; 34(9): 1377-1393.e8, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-35987202

RESUMO

Fibrosis is the major risk factor associated with morbidity and mortality in patients with non-alcoholic steatohepatitis (NASH)-driven chronic liver disease. Although numerous efforts have been made to identify the mediators of the initiation of liver fibrosis, the molecular underpinnings of fibrosis progression remain poorly understood, and therapies to arrest liver fibrosis progression are elusive. Here, we identify a pathway involving WNT1-inducible signaling pathway protein 1 (WISP1) and myocardin-related transcription factor (MRTF) as a central mechanism driving liver fibrosis progression through the integrin-dependent transcriptional reprogramming of myofibroblast cytoskeleton and motility. In mice, WISP1 deficiency protects against fibrosis progression, but not fibrosis onset. Moreover, the therapeutic administration of a novel antibody blocking WISP1 halted the progression of existing liver fibrosis in NASH models. These findings implicate the WISP1-MRTF axis as a crucial determinant of liver fibrosis progression and support targeting this pathway by antibody-based therapy for the treatment of NASH fibrosis.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Fatores de Transcrição , Animais , Fígado/metabolismo , Cirrose Hepática/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Proteínas Nucleares , Transdução de Sinais , Transativadores , Fatores de Transcrição/metabolismo
7.
J Allergy Clin Immunol ; 150(4): 972-978.e7, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35487308

RESUMO

BACKGROUND: Clinical studies of type 2 (T2) cytokine-related neutralizing antibodies in asthma have identified a substantial subset of patients with low levels of T2 inflammation who do not benefit from T2 cytokine neutralizing antibody treatment. Non-T2 mechanisms are poorly understood in asthma but represent a redefined unmet medical need. OBJECTIVE: We sought to gain a better understanding of genetic contributions to T2-low asthma. METHODS: We utilized an unbiased genome-wide association study of patients with moderate to severe asthma stratified by T2 serum biomarker periostin. We also performed additional expression and biological analysis for the top genetic hits. RESULTS: We identified a novel protective single nucleotide polymorphism at chr19q13.41, which is selectively associated with T2-low asthma and establishes Kallikrein-related peptidase 5 (KLK5) as the causal gene mediating this association. Heterozygous carriers of the single nucleotide polymorphisms have reduced KLK5 expression. KLK5 is secreted by human bronchial epithelial cells and elevated in asthma bronchial alveolar lavage. T2 cytokines IL-4 and IL-13 downregulate KLK5 in human bronchial epithelial cells. KLK5, dependent on its catalytic function, induces epithelial chemokine/cytokine expression. Finally, overexpression of KLK5 in airway or lack of an endogenous KLK5 inhibitor, SPINK5, leads to spontaneous airway neutrophilic inflammation. CONCLUSION: Our data identify KLK5 to be the causal gene at a novel locus at chr19q13.41 associated with T2-low asthma.


Assuntos
Asma , Estudo de Associação Genômica Ampla , Anticorpos Neutralizantes/genética , Asma/genética , Quimiocinas/genética , Citocinas/metabolismo , Humanos , Inflamação/genética , Interleucina-13/genética , Interleucina-4/genética , Calicreínas/genética , Calicreínas/metabolismo
8.
Cell Rep Med ; 1(8): 100140, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33294861

RESUMO

Progressive lung fibrosis is a major cause of mortality in systemic sclerosis (SSc) patients, but the underlying mechanisms remain unclear. We demonstrate that immune complexes (ICs) activate human monocytes to promote lung fibroblast migration partly via osteopontin (OPN) secretion, which is amplified by autocrine monocyte colony stimulating factor (MCSF) and interleukin-6 (IL-6) activity. Bulk and single-cell RNA sequencing demonstrate that elevated OPN expression in SSc lung tissue is enriched in macrophages, partially overlapping with CCL18 expression. Serum OPN is elevated in SSc patients with interstitial lung disease (ILD) and prognosticates future lung function deterioration in SSc cohorts. Serum OPN levels decrease following tocilizumab (monoclonal anti-IL-6 receptor) treatment, confirming the connection between IL-6 and OPN in SSc patients. Collectively, these data suggest a plausible link between autoantibodies and lung fibrosis progression, where circulating OPN serves as a systemic proxy for IC-driven profibrotic macrophage activity, highlighting its potential as a promising biomarker in SSc ILD.


Assuntos
Células Mieloides/metabolismo , Osteopontina/metabolismo , Escleroderma Sistêmico/metabolismo , Autoanticorpos/metabolismo , Biomarcadores/metabolismo , Linhagem Celular , Quimiocinas CC/metabolismo , Progressão da Doença , Fibrose/metabolismo , Humanos , Interleucina-6/metabolismo , Pulmão/metabolismo , Doenças Pulmonares Intersticiais/metabolismo , Macrófagos/metabolismo , Monócitos/metabolismo
10.
Cell ; 179(2): 417-431.e19, 2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31585081

RESUMO

Severe asthma patients with low type 2 inflammation derive less clinical benefit from therapies targeting type 2 cytokines and represent an unmet need. We show that mast cell tryptase is elevated in severe asthma patients independent of type 2 biomarker status. Active ß-tryptase allele count correlates with blood tryptase levels, and asthma patients carrying more active alleles benefit less from anti-IgE treatment. We generated a noncompetitive inhibitory antibody against human ß-tryptase, which dissociates active tetramers into inactive monomers. A 2.15 Å crystal structure of a ß-tryptase/antibody complex coupled with biochemical studies reveal the molecular basis for allosteric destabilization of small and large interfaces required for tetramerization. This anti-tryptase antibody potently blocks tryptase enzymatic activity in a humanized mouse model, reducing IgE-mediated systemic anaphylaxis, and inhibits airway tryptase in Ascaris-sensitized cynomolgus monkeys with favorable pharmacokinetics. These data provide a foundation for developing anti-tryptase as a clinical therapy for severe asthma.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Asma/terapia , Mastócitos/enzimologia , Mastócitos/imunologia , Triptases/antagonistas & inibidores , Triptases/imunologia , Adolescente , Regulação Alostérica/imunologia , Animais , Linhagem Celular , Feminino , Humanos , Macaca fascicularis , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos SCID , Coelhos
11.
JCI Insight ; 52019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31211697

RESUMO

The lung is a relatively quiescent organ during homeostasis, but has a remarkable capacity for repair after injury. Alveolar epithelial type I cells (AEC1s) line airspaces and mediate gas exchange. After injury, they are regenerated by differentiation from their progenitors - alveolar epithelial type II cells (AEC2s) - which also secrete surfactant to maintain surface tension and alveolar patency. While recent studies showed that the maintenance of AEC2 stemness is Wnt dependent, the molecular mechanisms underlying AEC2-AEC1 differentiation in adult lung repair are still incompletely understood. Here we show that WWTR1 (TAZ) plays a crucial role in AEC differentiation. Using an in vitro organoid culture system, we found that tankyrase inhibition can efficiently block AEC2-AEC1 differentiation, and this effect was due to the inhibition of TAZ. In a bleomycin induced lung injury model, conditional deletion of TAZ in AEC2s dramatically reduced AEC1 regeneration during recovery, leading to exacerbated alveolar lesions and fibrosis. In patients with idiopathic pulmonary fibrosis (IPF), decreased blood levels of RAGE, a biomarker of AEC1 health, were associated with more rapid disease progression. Our findings implicate TAZ as a critical factor involved in AEC2 to AEC1 differentiation, and hence the maintenance of alveolar integrity after injury.


Assuntos
Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Lesão Pulmonar/metabolismo , Transativadores/metabolismo , Transativadores/farmacologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Bleomicina/efeitos adversos , Modelos Animais de Doenças , Humanos , Fibrose Pulmonar Idiopática/patologia , Pulmão/patologia , Lesão Pulmonar/induzido quimicamente , Lesão Pulmonar/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Organogênese/efeitos dos fármacos , Organogênese/fisiologia , Organoides/metabolismo , Regeneração/fisiologia , Células-Tronco/metabolismo , Transativadores/genética , Transcriptoma , beta Catenina/genética , beta Catenina/metabolismo
12.
Lancet Respir Med ; 6(8): 615-626, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30072107

RESUMO

BACKGROUND: Heterogeneity in the progression of idiopathic pulmonary fibrosis (IPF) might reflect diversity in underlying pathobiology, and represents a major challenge in the prediction of clinical progression and treatment benefit. Previous studies have found peripheral blood concentrations of several protein biomarkers to be prognostic for overall survival duration in patients with IPF, but these findings have generally not been directly compared and replicated between cohorts. We aimed to use the pivotal trials for pirfenidone to evaluate prognostic and predictive properties of biomarkers across multiple endpoints, and whether they are modulated by pirfenidone treatment. METHODS: We did post-hoc analyses of test and replication cohorts from CAPACITY 004 (NCT00287716), CAPACITY 006 (NCT00287729), and ASCEND (NCT01366209) trials for the plasma proteins CCL13, CCL17, CCL18, CXCL13, CXCL14, COMP, interleukin 13, MMP3, MMP7, osteopontin, periostin, and YKL40. Eligible participants had IPF and received pirfenidone 2403 mg/day or placebo in CAPACITY (test cohort) or ASCEND (replication cohort), were aged 40-80 years, and without missing biomarker data at baseline. To identify biomarkers that were consistently prognostic for clinical outcome measures, the primary analysis was the association between biomarker concentrations at baseline and absolute change in percentage of predicted forced vital capacity (FVC%pred) at 12 months (CAPACITY week 48, ASCEND week 52) in the placebo group. Biomarkers within the test cohort that met predefined success criteria of a prognostic p value less than 0·10 from multivariate analysis were further assessed in the replication cohort. Furthermore, the predictive effect size (ie, biomarkers that were predictive for benefit from pirfenidone) was calculated as the difference in FVC%pred treatment effect (pirfenidone in relation to placebo) between high versus low biomarker subgroups at week 48 (test cohort) or week 52 (replication cohort). FINDINGS: Several baseline biomarkers (CCL13, CCL18, COMP, CXCL13, CXCL14, periostin, and YKL40) were prognostic for progression outcomes in the placebo groups of the test cohort. However, only CCL18 was consistently prognostic for absolute change in percentage of FVC%pred in both the test (p=0·032) and replication (p=0·004) cohorts. Pirfenidone treatment benefit was consistent regardless of baseline biomarker concentration. INTERPRETATION: Blood CCL18 concentrations were the most consistent predictor of disease progression across IPF cohorts with potential to inform new target discovery and clinical trial design. Future validation of these findings in prospective studies is warranted. FUNDING: Genentech Inc.


Assuntos
Anti-Inflamatórios não Esteroides/administração & dosagem , Ensaios Clínicos como Assunto/normas , Fibrose Pulmonar Idiopática/tratamento farmacológico , Piridonas/administração & dosagem , Idoso , Biomarcadores/sangue , Progressão da Doença , Feminino , Seguimentos , Humanos , Fibrose Pulmonar Idiopática/genética , Masculino , Modelos de Riscos Proporcionais
13.
J Immunol ; 198(8): 3307-3317, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28275137

RESUMO

Severe asthma represents a major unmet clinical need; understanding the pathophysiology is essential for the development of new therapies. Using microarray analysis, we previously found three immunological clusters in asthma: Th2-high, Th17-high, and Th2/17-low. Although new therapies are emerging for Th2-high disease, identifying molecular pathways in Th2-low disease remains an important goal. Further interrogation of our previously described microarray dataset revealed upregulation of gene expression for carcinoembryonic Ag cell adhesion molecule (CEACAM) family members in the bronchi of patients with severe asthma. Our aim was therefore to explore the distribution and cellular localization of CEACAM6 using immunohistochemistry on bronchial biopsy tissue obtained from patients with mild-to-severe asthma and healthy control subjects. Human bronchial epithelial cells were used to investigate cytokine and corticosteroid in vitro regulation of CEACAM6 gene expression. CEACAM6 protein expression in bronchial biopsies was increased in airway epithelial cells and lamina propria inflammatory cells in severe asthma compared with healthy control subjects. CEACAM6 in the lamina propria was localized to neutrophils predominantly. Neutrophil density in the bronchial mucosa was similar across health and the spectrum of asthma severity, but the percentage of neutrophils expressing CEACAM6 was significantly increased in severe asthma, suggesting the presence of an altered neutrophil phenotype. CEACAM6 gene expression in cultured epithelial cells was upregulated by wounding and neutrophil elastase. In summary, CEACAM6 expression is increased in severe asthma and primarily associated with airway epithelial cells and tissue neutrophils. CEACAM6 may contribute to the pathology of treatment-resistant asthma via neutrophil and airway epithelial cell-dependent pathways.


Assuntos
Antígenos CD/imunologia , Asma/imunologia , Moléculas de Adesão Celular/imunologia , Células Epiteliais/imunologia , Neutrófilos/imunologia , Mucosa Respiratória/imunologia , Adulto , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Imunofluorescência , Proteínas Ligadas por GPI/imunologia , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Fenótipo , Reação em Cadeia da Polimerase , Transcriptoma
14.
Thorax ; 72(9): 780-787, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28250200

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is associated with aberrant expression of developmental pathways, including Hedgehog (Hh). As Hh signalling contributes to multiple pro-fibrotic processes, Hh inhibition may represent a therapeutic option for IPF. However, no non-invasive biomarkers are available to monitor lung Hh activity. METHODS: We assessed gene and protein expression in IPF and control lung biopsies, mouse lung, fibroblasts stimulated in vitro with sonic hedgehog (SHh), and plasma in IPF patients versus controls, and cancer patients before and after treatment with vismodegib, a Hh inhibitor. RESULTS: Lung tissue from IPF patients exhibited significantly greater expression of Hh-related genes versus controls. The gene most significantly upregulated in both IPF lung biopsies and fibroblasts stimulated in vitro with SHh was CXCL14, which encodes a soluble secreted chemokine whose expression is inhibited in vitro by the addition of vismodegib. CXCL14 expression was induced by SHh overexpression in mouse lung. Circulating CXCL14 protein levels were significantly higher in plasma from IPF patients than controls. In cancer patients, circulating CXCL14 levels were significantly reduced upon vismodegib treatment. CONCLUSIONS: CXCL14 is a systemic biomarker that could be used to identify IPF patients with increased Hh pathway activity and monitor the pharmacodynamic effects of Hh antagonist therapy in IPF. TRIAL REGISTRATION NUMBER: Post-results, NCT00968981.


Assuntos
Quimiocinas CXC/biossíntese , Proteínas Hedgehog/fisiologia , Fibrose Pulmonar Idiopática/metabolismo , Idoso , Anilidas/farmacologia , Animais , Antineoplásicos/farmacologia , Biomarcadores/metabolismo , Células Cultivadas , Quimiocinas CXC/sangue , Quimiocinas CXC/efeitos dos fármacos , Quimiocinas CXC/genética , Feminino , Regulação da Expressão Gênica/fisiologia , Humanos , Fibrose Pulmonar Idiopática/genética , Pulmão/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Neoplasias/sangue , Neoplasias/tratamento farmacológico , Piridinas/farmacologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Regulação para Cima/fisiologia
16.
BMC Pulm Med ; 16(1): 67, 2016 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-27130294

RESUMO

BACKGROUND: Periostin levels are associated with airway eosinophilia and are suppressed by corticosteroid treatment in asthma. This study sought to determine the relationship between serum and sputum periostin, airway inflammatory phenotype and asthma control. METHODS: Adults with poorly-controlled asthma (n = 83) underwent a clinical assessment, sputum induction and blood sampling. Dispersed sputum was used for a differential cell count and periostin assessment (ELISA). Serum periostin was determined by the Elecsys® immunoassay. RESULTS: Periostin levels were significantly higher in serum (median (IQR) of 51.6 (41.8, 62.6) ng/mL) than in sputum (1.1 (0.5, 2.0) ng/mL) (p < 0.001). Serum and sputum periostin were significantly higher in patients with eosinophilic asthma (n = 37) compared with non-eosinophilic asthma. Both serum and sputum periostin levels were significantly associated with proportion of sputum eosinophils (r = 0.422, p < 0.001 and r = 0.364, p = 0.005 respectively) but were not associated with asthma control. In receiver operator characteristic curve analysis, the area under the curve (AUC) for serum periostin (n = 83) was 0.679, p = 0.007. Peripheral blood eosinophils assessed in 67 matched samples, had a numerically greater AUC of 0.820 compared with serum periostin, p = 0.086 for the detection of eosinophilic asthma. CONCLUSION: In poorly-controlled asthma, sputum and serum periostin levels are significantly related to sputum eosinophil proportions while their ability to predict the presence of eosinophilic asthma is modest.


Assuntos
Asma/complicações , Moléculas de Adesão Celular/metabolismo , Eosinófilos/patologia , Glucocorticoides/uso terapêutico , Eosinofilia Pulmonar/metabolismo , Escarro/química , Adulto , Idoso , Idoso de 80 Anos ou mais , Asma/tratamento farmacológico , Asma/metabolismo , Biomarcadores/metabolismo , Estudos Transversais , Feminino , Humanos , Imunoensaio , Contagem de Leucócitos , Masculino , Pessoa de Meia-Idade , Fenótipo , Prognóstico , Eosinofilia Pulmonar/diagnóstico , Eosinofilia Pulmonar/etiologia , Curva ROC , Escarro/citologia , Adulto Jovem
17.
Sci Transl Med ; 7(301): 301ra129, 2015 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-26290411

RESUMO

Increasing evidence suggests that asthma is a heterogeneous disorder regulated by distinct molecular mechanisms. In a cross-sectional study of asthmatics of varying severity (n = 51), endobronchial tissue gene expression analysis revealed three major patient clusters: TH2-high, TH17-high, and TH2/17-low. TH2-high and TH17-high patterns were mutually exclusive in individual patient samples, and their gene signatures were inversely correlated and differentially regulated by interleukin-13 (IL-13) and IL-17A. To understand this dichotomous pattern of T helper 2 (TH2) and TH17 signatures, we investigated the potential of type 2 cytokine suppression in promoting TH17 responses in a preclinical model of allergen-induced asthma. Neutralization of IL-4 and/or IL-13 resulted in increased TH17 cells and neutrophilic inflammation in the lung. However, neutralization of IL-13 and IL-17 protected mice from eosinophilia, mucus hyperplasia, and airway hyperreactivity and abolished the neutrophilic inflammation, suggesting that combination therapies targeting both pathways may maximize therapeutic efficacy across a patient population comprising both TH2 and TH17 endotypes.


Assuntos
Asma/imunologia , Asma/metabolismo , Células Th17/metabolismo , Células Th2/metabolismo , Animais , Células Cultivadas , Feminino , Humanos , Interleucina-13/metabolismo , Interleucina-17/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Transdução de Sinais
19.
Thorax ; 70(1): 48-56, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25217476

RESUMO

BACKGROUND: There is microscopic spatial and temporal heterogeneity of pathological changes in idiopathic pulmonary fibrosis (IPF) lung tissue, which may relate to heterogeneity in pathophysiological mediators of disease and clinical progression. We assessed relationships between gene expression patterns, pathological features, and systemic biomarkers to identify biomarkers that reflect the aggregate disease burden in patients with IPF. METHODS: Gene expression microarrays (N=40 IPF; 8 controls) and immunohistochemical analyses (N=22 IPF; 8 controls) of lung biopsies. Clinical characterisation and blood biomarker levels of MMP3 and CXCL13 in a separate cohort of patients with IPF (N=80). RESULTS: 2940 genes were significantly differentially expressed between IPF and control samples (|fold change| >1.5, p<0.05). Two clusters of co-regulated genes related to bronchiolar epithelium or lymphoid aggregates exhibited substantial heterogeneity within the IPF population. Gene expression in bronchiolar and lymphoid clusters corresponded to the extent of bronchiolisation and lymphoid aggregates determined by immunohistochemistry in adjacent tissue sections. Elevated serum levels of MMP3, encoded in the bronchiolar cluster, and CXCL13, encoded in the lymphoid cluster, corresponded to disease severity and shortened survival time (p<10(-7) for MMP3 and p<10(-5) for CXCL13; Cox proportional hazards model). CONCLUSIONS: Microscopic pathological heterogeneity in IPF lung tissue corresponds to specific gene expression patterns related to bronchiolisation and lymphoid aggregates. MMP3 and CXCL13 are systemic biomarkers that reflect the aggregate burden of these pathological features across total lung tissue. These biomarkers may have clinical utility as prognostic and/or surrogate biomarkers of disease activity in interventional studies in IPF.


Assuntos
Quimiocina CXCL13/genética , Regulação da Expressão Gênica , Fibrose Pulmonar Idiopática/genética , Pulmão/patologia , Metaloproteinase 3 da Matriz/genética , Idoso , Idoso de 80 Anos ou mais , Linfócitos B , Quimiocina CXCL13/biossíntese , Progressão da Doença , Feminino , Perfilação da Expressão Gênica , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Imuno-Histoquímica , Pulmão/metabolismo , Masculino , Metaloproteinase 3 da Matriz/biossíntese , Pessoa de Meia-Idade , Prognóstico , Índice de Gravidade de Doença
20.
J Allergy Clin Immunol ; 130(3): 647-654.e10, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22857879

RESUMO

BACKGROUND: Eosinophilic airway inflammation is heterogeneous in asthmatic patients. We recently described a distinct subtype of asthma defined by the expression of genes inducible by T(H)2 cytokines in bronchial epithelium. This gene signature, which includes periostin, is present in approximately half of asthmatic patients and correlates with eosinophilic airway inflammation. However, identification of this subtype depends on invasive airway sampling, and hence noninvasive biomarkers of this phenotype are desirable. OBJECTIVE: We sought to identify systemic biomarkers of eosinophilic airway inflammation in asthmatic patients. METHODS: We measured fraction of exhaled nitric oxide (Feno), peripheral blood eosinophil, periostin, YKL-40, and IgE levels and compared these biomarkers with airway eosinophilia in asthmatic patients. RESULTS: We collected sputum, performed bronchoscopy, and matched peripheral blood samples from 67 asthmatic patients who remained symptomatic despite maximal inhaled corticosteroid treatment (mean FEV(1), 60% of predicted value; mean Asthma Control Questionnaire [ACQ] score, 2.7). Serum periostin levels are significantly increased in asthmatic patients with evidence of eosinophilic airway inflammation relative to those with minimal eosinophilic airway inflammation. A logistic regression model, including sex, age, body mass index, IgE levels, blood eosinophil numbers, Feno levels, and serum periostin levels, in 59 patients with severe asthma showed that, of these indices, the serum periostin level was the single best predictor of airway eosinophilia (P = .007). CONCLUSION: Periostin is a systemic biomarker of airway eosinophilia in asthmatic patients and has potential utility in patient selection for emerging asthma therapeutics targeting T(H)2 inflammation.


Assuntos
Asma/sangue , Moléculas de Adesão Celular/sangue , Eosinofilia/diagnóstico , Inflamação/diagnóstico , Adipocinas/sangue , Adulto , Asma/tratamento farmacológico , Biomarcadores , Testes Respiratórios , Proteína 1 Semelhante à Quitinase-3 , Eosinofilia/sangue , Eosinófilos/fisiologia , Feminino , Humanos , Imunoglobulina E/sangue , Inflamação/sangue , Interleucina-13/análise , Interleucina-13/fisiologia , Lectinas/sangue , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Óxido Nítrico/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA