Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Oncogenesis ; 11(1): 3, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35039478

RESUMO

Epididymal protein 3A (EDDM3A) is a protein involved in sperm maturation. It has been demonstrated that EDDM3A expression is upregulated and promotes cell proliferation in non-small cell lung cancer (NSCLC). However, the role of EDDM3A in other types of human cancers, including gastric cancer (GC), is still unexplored. Here, we show that the expression of EDDM3A is significantly upregulated in gastric cancer (GC) tissues and its upregulation correlates with poorer survival in patients with gastric cancer. Knockdown of EDDM3A inhibited growth and metastasis of GC cells, whereas overexpression of EDDM3A exhibited the opposite effect. Mechanistically, enhanced aerobic glycolysis mediated by upregulation of HIF-1α and subsequently increased target glycolytic genes and decreased mitochondrial biogenesis was found to contribute to the promotion of tumor growth and metastasis by EDDM3A in GC cells. Additionally, upregulation of EDDM3A in GC is at least partially mediated by downregulation of miR-618. In conclusion, elevated EDDM3A plays a pivotal oncogenic role in gastric carcinogenesis, suggesting it as a potential therapeutic target for treatment of GC.

3.
Hum Exp Toxicol ; 40(12_suppl): S187-S195, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34372727

RESUMO

Background: Several recent studies have suggested that the long non-coding RNA (lncRNA) DSCAM-AS1 (Down syndrome cell adhesion molecule - anti-sense 1) is aberrantly expressed in many malignancies. Purpose: In this study, we aimed to explore the the role of DSCAM-AS1 in gastric carcinoma. Research Design: Expression of DSCAM-AS1 mRNA, miR-204, and TPT1 (Tumor Protein, Translationally-Controlled 1) were detected using quantitative real-time polymerase chain reaction (qRT-PCR). Proliferation and apoptosis of GC cells were determined using the CCK-8 cell counting assay and flow cytometry. The rate of cell migration and invasion was determined using a transwell assay. The relationships between DSCAM-AS1, miR-204, and TPT1 were predicted and confirmed using a dual-luciferase reporter assay. Expression of TPT1 protein was quantified by Western blot. Results: In this study, we found that DSCAM-AS1 was significantly overexpressed in GC tissues and cell lines. Functional experiments indicated that GC cells with DSCAM-AS1 silencing exhibited a dynamic reduction in proliferation and migration. We identified miR-204 as a target of DSCAM-AS1 and found that it targeted TPT1 in GC cells, which further led to decreased expression of miR-204 in GC tissues and cell lines. A rescue assay revealed that knocked-down DSCAM-AS1 hindered GC progression, which was reversed upon miR-204 downregulation or TPT1 overexpression. Conclusion: We conclude that DSCAM-AS1 is expressed as a tumor oncogene in GC progression, modulated via the miR-204/TPT1 axis. These findings indicate the potential of DSCAM-AS1 as a therapeutic target for GC prevention.


Assuntos
Moléculas de Adesão Celular/genética , Adesão Celular/genética , Movimento Celular/genética , Proliferação de Células/genética , Síndrome de Down/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , Neoplasias Gástricas/patologia , Proteína Tumoral 1 Controlada por Tradução/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Síndrome de Down/patologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus
4.
Cancer Cell Int ; 20(1): 553, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33298041

RESUMO

BACKGROUND: Recent studies suggest that long noncoding RNAs (lncRNAs) play an important role in tumorigenesis. As a newly identified lncRNA, the role of XIST in colorectal cancer (CRC) has not been established. Here, we sought to characterize the role of XIST and its associated regulatory network in CRC cells. METHODS: Expression of XIST mRNA, miR-497-5p, and forkhead box k1 (FOXK1) in CRC cells and tissues were detected using quantitative real-time polymerase chain reaction (qRT-PCR). Proliferation and apoptosis of CRC cells were determined using the CCK-8 cell counting assay and flow cytometry. The rate of cell migration and invasion was determined using a transwell assay. The relationships between XIST, miR-497-5p, and FOXK1 were predicted and confirmed using a dual-luciferase reporter assay. Expression of FOXK1 protein was quantified by Western blot. RESULTS: XIST and FOXK1 expression were significantly upregulated in CRC tissues and cell lines, while miR-497-5p expression was downregulated. XIST knockdown significantly suppressed CRC cell proliferation, migration, and invasion. Silencing of XIST also reversed the downregulation of miR-497-5p and upregulation of FOXK1. Moreover, blocking XIST expression was shown to inhibit CRC tumor growth in vivo and the effects were antagonized by the loss of miR-497-5p. miR-497-5p was shown to act as a sponge of XIST and also targeted FOXK1 in CRC cells. CONCLUSIONS: XIST was shown to promote the malignancy of CRC cells by competitively binding to miR-497-5p, resulting in an increase in FOXK1 expression. These results suggest that targeting of XIST may represent a possible treatment for CRC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA