Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Transl Cancer Res ; 13(6): 2647-2661, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38988926

RESUMO

Background: Lung cancer is one of the most common cancers in humans, and lung adenocarcinoma (LUAD) has become the most common histological type of lung cancer. Immune escape promotes progression of LUAD from the early to metastatic late stages and is one of the main obstacles to improving clinical outcomes for immunotherapy targeting immune detection points. Our study aims to explore the immune escape related genes that are abnormally expressed in lung adenocarcinoma, providing assistance in predicting the prognosis of lung adenocarcinoma and targeted. Methods: RNA data and related clinical details of patients with LUAD were obtained from The Cancer Genome Atlas (TCGA) database. Through weighted gene coexpression network analysis (WGCNA), 3112 key genes were screened and intersected with 182 immune escape genes obtained from a previous study to identify the immune escape-related genes (IERGs). The role of IERGs in LUAD was systematically explored through gene ontology (GO) and Kyoto Encyclopedia of Genes and Genome (KEGG) analyses, which were used to enrich the relevant pathways of IERGs. The least absolute shrinkage and selection operator (LASSO) algorithm and multivariate Cox regression analysis were used to identify the key prognostic genes, and a prognostic risk model was constructed. Estimation of Stromal and Immune Cells in Malignant Tumor Tissues Using Expression Data (ESTIMATE) and microenvironment cell populations (MCP) counter methods (which can accurately assess the amount of eight immune cell populations and two stromal cell groups) were used to analyze the tumor immune status of the high and low risk subgroups. The protein expression level of the differentially expressed genes in lung cancer samples was determined by using the Human Protein Atlas (HPA) database. A nomogram was constructed, and the prognostic risk model was verified via the Gene Expression Omnibus (GEO) datasets GSE72094 and GSE30219. Results: Twenty differentially expressed IERGs were obtained. GO analysis of these 20 IERGs revealed that they were mainly associated with the regulation of immune system processes, immune responses, and interferon-γ enrichment in mediating signaling pathways and apoptotic signaling pathways; meanwhile, KEGG analysis revealed that IERGs were associated with necroptosis, antigen processing and presentation, programmed cell death ligand 1 (PD-L1) expression and programmed cell death 1 (PD-1) pathway in tumors, cytokine-cytokine receptor interactions, T helper cell 1 (Th1) and Th2 differentiation, and tumor necrosis factor signaling pathways. Using LASSO and Cox regression analysis, we constructed a four-gene model that could predict the prognosis of patients with LUAD, and the model was validated with a validation cohort. The immunohistochemical results of the HPA database showed that AHSA1 and CEP55 had low expression in normal lung tissue but high expression in lung cancer tissue. Conclusions: We constructed an IERG-based model for predicting the prognosis of LUAD. Among the genes identified, CEP55 and AHSA1 may be potential prognostic and therapeutic targets, and reducing their expression may represent a novel approach in the treatment of LUAD.

2.
Exploration (Beijing) ; 4(2): 20230105, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38855612

RESUMO

The tumour-targeting efficiency of systemically delivered chemodrugs largely dictates the therapeutic outcome of anticancer treatment. Major challenges lie in the complexity of diverse biological barriers that drug delivery systems must hierarchically overcome to reach their cellular/subcellular targets. Herein, an "all-in-one" red blood cell (RBC)-derived microrobot that can hierarchically adapt to five critical stages during systemic drug delivery, that is, circulation, accumulation, release, extravasation, and penetration, is developed. The microrobots behave like natural RBCs in blood circulation, due to their almost identical surface properties, but can be magnetically manipulated to accumulate at regions of interest such as tumours. Next, the microrobots are "immolated" under laser irradiation to release their therapeutic cargoes and, by generating heat, to enhance drug extravasation through vascular barriers. As a coloaded agent, pirfenidone (PFD) can inhibit the formation of extracellular matrix and increase the penetration depth of chemodrugs in the solid tumour. It is demonstrated that this system effectively suppresses both primary and metastatic tumours in mouse models without evident side effects, and may represent a new class of intelligent biomimicking robots for biomedical applications.

3.
Adv Sci (Weinh) ; 11(17): e2308924, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38425146

RESUMO

Selective protein degradation platforms have opened novel avenues in therapeutic development and biological inquiry. Antibody-based lysosome-targeting chimeras (LYTACs) have emerged as a promising technology that extends the scope of targeted protein degradation to extracellular targets. Aptamers offer an advantageous alternative owing to their potential for modification and manipulation toward a multivalent state. In this study, a chemically engineered platform of multivalent aptamer-based LYTACs (AptLYTACs) is established for the targeted degradation of either single or dual protein targets. Leveraging the biotin-streptavidin system as a molecular scaffold, this investigation reveals that trivalently mono-targeted AptLYTACs demonstrate optimum efficiency in degrading membrane proteins. The development of this multivalent AptLYTACs platform provides a principle of concept for mono-/dual-targets degradation, expanding the possibilities of targeted protein degradation.


Assuntos
Aptâmeros de Nucleotídeos , Lisossomos , Proteólise , Lisossomos/metabolismo , Aptâmeros de Nucleotídeos/metabolismo , Humanos
4.
Small ; 20(26): e2308861, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38372029

RESUMO

The anabolism of tumor cells can not only support their proliferation, but also endow them with a steady influx of exogenous nutrients. Therefore, consuming metabolic substrates or limiting access to energy supply can be an effective strategy to impede tumor growth. Herein, a novel treatment paradigm of starving-like therapy-triple energy-depleting therapy-is illustrated by glucose oxidase (GOx)/dc-IR825/sorafenib liposomes (termed GISLs), and such a triple energy-depleting therapy exhibits a more effective tumor-killing effect than conventional starvation therapy that only cuts off one of the energy supplies. Specifically, GOx can continuously consume glucose and generate toxic H2O2 in the tumor microenvironment (including tumor cells). After endocytosis, dc-IR825 (a near-infrared cyanine dye) can precisely target mitochondria and exert photodynamic and photothermal activities upon laser irradiation to destroy mitochondria. The anti-angiogenesis effect of sorafenib can further block energy and nutrition supply from blood. This work exemplifies a facile and safe method to exhaust the energy in a tumor from three aspects and starve the tumor to death and also highlights the importance of energy depletion in tumor treatment. It is hoped that this work will inspire the development of more advanced platforms that can combine multiple energy depletion therapies to realize more effective tumor treatment.


Assuntos
Glucose Oxidase , Lipossomos , Sorafenibe , Lipossomos/química , Humanos , Glucose Oxidase/metabolismo , Glucose Oxidase/química , Animais , Sorafenibe/farmacologia , Linhagem Celular Tumoral , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Metabolismo Energético , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/química , Indóis
5.
J Control Release ; 367: 892-904, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38278369

RESUMO

The existence of a delicate redox balance in tumors usually leads to cancer treatment failure. Breaking redox homeostasis by amplifying oxidative stress and reducing glutathione (GSH) can accelerate cancer cell death. Herein, we construct a ferroptosis-reinforced nanocatalyst (denoted as HBGL) to amplify intracellular oxidative stress via dual H2O2 production-assisted chemodynamic therapy (CDT). Specifically, a long-circulating liposome is employed to deliver hemin (a natural iron-containing substrate for Fenton reaction and ferroptosis), ß-lapachone (a DNA topoisomerase inhibitor with H2O2 generation capacity for chemotherapy), and glucose oxidase (which can consume glucose for starvation therapy and generate H2O2). HBGL can achieve rapid, continuous, and massive H2O2 and •OH production and GSH depletion in cancer cells, resulting in increased intracellular oxidative stress. Additionally, hemin can reinforce the ferroptosis-inducing ability of HBGL, which is reflected in the downregulation of glutathione peroxidase-4 and the accumulation of lipid peroxide. Notably, HBGL can disrupt endo/lysosomes and impair mitochondrial function in cancer cells. HBGL exhibits effective tumor-killing ability without eliciting obvious side effects, indicating its clinical translation potential for synergistic starvation therapy, chemotherapy, ferroptosis therapy, and CDT. Overall, this nanocatalytic liposome may be a promising candidate for achieving potentiated cancer treatment.


Assuntos
Ferroptose , Neoplasias , Humanos , Peróxido de Hidrogênio , Hemina , Lipossomos , Estresse Oxidativo , Glutationa , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral , Microambiente Tumoral
6.
Front Plant Sci ; 14: 1117156, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36794230

RESUMO

As a canonical non-climacteric fruit, strawberry (Fragaria spp.) ripening is mainly mediated by abscisic acid (ABA), which involves multiple other phytohormone signalings. Many details of these complex associations are not well understood. We present an coexpression network, involving ABA and other phytohormone signalings, based on weighted gene coexpression network analysis of spatiotemporally resolved transcriptome data and phenotypic changes of strawberry receptacles during development and following various treatments. This coexpression network consists of 18,998 transcripts and includes transcripts related to phytohormone signaling pathways, MADS and NAC family transcription factors and biosynthetic pathways associated with fruit quality. Members of eight phytohormone signaling pathways are predicted to participate in ripening and fruit quality attributes mediated by ABA, of which 43 transcripts were screened to consist of the hub phytohormone signalings. In addition to using several genes reported from previous studies to verify the reliability and accuracy of this network, we explored the role of two hub signalings, small auxin up-regulated RNA 1 and 2 in receptacle ripening mediated by ABA, which are also predicted to contribute to fruit quality. These results and publicly accessible datasets provide a valuable resource to elucidate ripening and quality formation mediated by ABA and involves multiple other phytohormone signalings in strawberry receptacle and serve as a model for other non-climacteric fruits.

7.
Small ; 19(31): e2205890, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36634974

RESUMO

Nucleolus, which participates in many crucial cellular activities, is an ideal target for evaluating the state of a cell or an organism. Here, bright red-emissive carbon dots (termed CPCDs) with excitation-independent/polarity-dependent fluorescence emission are synthesized by a one-step hydrothermal reaction between congo red and p-phenylenediamine. The CPCDs can achieve wash-free, real-time, long-term, and high-quality nucleolus imaging in live cells, as well as in vivo imaging of two common model animals-zebrafish and Caenorhabditis elegans (C. elegans). Strikingly, CPCDs realize the nucleolus imaging of organs/flowing blood cells in zebrafish at a cellular level for the first time, and the superb nucleolus imaging of C. elegans suggests that the germ cells in the spermatheca probably have no intact nuclei. These previously unachieved imaging results of the cells/tissues/organs may guide the zebrafish-related studies and benefit the research of C. elegans development. More importantly, a novel strategy based on CPCDs for in vivo toxicity evaluation of materials/drugs (e.g., Ag+ ), which can visualize the otherwise unseen injuries in zebrafish, is developed. In conclusion, the CPCDs represent a robust tool for visualizing the structures and dynamic behaviors of live zebrafish and C. elegans, and may find important applications in cell biology and toxicology.


Assuntos
Pontos Quânticos , Peixe-Zebra , Animais , Carbono/química , Caenorhabditis elegans , Pontos Quânticos/química , Diagnóstico por Imagem , Corantes Fluorescentes/química
8.
Small ; 18(46): e2203260, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36333101

RESUMO

Developing a universal nanoplatform for efficient delivery of various drugs to target sites is urgent for overcoming various biological barriers and realizing combinational cancer treatment. Nanogels, with the advantages of both hydrogels and nanoparticles, may hold potential for addressing the above issue. Here, a dual-responsive nanogel platform (HPC nanogel) is constructed using ß-cyclodextrin-conjugated hyaluronic acid (HA-ßCD), polyethyleneimine (PEI), and cisplatin. HA-ßCD and PEI compose the skeleton of the nanogel, and cisplatin molecules provide the junctions inside the skeleton, thus affording a multiple interactions-based nanogel. Besides, HA endows the nanogel with hyaluronidase (HAase)-responsiveness, and cisplatin guarantees the glutathione (GSH)-responsive ability, which make the nanogel a dual-responsive platform that can degrade and release the loaded drugs when encountering HAase or GSH. Additionally, the HPC nanogel possesses excellent small-molecule drug and protein loading and intracellular delivery capabilities. Especially, for proteins, their intracellular delivery via nanogels is not hindered by serum proteins, and the enzymes delivered into cells still maintain their catalytic activities. Furthermore, the nanogel can codeliver different cargoes to achieve "cocktail" chemotherapeutic efficacy and realize combination cancer therapy. Overall, the HPC nanogel can serve as a multifunctional platform capable of delivering desired drugs to treat cancer or other diseases.


Assuntos
Neoplasias , Platina , Nanogéis , Cisplatino/uso terapêutico , Polietilenoimina , Polietilenoglicóis , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico
9.
Nat Commun ; 13(1): 6534, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36319625

RESUMO

Cancer vaccine, which can promote tumor-specific immunostimulation, is one of the most important immunotherapeutic strategies and holds tremendous potential for cancer treatment/prevention. Here, we prepare a series of nanoparticles composed of doxorubicin- and tyrosine kinase inhibitor-loaded and hyaluronic acid-coated dendritic polymers (termed HDDT nanoparticles) and find that the HDDT nanoparticles can convert various cancer cells to micrometer-sized vesicles (1.6-3.2 µm; termed HMVs) with ~100% cell-to-HMV conversion efficiency. We confirm in two tumor-bearing mouse models that the nanoparticles can restrain tumor growth, induce robust immunogenic cell death, and convert the primary tumor into an antigen depot by producing HMVs in situ to serve as personalized vaccines for cancer immunotherapy. Furthermore, the HDDT-healed mice show a strong immune memory effect and the HDDT treatment can realize long-term protection against tumor rechallenge. Collectively, the present work provides a general strategy for the preparation of tumor-associated antigen-containing vesicles and the development of personalized cancer vaccines.


Assuntos
Vacinas Anticâncer , Nanopartículas , Neoplasias , Camundongos , Animais , Células Dendríticas , Imunoterapia , Antígenos de Neoplasias , Neoplasias/tratamento farmacológico , Imunidade
10.
J Control Release ; 351: 692-702, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36150580

RESUMO

Photodynamic therapy (PDT) is a robust cancer treatment modality, and the precise spatiotemporal control of its subcellular action site is crucial for its effectiveness. However, accurate comparison of the efficacy of different organelle-targeted PDT approaches is challenging since it is difficult to find a single system that can achieve separate targeting of different organelles with separable time windows and similar binding amounts. Herein, we conjugated chlorin e6 (Ce6) with 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)-5000] (ammonium salt) (DSPE-PEG5000-NH2) to afford DSPE-PEG-Ce6, which could migrate from mitochondrion to lysosome and ultimately to endoplasmic reticulum (ER) after cellular internalization. Benefiting from the dynamic subcellular distribution of DSPE-PEG-Ce6 with tunable organelle-binding amounts, we accurately determined the PDT efficacy order of the molecule, i.e., mitochondrion > ER > lysosome. This work proposes an ideal model system for accurately evaluating the specific organelle-targeted PDT efficacy and may promote the future development of effective PDT strategies.


Assuntos
Fotoquimioterapia , Porfirinas , Fototerapia , Retículo Endoplasmático/metabolismo , Lisossomos/metabolismo , Mitocôndrias , Fármacos Fotossensibilizantes/química , Linhagem Celular Tumoral
11.
Biosens Bioelectron ; 213: 114403, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-35696870

RESUMO

Visualizing the plasma membrane of living mammalian cells both in vitro and in vivo is crucial for tracking their cellular activities. However, due to the complex and dynamic nature of the plasma membrane, most commercial dyes for membrane staining can only realize very limited imaging performance. Thus, precise and stable plasma membrane imaging remains technically challenging. Here, by taking advantage of the small, well-defined, and amine-rich dendrimers, we prepared poly(ethylene glycol)-cholesterol (PEG-Chol)-conjugated and cyanine dye (e.g., cyanine2, cyanine3, and cyanine5)-labeled dendrimer nanoprobes (termed DPC-Cy2, DPC-Cy3, and DPC-Cy5 NPs). It was revealed that these probes enabled universal, wash-free, long-term (at least 8 h), and multicolor (green, yellow, and red) plasma membrane labeling of a variety of live mammalian cells. Further, we confirmed that the nanoprobes (using DPC-Cy5 as a representative) could achieve high-quality, wash-free, and stable cell surface labeling of live zebrafish embryos. More importantly, we demonstrated that our probes could act as biosensors to visualize the toxicity of metal-organic frameworks (MOFs) toward the epidermal cells of zebrafish embryos, and thus they hold great potential for identifying the toxic effect of drugs/materials at the single-cell scale or in live animals. The present work highlights the advantages of utilizing dendrimers for constructing functional imaging materials, and it is also believed that the fluorescent dendrimer nanoprobes developed in this work may find wide applications like cell imaging, drug toxicity evaluation, and cellular state monitoring.


Assuntos
Técnicas Biossensoriais , Dendrímeros , Animais , Membrana Celular/metabolismo , Dendrímeros/toxicidade , Corantes Fluorescentes/metabolismo , Corantes Fluorescentes/toxicidade , Mamíferos/metabolismo , Peixe-Zebra/metabolismo
12.
Exploration (Beijing) ; 2(5): 20220010, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37325504

RESUMO

Chemically manipulating bacterial surface structures, a cutting-edge research direction in the biomedical field, predominantly relies on metabolic labeling by now. However, this method may involve daunting precursor synthesis and only labels nascent surface structures. Here, we report a facile and rapid modification strategy based on a tyrosinase-catalyzed oxidative coupling reaction (TyOCR) for bacterial surface engineering. This strategy employs phenol-tagged small molecules and tyrosinase to initiate direct chemical modification of Gram-positive bacterial cell walls with high labeling efficiency, while Gram-negative bacteria are inert to this modification due to the hindrance of an outer membrane. By using the biotin‒avidin system, we further present the selective deposition of various materials, including photosensitizer, magnetic nanoparticle, and horseradish peroxidase, on Gram-positive bacterial surfaces, and realize the purification/isolation/enrichment and naked-eye detection of bacterial strains. This work demonstrates that TyOCR is a promising strategy for engineering live bacterial cells.

13.
Small ; 17(34): e2100753, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34259382

RESUMO

Tumor vasculature has long been considered as an extremely valuable therapeutic target for cancer therapy, but how to realize controlled and site-specific drug release in tumor blood vessels remains a huge challenge. Despite the widespread use of nanomaterials in constructing drug delivery systems, they are suboptimal in principle for meeting this demand due to their easy blood cell adsorption/internalization and short lifetime in the systemic circulation. Here, natural red blood cells (RBCs) are repurposed as a remote-controllable drug vehicle, which retains RBC's morphology and vessel-specific biodistribution pattern, by installing photoactivatable molecular triggers on the RBC membrane via covalent conjugation with a finely tuned modification density. The molecular triggers can burst the RBC vehicle under short and mild laser irradiation, leading to a complete and site-specific release of its payloads. This cell-based vehicle is generalized by loading different therapeutic agents including macromolecular thrombin, a blood clotting-inducing enzyme, and a small-molecule hypoxia-activatable chemodrug, tirapazamine. In vivo results demonstrate that the repurposed "anticancer RBCs" exhibit long-term stability in systemic circulation but, when tumors receive laser irradiation, precisely releases their cargoes in tumor vessels for thrombosis-induced starvation therapy and local deoxygenation-enhanced chemotherapy. This study proposes a general strategy for blood vessel-specific drug delivery.


Assuntos
Liberação Controlada de Fármacos , Reposicionamento de Medicamentos , Vasos Sanguíneos , Eritrócitos , Distribuição Tecidual
14.
Chem Soc Rev ; 50(10): 6240-6277, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34027939

RESUMO

Systematically dissecting the molecular basis of the cell surface as well as its related biological activities is considered as one of the most cutting-edge fields in fundamental sciences. The advent of various advanced cell imaging techniques allows us to gain a glimpse of how the cell surface is structured and coordinated with other cellular components to respond to intracellular signals and environmental stimuli. Nowadays, cell surface-related studies have entered a new era featured by a redirected aim of not just understanding but artificially manipulating/remodeling the cell surface properties. To meet this goal, biologists and chemists are intensely engaged in developing more maneuverable cell surface labeling strategies by exploiting the cell's intrinsic biosynthetic machinery or direct chemical/physical binding methods for imaging, sensing, and biomedical applications. In this review, we summarize the recent advances that focus on the visualization of various cell surface structures/dynamics and accurate monitoring of the microenvironment of the cell surface. Future challenges and opportunities in these fields are discussed, and the importance of cell surface-based studies is highlighted.


Assuntos
Microscopia de Fluorescência , Coloração e Rotulagem/métodos , Animais , Membrana Celular/química , Membrana Celular/metabolismo , Corantes Fluorescentes/química , Humanos , Microdomínios da Membrana/química , Microdomínios da Membrana/metabolismo , Engenharia Metabólica , Polissacarídeos/química , Polissacarídeos/genética , Polissacarídeos/metabolismo , Propriedades de Superfície
15.
J Mater Chem B ; 9(21): 4303-4308, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-33908594

RESUMO

Plasma membrane (PM), a fundamental building component of a cell, is responsible for a variety of cell functions and biological processes. However, it is still challenging to acquire its morphology and morphological variation information via an effective approach. Herein, we report a PM imaging study regarding an aggregation-induced emission luminogen (AIEgen) called tetraphenylethylene-naphthalimide+ (TPE-NIM+), which is derived from our previously reported tetraphenylethylene-naphthalimide (TPE-NIM). The designed AIEgen (TPE-NIM+) shows significant characteristics of ultrafast staining, high photostability, wash-free property, and long retention time at the PM, which can structurally be correlated with its positively charged quaternary amine and hydrophobic moiety. TPE-NIM+ is further applied for staining of different cell lines, proving its universal PM imaging capability. Most importantly, we demonstrate that TPE-NIM+ can clearly delineate the contours of densely packed living cells with high cytocompatibility. Therefore, TPE-NIM+ as a PM imaging reagent superior to currently available commercial PM dyes shall find a number of applications in the biological/biomedical fields and even beyond.


Assuntos
Membrana Celular/química , Sondas Moleculares/química , Coloração e Rotulagem , Linhagem Celular , Humanos , Interações Hidrofóbicas e Hidrofílicas , Análise Espectral/métodos , Estilbenos/química
16.
Artigo em Inglês | MEDLINE | ID: mdl-33860622

RESUMO

Chemotherapy typically involves the use of specific chemodrugs to inhibit the proliferation of cancer cells, but the frequent emergence of a variety of multidrug-resistant cancer cells poses a tremendous threat to our combat against cancer. The fundamental causes of multidrug resistance (MDR) have been studied for decades, and can be generally classified into two types: one is associated with the activation of diverse drug efflux pumps, which are responsible for translocating intracellular drug molecules out of the cells; the other is linked with some non-efflux pump-related mechanisms, such as antiapoptotic defense, enhanced DNA repair ability, and powerful antioxidant systems. To overcome MDR, intense efforts have been made to develop synergistic therapeutic strategies by introducing MDR inhibitors or combining chemotherapy with other therapeutic modalities, such as phototherapy, gene therapy, and gas therapy, in the hope that the drug-resistant cells can be sensitized toward chemotherapeutics. In particular, nanotechnology-based drug delivery platforms have shown the potential to integrate multiple therapeutic agents into one system. In this review, the focus was on the recent development of nanostrategies aiming to enhance the efficiency of chemotherapy and overcome the MDR of cancer in a synergistic manner. Different combinatorial strategies are introduced in detail and the advantages as well as underlying mechanisms of why these strategies can counteract MDR are discussed. This review is expected to shed new light on the design of advanced nanomedicines from the angle of materials and to deepen our understanding of MDR for the development of more effective anticancer strategies. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.


Assuntos
Antineoplásicos , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Nanomedicina , Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Neoplasias/tratamento farmacológico
17.
J Fluoresc ; 31(2): 437-446, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33410088

RESUMO

A highly selective turn-on fluorescent and naked-eye colourimetric dual-channel probe for cyanide anions (CN-) has been designed and characterized. In the mixed solution (DMSO / H2O, 9:1, v / v), only CN- could cause an increase in the UV absorption intensity and the corresponding fluorescence intensity increased, and other anions had no significant effect on the probe. After treatment with cyanide in the probe solution, the solution showed a noticeable colour change, from light yellow to purple. Moreover, a fluorescence spectrophotometer can be used to observe that the fluorescence intensity of the solution is significantly enhanced. The response of the colourimetric and fluorescent dual-channel probe to CN- was attributed to nucleophilic addition, and the mechanism was determined by 1H NMR spectroscopy. In addition, this probe was used to detect CN- in actual water samples, including river water, drinking water, and tap water. The spiked CN- recovery rate is very high (97.2%-100.06%), and analytical precision is also very high (RSD < 2%), which shows its feasibility and reliability for detecting cyanide ions in actual water samples.


Assuntos
Colorimetria , Cianetos/análise , Corantes Fluorescentes/química , Poluentes Químicos da Água/análise , Ânions/análise , Corantes Fluorescentes/síntese química , Estrutura Molecular , Espectrometria de Fluorescência
18.
Anal Chim Acta ; 1146: 41-52, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33461718

RESUMO

Pathogenic infections, particularly caused by Gram-positive bacteria (G+), pose a serious threat to human health, and therefore the fast and accurate discrimination of G+ bacteria from Gram-negative bacteria (G-) and fungi is highly desirable. Organic molecules with facile synthesis, robust photostability, good biocompatibility, and high selectivity toward pathogens are urgently needed in the clinical diagnosis and therapy. To this end, herein we report the synthesis of two naphthalimide-based bioprobes named tetraphenylethylene-naphthalimide (TPE-NIM) and triphenylamine-naphthalimide (TPA-NIM) with aggregation-induced emission (AIE) characteristic. First, the staining capacity of the designed AIEgens toward six kinds of bacteria and two kinds of fungi was evaluated. Both TPE-NIM and TPA-NIM showed a high degree of binding/imaging selectivity for G+ bacteria over G- bacteria and fungi via a wash-free protocol. Second, the two AIEgens had the ability to visualize the biofilms formed by G+ bacteria (Staphylococcus aureus) and can quickly track the G+ bacteria (Staphylococcus aureus) in red blood cell suspensions. Third, we have revealed that electrostatic attraction and hydrophobic interaction both contribute to the selective binding of the AIEgens toward G+ bacteria. In view of the high binding/imaging specificity toward G+ bacteria, low hemolysis rates, and low toxicity toward the bacterial cells, these AIEgens can be applied for the clinical detection of pathogenic infections caused by G+ bacteria and broaden the theranostic applications of AIE materials.


Assuntos
Bactérias Gram-Positivas , Naftalimidas , Fluorescência , Bactérias Gram-Negativas , Humanos , Staphylococcus aureus
19.
Langmuir ; 36(39): 11637-11644, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32902987

RESUMO

Many noble metal-based nanoparticles have emerged for applications in cancer radiotherapy in recent years, but few investigations have been carried out for palladium nanoparticles. Herein, palladium nanosheets (Pd NSs), which possess a sheetlike morphology with a diameter of ∼14 nm and a thickness of ∼2 nm, were utilized as a sensitizer to improve the performance of radiotherapy. It was found that Pd NSs alone did not decrease the cell viability after treatment for as long as 130 h, suggesting the excellent cytocompatibility of the nanoagents. However, the viability of cancer cells treated with X-ray irradiation became lower, and the viability became even lower if the cells were co-treated with X-ray and Pd NSs, indicating the radiosensitization effect of Pd NSs. Additionally, compared with X-ray irradiation, the combined treatment of Pd NSs and X-ray irradiation induced the generation of more DNA double-stranded breaks and reactive oxygen species within cancer cells, which eventually caused elevated cell apoptosis. Moreover, in vivo experiments also verified the radiosensitization effect and the favorable biocompatibility of Pd NSs, indicating their potential for acquiring satisfactory in vivo radiotherapeutic effect at lower X-ray doses. It is believed that the present research will open new avenues for the application of noble metal-based nanoparticles in radiosensitization.


Assuntos
Nanopartículas Metálicas , Radiossensibilizantes , Apoptose , Sobrevivência Celular , Nanopartículas Metálicas/toxicidade , Paládio , Radiossensibilizantes/toxicidade
20.
ACS Appl Mater Interfaces ; 12(33): 36882-36894, 2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32666795

RESUMO

Clinically approved doxorubicin (Dox)-loaded liposomes (e.g., Doxil) guarantee good biosafety, but their insufficient nuclear delivery of Dox (<0.4%) after cellular uptake significantly hampers their final anticancer efficacy. Here, we report that simply doping protoporphyrin IX (PpIX, a commonly used hydrophobic photosensitizer) into the lipid bilayers of Dox-loaded liposomes (the resultant product is termed PpIX/Dox liposomes) is a feasible way to promote the nuclear delivery of Dox. This facile strategy relies on a unique property of PpIX-it presents considerably higher affinity for the real plasma membrane over its liposomal carrier, which drives the doped PpIX molecules to detach from the liposomes when encountering cancer cells. We demonstrate that this process can trigger the efficient release of the loaded Dox molecules and allow them to enter the nuclei of MCF-7 breast cancer cells without being trapped by lysosomes. Regarding the drug-resistant MCF-7/ADR cells, the aberrant activation of the efflux pumps in the plasma membranes expels the internalized Dox. However, we strikingly find that the robust drug resistance can be reversed upon mild laser irradiation because the photodynamic effect of PpIX disrupts the drug efflux system (e.g., P-glycoprotein) and facilitates the nuclear entry of Dox. As a proof-of-concept, this PpIX doping strategy is also applicable for enhancing the effectiveness of cisplatin-loaded liposomes against both A549 and A549/DDP lung cancer cells. In vivo experimental results prove that a single injection of PpIX/Dox liposomes completely impedes the growth of MCF-7 tumors in nude mice within 2 weeks and, in combination with laser irradiation, can synergistically ablate MCF-7/ADR tumors. Biosafety assessments reveal no significant systemic toxicity caused by PpIX/Dox liposomes. This work exemplifies a facile method to modulate the subcellular fate of liposomal drugs and may inspire the optimization of nanopharmaceuticals in the near future.


Assuntos
Antineoplásicos/química , Doxorrubicina/análogos & derivados , Lipossomos/química , Fármacos Fotossensibilizantes/química , Protoporfirinas/química , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular , Núcleo Celular/metabolismo , Colesterol/química , Terapia Combinada , Doxorrubicina/química , Doxorrubicina/farmacologia , Liberação Controlada de Fármacos , Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Humanos , Hipertermia Induzida , Lipossomos/metabolismo , Camundongos Nus , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacologia , Protoporfirinas/farmacologia , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA