RESUMO
OBJECTIVE: Esketamine (ESK), an intravenous anesthetic, exerts antidepressant effects; however, the antidepression mechanism is not clear. The aim of this study was to explore whether microglial cannabinoid type 2 (CB2) receptor and protein kinase C (PKC) are involved in the antidepressant effects of ESK. METHODS: In this investigation, lipopolysaccharide (LPS) was used to stimulate BV-2 microglia to mimic neuroinflammation. An enzyme-linked immunosorbent assay (ELISA) and Griess reagent kits were used to determine cytokine and nitrite concentrations in the medium. CB2, inducible nitric oxide synthase (iNOS) and nuclear factor (NF)-κB (p65) protein expression were evaluated by immunocytochemistry and western blot analysis. RESULTS: Compared with the control, LPS enhanced proinflammatory factor and nitrite concentration in the medium, upregulated iNOS and NF-κB (p65) expressions, and coadministration of ESK decreased proinflammatory cytokine and nitrite levels, and downregulated iNOS and NF-κB (p65) expression. Moreover, ESK exposure enhanced CB2 receptor expression; coadministration of the CB2 receptor antagonist AM630 or the PKC inhibitor chelerythrine (Che), however, markedly blocked the anti-inflammatory effect of ESK in reducing cytokine and nitrite concentration, and downregulating iNOS and NF-κB (p65) expression. CONCLUSIONS: These observations demonstrated that the microglial CB2-PKC pathway mediates ESK-induced anti-inflammation in LPS-stimulated microglial cells.
RESUMO
Accurate modeling of methane (CH4) and sulfide (H2S) production in sewer systems was constrained by insufficient consideration of microbial processes under dynamic environmental conditions. This study introduces a microbial-guided machine learning (ML) framework (Micro-ML), which integrates microbial process representations from mechanistic models (microbial information) with ML models. Results indicate that Micro-ML model enhanced predictions of CH4 and H2S production, where microbial information provides more information for model optimization. The feature importance of microbial information performed comparable weightings for 58.12 % and 55.16 %, respectively, but their relative significance in influencing Micro-ML model performance varies considerably. The application of Micro-ML performed great potential in reducing CH4 and H2S production (decreased â¼ 80 % and 90 %). The integrated model not only improves the accuracy of CH4 and H2S predictions but also offers a valuable tool for effective management strategies for sewer systems.
RESUMO
The objective of this study is to explore whether sodium valproate (VPA) alleviates epileptic seizures via suppressing lysyl oxidase (Lox)-mediated ferroptosis. Epileptic seizure mouse model was prepared via intrahippocampal injection of kainic acid (250â ng/µl). After treatment with kainic acid, VPA was injected intraperitoneally by the dose of 250â mg/kg twice daily for 4â days. Ferroptosis-associated indices including lipid peroxides (LPO) level and Ptgs2 mRNA in hippocampal tissue samples were detected. Additionally, effects of VPA on Lox mRNA and enzymatic activity were assessed by quantitative real-time PCR and a commercial kit, respectively. Neuronal survival was assessed by Nissl staining. In kainic acid-induced epileptic seizure mouse model, VPA significantly suppressed LPO level and Ptgs2 mRNA and the suppression of ferroptosis was positively correlated with its anti-seizure effect. Lox mRNA and enzymatic activity were also found to decrease in hippocampus of epileptic seizure mice after VPA treatment. Furthermore, overexpression of Lox via adeno-associated virus infection remarkably abrogated the inhibitory effect of VPA on ferroptosis and neuronal impairment together with its anti-seizure effect. VPA suppresses Lox-mediated ferroptosis process, which can provide the explanation for its anti-seizure property.
Assuntos
Anticonvulsivantes , Ferroptose , Hipocampo , Ácido Caínico , Proteína-Lisina 6-Oxidase , Convulsões , Ácido Valproico , Animais , Ácido Valproico/farmacologia , Ferroptose/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Camundongos , Masculino , Convulsões/induzido quimicamente , Convulsões/metabolismo , Convulsões/tratamento farmacológico , Proteína-Lisina 6-Oxidase/metabolismo , Proteína-Lisina 6-Oxidase/genética , Anticonvulsivantes/farmacologia , Camundongos Endogâmicos C57BL , Epilepsia/tratamento farmacológico , Epilepsia/induzido quimicamente , Modelos Animais de Doenças , Neurônios/efeitos dos fármacos , Neurônios/metabolismoRESUMO
Solving the Hamiltonian of a system yields the energy dispersion and eigenstates. The geometric phase of the eigenstates generates many novel effects and potential applications. However, the geometric properties of the energy dispersion go unheeded. Here, we provide geometric insight into energy dispersion and introduce a geometric amplitude, namely, the geometric density of states (GDOS) determined by the Riemann curvature of the constant-energy contour. The geometric amplitude should accompany various local responses, which are generally formulated by the real-space Green's function. Under the stationary phase approximation, the GDOS simplifies the Green's function into its ultimate form. In particular, the amplitude factor embodies the spinor phase information of the eigenstates, favoring the extraction of the spin texture for topological surface states under an in-plane magnetic field through spin-polarized STM measurements. This work opens a new avenue for exploring the geometric properties of electronic structures and excavates the unexplored potential of spin-polarized STM measurements to probe the spinor phase information of eigenstates from their amplitudes.
RESUMO
Materials often fail prematurely or catastrophically under load while containing voids, posing a challenge to materials manufacturing. We found that a metal (gold) containing spherical voids with a fraction of up to 10% does not fracture prematurely in tension when the voids are shrunk to the submicron or nanometer scale. Instead, the dispersed nanovoids increase the strength and ductility of the material while simultaneously reducing its weight. Apart from the suppressed stress or strain concentration, such structure provides enormous surface area and promotes surface-dislocation interactions, which enable strengthening and additional strain hardening and thus toughening. Transforming voids from crack-like detrimental defects into a beneficial "ingredient" provides an inexpensive and environmentally friendly approach for the development of a new class of lightweight, high-performance materials.
RESUMO
The objective of this study was to investigate the potential mechanisms by which (+)-catechin alleviates neuropathic pain. Thirty-two male Sprague-Dawley rats were divided into four groups: the sham group, the chronic constriction injury (CCI)group, the CCI+ ibuprofen group, and the CCI+ (+)-catechin group. CCI surgery induces thermal hyperalgesia in rats and (+)-catechin ameliorated CCI-induced thermal hyperalgesia and repaired damaged sciatic nerve in rats. CCI decreased SOD levels in male rat spinal cord dorsal horn and promoted MDA production, induced oxidative stress by increasing NOX4 levels and decreasing antioxidant enzyme HO-1 levels, and also increased protein levels of TLR4, p-NF-κB, NLRP3 inflammasome components, and IL-1ß. In contrast, (+)-catechin reversed the above results. In i vitro experiments, (+)-catechin reduced the generation of reactive oxygen species (ROS) in GMI-R1 cells after LPS stimulation and attenuated the co-expression of IBA-1 and NLRP3. It also showed significant inhibition of the NF-κB and NLRP3 inflammatory pathways and activation of the Nrf2-mediated antioxidant system. Overall, these findings suggest that (+)-catechin inhibits the activation of the NLRP3 inflammasome through the triggering of the Nrf2-induced antioxidant system, the inhibition of the TLR4/NF-κB pathway, and the production of ROS to alleviate CCI-induced neuropathic pain in male rats.
Assuntos
Antioxidantes , Catequina , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Neuralgia , Transdução de Sinais , Animais , Masculino , Ratos , Antioxidantes/farmacologia , Catequina/farmacologia , Hiperalgesia/metabolismo , Hiperalgesia/tratamento farmacológico , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Neuralgia/metabolismo , Neuralgia/tratamento farmacológico , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Receptor 4 Toll-Like/efeitos dos fármacosRESUMO
Background: Treatment burden is a patient-centred, dynamic concept. However, longitudinal data on the changing pattern of treatment burden among patients with one or more long-term conditions (LTCs) are relatively scanty. We aimed to explore the longitudinal trajectories of treatment burden and associated risk factors in a large, patient population in primary care settings. Methods: We analysed data from 5573 primary care patients with long-term conditions (LTCs) recruited using a multistage sampling method in Shenzhen, southern China. The treatment burden was assessed by the Mandarin Chinese version of the Treatment Burden Questionnaire (TBQ). We used latent class growth mixture modelling (LCGMM) to determine trajectories of treatment burden across four time points, ie, at baseline, and at 6, 12, and 18 months. Predictors of trajectory classes were explored using multivariable logistic regression analysis. Results: The mean TBQ scores of patients with a single LTC (n = 2756), 2 LTCs (n = 1871), 3 LTCs (n = 699), and ≥4 LTCs (n = 247) were 18.17, 20.28, 21.32, and 26.10, respectively, at baseline. LCGMM identified three discrete classes of treatment burden trajectories over time, ie, a high-increasing class, a low-stable class, and a high-decreasing class. When controlling for individual-level factors including age, education, monthly household income per head, smoking, alcohol consumption, and attendance in health education, patients who had a clinical diagnosis of 3 LTCs (adjusted odds ratio [aOR] = 1.49, 95% CI = 1.21-1.86, P < 0.001) or ≥4 LTCs (aOR = 1.97, 95% CI = 1.44-2.72, P < 0.001) were more likely to belong to the high-increasing class. Sensitivity analysis using propensity score methods obtained similar results. Conclusion: Our study revealed the presence of discrete patterns of treatment burden over time in Chinese primary care patients with LTCs, providing directions for tailored interventions to optimise disease management. Patients with 3 or more LTCs should receive close attention in healthcare delivery as they tend to experience a greater treatment burden.
RESUMO
Background: Macrophages play a crucial role in the progression of AF, closely linked to atrial inflammation and myocardial fibrosis. However, the functions and molecular mechanisms of different phenotypic macrophages in AF are not well understood. This study aims to analyze the infiltration characteristics of atrial immune cells in AF patients and further explore the role and molecular expression patterns of M2 macrophage-related genes in AF. Methods: This study integrates single-cell and large-scale sequencing data to analyze immune cell infiltration and molecular characterization of the LAA in patients with AF, using SR as a control group. CIBERSORT assesses immune cell types in LAA tissues; WGCNA identifies signature genes; cell clustering analyzes cell types and subpopulations; cell communication explores macrophage interactions; hdWGCNA identifies M2 macrophage gene modules in AF. AF biomarkers are identified using LASSO and Random Forest, validated with ROC curves and RT-qPCR. Potential molecular mechanisms are inferred through TF-miRNA-mRNA networks and single-gene enrichment analyses. Results: Myeloid cell subsets varied considerably between the AF and SR groups, with a significant increase in M2 macrophages in the AF group. Signals of inflammation and matrix remodeling were observed in AF. M2 macrophage-related genes IGF1, PDK4, RAB13, and TMEM176B were identified as AF biomarkers, with RAB13 and TMEM176B being novel markers. A TF-miRNA-mRNA network was constructed using target genes, which are enriched in the PPAR signaling pathway and fatty acid metabolism. Conclusion: Over infiltration of M2 macrophages may be an important factor in the progression of AF. The M2 macrophage-related genes IGF1, RAB13, TMEM176B and PDK4 may regulate the progression of AF through the PPAR signaling pathway and fatty acid metabolism.
RESUMO
BACKGROUND: Skeletal muscle ischaemia-reperfusion injury (IRI) is a prevalent condition encountered in clinical practice, characterised by muscular dystrophy. Owing to limited treatment options and poor prognosis, it can lead to movement impairments, tissue damage, and disability. This study aimed to determine and verify the influence of transient receptor potential canonical 6 (TRPC6) on skeletal muscle IRI, and to explore the role of TRPC6 in the occurrence of skeletal muscle IRI and the signal transduction pathways activated by TRPC6 to provide novel insights for the treatment and intervention of skeletal muscle IRI. METHODS: In vivo ischaemia/reperfusion (I/R) and in vitro hypoxia/reoxygenation (H/R) models were established, and data were comprehensively analysed at histopathological, cellular, and molecular levels, along with the evaluation of the exercise capacity in mice. RESULTS: By comparing TRPC6 knockout mice with wild-type mice, we found that TRPC6 knockout of TRPC6 could reduced skeletal muscle injury after I/R or H/R, of skeletal muscle, so as therebyto restoringe some exercise capacity inof mice. TRPC6 knockdown can reduced Ca2+ overload in cells, therebyo reducinge apoptosis. In additionAdditionally, we also found that TRPC6 functionsis not only a key ion channel involved in skeletal muscle I/R injury, but also can affects Ca2+ levels and then phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) signalling pathway. by knocking downTherefore, knockdown of TRPC6, so as to alleviated the injury inducedcaused by skeletal muscle I/R or and H/R. CONCLUSIONS: These findingsdata indicate that the presence of TRPC6 exacerbatescan aggravate the injury of skeletal muscle injury after I/Rischemia/reperfusion, leading towhich not only causes Ca2+ overload and apoptosis., Additionally, it impairsbut also reduces the self- repair ability of cells by inhibiting the expression of the PI3K/Akt/mTOR signalling pathway. ETo exploringe the function and role of TRPC6 in skeletal muscle maycan presentprovide a novelew approachidea for the treatment of skeletal muscle ischemia/reperfusion injury.
Assuntos
Apoptose , Camundongos Knockout , Músculo Esquelético , Traumatismo por Reperfusão , Transdução de Sinais , Canal de Cátion TRPC6 , Animais , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Canal de Cátion TRPC6/metabolismo , Canal de Cátion TRPC6/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Masculino , Fosfatidilinositol 3-Quinases/metabolismo , Cálcio/metabolismoRESUMO
A polyelectrolyte system consisting of sodium alginate (SA) and quaternary ammonium chitosan (QAC) blended with polydopamine-coated copper sulfide particles (CuS@PDA) was chosen to investigate the function of CuS@PDA in the uniform binary blending of anionic and cationic polyelectrolytes in detail. A smart composite fiber SA/QAC/CuS@PDA was prepared via a dry-wet spinning technique. With the addition of CuS@PDA (about 4.3 % in fiber), the as-prepared SA/QAC/CuS@PDA-0.50 fibers (SQCuS@P-0.50 SCFs) showed notably enhanced intensity 359.2 MPa, excellent moisture response, and photothermal conversion performance, with the temperature increasing from 25.9 to 80.7 °C as irradiated under a 980 nm infrared lamp at distance 20 cm away for 120 s. The photothermal performance was maintained after 6 lighting on-and-off cycles. The tensile strength decreased ~23.8 % after 4 cycles, then remained fixed. The diameter increases to ~480 % in wet state but decreases to the original size in dry state for 10 cycles. When the fabric with 90 wt% SQCuS@P-0.50 SCFs was used as a water evaporator, the water evaporation rate and efficiency were 1.68 kg·m-2·h-1 and 102 % under 1 sun irradiation. This work provides a simple and ecofriendly strategy for fabricating photothermal fabrics by designing and preparing composite fibers.
Assuntos
Alginatos , Quitosana , Cobre , Indóis , Polímeros , Alginatos/química , Quitosana/química , Polímeros/química , Indóis/química , Cobre/química , Temperatura , Purificação da Água/métodos , Polieletrólitos/química , Água/química , SalinidadeRESUMO
BACKGROUND & AIMS: The changes in HBV-specific B cells in patients with chronic hepatitis B (CHB) undergoing pegylated interferon-α (PEG-IFNα) treatment and achieving functional cure remain unclear. We aimed to evaluate the alterations in HBV-specific B cells during treatment and therefore explored the mechanism of functional recovery of HBsAg-specific B cells. METHODS: We included 39 nucleos(t)ide analogue-treated patients with CHB who received sequential combination therapy with PEG-IFNα and eight treatment-naïve patients. HBV-specific B cells were characterized ex vivo using fluorescently labeled hepatitis B surface and core antigens (HBsAg and HBcAg). The frequency, phenotype, and subsets of HBV-specific B cells and follicular helper T cells (Tfh cells) were detected using flow cytometry. The functionality of HBV-specific B cells was quantified through ELISpot assays. RESULTS: During treatment, the fraction of activated memory B cells (MBCs) among HBsAg-specific B cells and the expression of IgG, CXCR3, and CD38 increased. The antibody-secretion capacity of HBsAg-specific B cells was only restored in patients achieving a functional cure after treatment and it positively correlated with serum hepatitis B surface antibody levels. The phenotype and function of HBsAg-specific B cells differed between patients with and without functional cure. Patients with functional cure exhibited IgG+ classical MBCs and plasmablasts among HBsAg-specific B cells. HBcAg-specific B cells displayed both attenuated antibody secretion with reduced IgG expression and an IgM+ atypical type of MBC after treatment, irrespective of functional cure. The number of CD40L+ Tfh cells increased after PEG-IFNα treatment and positively correlated with HBsAg-specific B-cell activation. CONCLUSIONS: After PEG-IFNα treatment, HBsAg- and HBcAg-specific B cells exhibit various changes in antibody secretion. Their functional differences are reflected in the alterations in phenotypes and subtypes. The presence of CD40L+ Tfh cells is associated with the active recovery of HBsAg-specific B cells. IMPACT AND IMPLICATIONS: HBV-related complications and hepatocellular carcinoma remain the leading causes of mortality from chronic liver disease worldwide, and a cure is rarely achieved with antiviral therapies. Elucidating the immunological mechanisms underlying the functional cure of patients with chronic hepatitis B offers a promising therapeutic strategy for viral clearance, e.g. via therapeutic vaccination. We analyzed the alterations in HBV-specific B cells in patients treated with pegylated interferon-α and identified novel pathways for immunotherapeutic boosting of B cell immunity.
RESUMO
LiFePO4 is widely used because of its high safety and cycle stability, but its inefficient electronic conductivity combined with sluggish Li+ diffusivity restricts its performance. To overcome this obstacle, applying a layer of conductive carbon onto the surface of LiFePO4 has the greatest improvement in electronic conductivity and Li+ diffusivity. However, the rate performance of carbon-coated LiFePO4 makes it difficult to meet the application requirements. Although nitrogen doping improves electrochemical performance by providing active sites and electronic conductivity, the N-doped carbon coating is prone to agglomeration, which causes a sharp decrease in capacity when the current rate increases. In this work, a synergistic N, Mn codoping strategy is implemented to overcome the aforementioned drawbacks by disrupting the large agglomeration of C-N bonds, improving the uniformity of the surface coating layer to enhance the completeness of the conductive network and increasing the number of Li+ diffusion channels, and thus accelerating the mass transfer rate under high-rate current. Consequently, this strategy effectively improves the rate capability (119 mA h g-1 at 10 C) while maintaining excellent cycling performance (88% capacity retention over 600 cycles at 5 C). This work improves the rate of ion diffusion and the rate capability of micrometer-sized LiFePO4, thus, enabling its wider application.
RESUMO
Introduction: We investigated trends in the use of therapeutic drugs for pregnant patients with rheumatic diseases in nine Chinese cities (Beijing, Chengdu, Guangzhou, Harbin, Hangzhou, Shanghai, Shenyang, Tianjin, and Zhengzhou) to provide a reference for drug use in clinic. Methods: Outpatient prescription data for pregnant patients diagnosed with rheumatic diseases in nine cities across China in 2016-2021 were extracted from the Hospital Prescription Cooperation Project of the Hospital Pharmacy Professional Committee of the Chinese Pharmaceutical Association. A retrospective analysis was then performed, incorporating data on patient age, defined daily doses (DDDs), defined daily cost (DDC), and other metrics. Results: In 2016-2020, more than 70% of the pregnant patients diagnosed with rheumatic diseases in these nine cities were 25 to < 35 years of age. The most common rheumatic diseases during pregnancy were antiphospholipid antibody syndrome (APS) and systemic lupus erythematosus (SLE). In terms of the routine use of daily therapeutic drugs, the DDDs of low molecular weight heparins (LMWHs), glucocorticoids, and immunosuppressive agents dominated the top three. Intravenous immunoglobulin (IVIG) and tumor necrosis factor inhibitors (TNFi) have been used since 2019 and had been in the forefront of the DDC. Conclusion: The number and total cost of prescriptions for therapeutic drugs of pregnancy complicated by rheumatic diseases, have increased significantly over the study interval. Conventional therapeutic drugs, especially glucocorticoids, LMWHs, and hydroxychloroquine were the most widely used drugs in pregnant patients with rheumatic diseases. However, IVIG and TNFi, relatively high cost, have shown gradual increases in clinical use since 2019.
RESUMO
BACKGROUND: The metabolic score for insulin resistance (METS-IR) has emerged as a noninsulin-based index for the approximation of insulin resistance (IR), yet longitudinal evidence supporting the utility of METS-IR in the primary prevention of type 2 diabetes mellitus (T2DM) remains limited. OBJECTIVE: We aimed to investigate the longitudinal association between METS-IR, which combines fasting plasma glucose (FPG), lipid profiles, and anthropometrics that can be routinely obtained in resource-limited primary care settings, and the incidence of new-onset T2DM. METHODS: We conducted a closed-cohort analysis of a nationwide, prospective cohort of 7583 Chinese middle-aged and older adults who were free of T2DM at baseline, sampled from 28 out of 31 provinces in China. We examined the characteristics of participants stratified by elevated blood pressure (BP) at baseline and new-onset T2DM at follow-up. We performed Cox proportional hazard regression analysis to explore associations of baseline METS-IR with incident T2DM in participants overall and in participants stratified by baseline BP. We also applied net reclassification improvement and integrated discrimination improvement to examine the incremental value of METS-IR. RESULTS: During a mean follow-up period of 6.3 years, T2DM occurred in 527 participants, among which two-thirds (332/527, 62.9%; 95% CI 58.7%-67.1%) had baseline FPG<110 mg/dL. A SD unit increase in baseline METS-IR was associated with the first incidence of T2DM (adjusted hazard ratio [aHR] 1.33, 95% CI 1.22-1.45; P<.001) in all participants. We obtained similar results in participants with normal baseline BP (aHR 1.41, 95% CI 1.22-1.62; P<.001) and elevated baseline BP (aHR 1.29, 95% CI 1.16-1.44; P<.001). The predictive capability for incident T2DM was improved by adding METS-IR to FPG. In study participants with new-onset T2DM whose baseline FPG was <126 mg/dL and <110 mg/dL, 62.9% (332/527; 95% CI 60%-65.9%) and 58.1% (193/332; 95% CI 54.3%-61.9%) of participants had baseline METS-IR above the cutoff values, respectively. CONCLUSIONS: METS-IR was significantly associated with new-onset T2DM, regardless of baseline BP level. Regular monitoring of METS-IR on top of routine blood glucose in clinical practice may add to the ability to enhance the early identification of primary care populations at risk for T2DM.
Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Atenção Primária à Saúde , Humanos , Diabetes Mellitus Tipo 2/epidemiologia , Pessoa de Meia-Idade , Feminino , Masculino , Estudos Prospectivos , Atenção Primária à Saúde/estatística & dados numéricos , China/epidemiologia , Idoso , Incidência , Fatores de Risco , Glicemia/análiseRESUMO
Spinal cord injury (SCI) is a devastating traumatic disease seriously impairing the quality of life in patients. Expectations to allow the hopeless central nervous system to repair itself after injury are unfeasible. Developing new approaches to regenerate the central nervous system is still the priority. Exosomes derived from mesenchymal stem cells (MSC-Exo) have been proven to robustly quench the inflammatory response or oxidative stress and curb neuronal apoptosis and autophagy following SCI, which are the key processes to rescue damaged spinal cord neurons and restore their functions. Nonetheless, MSC-Exo in SCI received scant attention. In this review, we reviewed our previous work and other studies to summarize the roles of MSC-Exo in SCI and its underlying mechanisms. Furthermore, we also focus on the application of exosomes as drug carrier in SCI. In particular, it combs the advantages of exosomes as a drug carrier for SCI, imaging advantages, drug types, loading methods, etc., which provides the latest progress for exosomes in the treatment of SCI, especially drug carrier.
Assuntos
Portadores de Fármacos , Exossomos , Células-Tronco Mesenquimais , Traumatismos da Medula Espinal , Traumatismos da Medula Espinal/terapia , Humanos , Células-Tronco Mesenquimais/metabolismo , Animais , Apoptose , Transplante de Células-Tronco Mesenquimais/métodosRESUMO
Background: In Dayao County, Chuxiong Yi Autonomous Prefecture, Yunnan Province, Southwest China, 5% of the surface is scattered with blue asbestos, which has a high incidence of pleural mesothelioma (PMe). Simian virus 40 (SV40) is a small circular double-stranded DNA polyomavirus that can cause malignant transformation of normal cells of various human and animal tissue types and promote tumor growth. In this study, we investigate whether oncogenic SV40 is associated with the occurrence of PMe in the crocidolite-contaminated area of Dayao County, Yunnan Province, Southwest China. Methods: Tumor tissues from 51 patients with PMe (40 of whom had a history of asbestos exposure) and pleural tissues from 12 non-PMe patients (including diseases such as pulmonary maculopathy and pulmonary tuberculosis) were collected. Three pairs of low-contamination risk primers (SVINT, SVfor2, and SVTA1) were used to detect the gene fragment of SV40 large T antigen (T-Ag) by polymerase chain reaction (PCR). The presence of SV40 T-Ag in PMe tumor tissues and PMe cell lines was detected by Western blotting and immunohistochemical staining with SV40-related antibodies (PAb 101 and PAb 416). Results: PCR, Western blotting, and immunohistochemical staining results showed that the Met5A cell line was positive for SV40 and contained the SV40 T-Ag gene and protein. In contrast, the various PMe cell lines NCI-H28, NCI-H2052, and NCI-H2452 were negative for SV40. PCR was negative for all three sets of low-contamination risk primers in 12 non-PMe tissues and 51 PMe tissues. SV40 T-Ag was not detected in 12 non-PMe tissues or 51 PMe tissues by immunohistochemical staining. Conclusion: Our data suggest that the occurrence of PMe in the crocidolite-contaminated area of Yunnan Province may not be related to SV40 infection and that crocidolite exposure may be the main cause of PMe. The Clinical Trial Registration number: 2020-YXLL20.
Assuntos
Asbesto Crocidolita , Neoplasias Pleurais , Vírus 40 dos Símios , Humanos , Vírus 40 dos Símios/genética , China/epidemiologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Neoplasias Pleurais/epidemiologia , Neoplasias Pleurais/virologia , Neoplasias Pleurais/genética , Mesotelioma/virologia , Mesotelioma/epidemiologia , Mesotelioma/genética , Infecções por Polyomavirus/epidemiologia , Infecções Tumorais por Vírus/epidemiologia , Linhagem Celular Tumoral , Mesotelioma Maligno/genética , Neoplasias Pulmonares/virologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/epidemiologia , AdultoRESUMO
BACKGROUND: The Oka varicella vaccine strain remains neurovirulent and can establish lifelong latent infection, raising safety concerns about vaccine-related herpes zoster. In this study, we aimed to evaluate the immunogenicity and safety of a skin-attenuated and neuro-attenuated varicella vaccine candidate (v7D vaccine). METHODS: We did this randomised, double-blind, controlled, phase 2a clinical trial in Jiangsu, China. Healthy children aged 3-12 years with no history of varicella infection or vaccination were enrolled and randomly assigned (1:1:1:1) to receive a single subcutaneous injection of the v7D vaccine at 3·3 log10 plaque forming units (PFU; low-dose v7D group), 3·9 log10 PFU (medium-dose v7D group), and 4·2 log10 PFU (high-dose v7D group), or the positive control varicella vaccine (vOka vaccine group). All the participants, laboratory personnel, and investigators other than the vaccine preparation and management staff were masked to the vaccine allocation. The primary outcome was assessment of the geometric mean titres (GMTs) and seroconversion rates of anti-varicella zoster virus immunoglobulin G (IgG) induced by different dose groups of v7D vaccine at 0, 42, 60, and 90 days after vaccination in the per-protocol set for humoral immune response analysis. Safety was a secondary outcome, focusing on adverse events within 42 days post-vaccination, and serious adverse events within 6 months after vaccination. This study was registered on Chinese Clinical Trial Registry, ChiCTR2000034434. FINDINGS: On Aug 18-21, 2020, 842 eligible volunteers were enrolled and randomly assigned treatment. After three participants withdrew, 839 received a low dose (n=211), middle dose (n=210), or high dose (n=210) of v7D vaccine, or the vOka vaccine (n=208). In the per-protocol set for humoral immune response analysis, the anti-varicella zoster virus IgG antibody response was highest at day 90. At day 90, the seroconversion rates of the low-dose, medium-dose, and high-dose groups of v7D vaccine and the positive control vOka vaccine group were 100·0% (95% CI 95·8-100·0; 87 of 87 participants), 98·9% (93·8-100·0; 87 of 88 participants), 97·8% (92·4-99·7; 91 of 93 participants), and 96·4% (89·8-99·2; 80 of 83 participants), respectively; the GMTs corresponded to values of 30·8 (95% CI 26·2-36·0), 31·3 (26·7-36·6), 28·2 (23·9-33·2), and 38·5 (31·7-46·7). The v7D vaccine, at low dose and medium dose, elicited a humoral immune response similar to that of the vOka vaccine. However, the high-dose v7D vaccine induced a marginally lower GMT compared with the vOka vaccine at day 90 (p=0·027). In the per-protocol set, the three dose groups of the v7D vaccine induced a similar humoral immune response at each timepoint, with no statistically significant differences. The incidence of adverse reactions in the low-dose, medium-dose, and high-dose groups of v7D vaccine was significantly lower than that in the vOka vaccine group (17% [35 of 211 participants], 20% [41 of 210 participants], and 13% [27 of 210 participants] vs 24% [50 of 208 participants], respectively; p=0·025), especially local adverse reactions (10% [22 of 211 participants], 14% [30 of 210 participants] and 9% [18 of 210 participants] vs 18% [38 of 208 participants], respectively; p=0·016). None of the serious adverse events were vaccine related. INTERPRETATION: The three dose groups of the candidate v7D vaccine exhibit similar humoral immunogenicity to the vOka vaccine and are well tolerated. These findings encourage further investigations on two-dose vaccination schedules, efficacy, and the potential safety benefit of v7D vaccine in the future. FUNDING: The National Natural Science Foundation of China, CAMS Innovation Fund for Medical Sciences, the Fundamental Research Funds for the Central Universities, and Beijing Wantai. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.
Assuntos
Anticorpos Antivirais , Vacina contra Varicela , Varicela , Vacinas Atenuadas , Humanos , Vacina contra Varicela/imunologia , Vacina contra Varicela/administração & dosagem , Vacina contra Varicela/efeitos adversos , Método Duplo-Cego , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/efeitos adversos , Masculino , Feminino , Pré-Escolar , Criança , Anticorpos Antivirais/sangue , Varicela/prevenção & controle , Varicela/imunologia , China , Herpesvirus Humano 3/imunologia , Imunogenicidade da Vacina , Vacinação/métodosRESUMO
Ultra-thick offshore steel, known for its high strength, high toughness, and corrosion resistance, is commonly used in marine platforms and ship components. However, when offshore steel is in service for an extended period under conditions of high pressure, extreme cold, and high-frequency impact loads, the weld joints are prone to fatigue failure or even fractures. Addressing these issues, this study designed a narrow-gap laser wire filling welding process and successfully welded a 100-mm new type of ultra-thick offshore steel. Using finite element simulation, EBSD testing, SEM analysis, and impact experiments, this study investigates the weld's microstructure, impact toughness, and fracture mechanisms. The research found that at -80 °C, the welded joint exhibited good impact toughness (>80 J), with the impact absorption energy on the surface of the weld being 217.7 J, similar to that of the base material (225.3 J), and the fracture mechanism was primarily a ductile fracture. The impact absorption energy in the core of the weld was 103.7 J, with the fracture mechanism mainly being a brittle fracture. The EBSD results indicated that due to the influence of the welding thermal cycle and the cooling effect of the narrow-gap process, the grains gradually coarsened from the surface of the welded plate to the core of the weld, which was the main reason for the decreased impact toughness at the joint core. This study demonstrates the feasibility of using narrow-gap laser wire filling welding for 100-mm new type ultra-thick offshore steel and provides a new approach for the joining of ultra-thick steel plates.