Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(27): 8445-8452, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38917425

RESUMO

The interfacial FeSe/TiO2-δ coupling induces high-temperature superconductivity in monolayer FeSe films. Using cryogenic atomically resolved scanning tunneling microscopy/spectroscopy, we obtained atomic-site dependent surface density of states, work function, and the pairing gap in the monolayer FeSe on the SrTiO3(001)-(√13 × âˆš13)-R33.7° surface. Our results disclosed the out-of-plane Se-Fe-Se triple layer gradient variation, switched DOS for Fe sites on and off TiO5□, and inequivalent Fe sublattices, which gives global spatial modulation of pairing gap contaminants with the (√13 × âˆš13) pattern. Moreover, the coherent lattice coupling induces strong inversion asymmetry and in-plane anisotropy in the monolayer FeSe, which is demonstrated to correlate with the particle-hole asymmetry in coherence peaks. These results disclose delicate atomic-scale correlations between pairing and lattice-electronic coupling in the Bardeen-Cooper-Schrieffer to Bose-Einstein condensation crossover regime, providing insights into understanding the pairing mechanism of multiorbital superconductivity.

2.
ACS Nano ; 18(27): 17786-17793, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38935417

RESUMO

The discovery of high-mobility two-dimensional electron gas and low carrier density superconductivity in multiple SrTiO3-based heterostructures has stimulated intense interest in the surface properties of SrTiO3. The recent discovery of high-Tc superconductivity in the monolayer FeSe/SrTiO3 led to the upsurge and underscored the atomic precision probe of the surface structure. By performing atomically resolved cryogenic scanning tunneling microscopy/spectroscopy characterization on dual-TiO2-δ-terminated SrTiO3(001) surfaces with (√13 × âˆš13), c(4 × 2), mixed (2 × 1), and (2 × 2) reconstructions, we disclosed universally broken rotational symmetry and contrasting bias- and temperature-dependent electronic states for apical and equatorial oxygen sites. With the sequentially evolved surface reconstructions and simultaneously increasing equatorial oxygen vacancies, the surface anisotropy reduces and the work function lowers. Intriguingly, unidirectional stripe orders appear on the c(4 × 2) surface, whereas local (4 × 4) order emerges and eventually forms long-range unidirectional c(4 × 4) charge order on the (2 × 2) surface. This work reveals robust unidirectional charge orders induced by oxygen vacancies due to strong and delicate electronic-lattice interaction under broken rotational symmetry, providing insights into understanding the complex behaviors in perovskite oxide-based heterostructures.

3.
Inorg Chem ; 62(47): 19230-19237, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37874974

RESUMO

Herein, we propose a simple yet effective method to deposit metal nanoparticles on Ti3C2Tx-MXene via direct electrosynthesis. Without using any reducing reagent or annealing under reducing atmosphere, it allows the conversion of metal salts (e.g., PtCl4, RuCl3·yH2O, IrCl3·zH2O, AgNO3, and CuCl2·2H2O) to metal nanoparticles with a small particle size (ca. 2 nm). Under these circumstances, it was realized that the support effect from Ti3C2Tx-MXene (electron pushing) is quite profound, in which the Ti3C2Tx-MXene support will act as an electron donor to push the electron to Pt nanoparticles and increase the electron density of Pt nanoparticles. It populates the antibonding state of Pt-Pt bonds as well as the adsorbate level that leads to a "weakening" of the ΔGH* in the optimal position. This rationalizes the outstanding activity of Pt/Ti3C2Tx-MXene (5 wt %, η10 = 16 mV) for the hydrogen evolution reaction (HER). In addition, this direct electrosynthesis method grants the growth of two or multiple types of metal nanoparticles on the Ti3C2Tx-MXene substrate that can perform dual or multiple functions as desired. For instance, one can prepare an electrocatalyst with Pt (2.5 wt %) and Ru nanoparticles (2.5 wt %) on the Ti3C2Tx-MXene support from the same synthetic method. This electrocatalyst (Pt_Ru/Ti3C2Tx-MXene) can display good electrocatalytic HER performance in both acid (0.5 M H2SO4) and alkaline electrolytes (1.0 M KOH).

4.
Nat Commun ; 14(1): 5340, 2023 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-37660171

RESUMO

The field of two-dimensional (2D) ferromagnetism has been proliferating over the past few years, with ongoing interests in basic science and potential applications in spintronic technology. However, a high-resolution spectroscopic study of the 2D ferromagnet is still lacking due to the small size and air sensitivity of the exfoliated nanoflakes. Here, we report a thickness-dependent ferromagnetism in epitaxially grown Cr2Te3 thin films and investigate the evolution of the underlying electronic structure by synergistic angle-resolved photoemission spectroscopy, scanning tunneling microscopy, x-ray absorption spectroscopy, and first-principle calculations. A conspicuous ferromagnetic transition from Stoner to Heisenberg-type is directly observed in the atomically thin limit, indicating that dimensionality is a powerful tuning knob to manipulate the novel properties of 2D magnetism. Monolayer Cr2Te3 retains robust ferromagnetism, but with a suppressed Curie temperature, due to the drastic drop in the density of states near the Fermi level. Our results establish atomically thin Cr2Te3 as an excellent platform to explore the dual nature of localized and itinerant ferromagnetism in 2D magnets.

5.
Science ; 374(6573): 1381-1385, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34709939

RESUMO

A sufficiently large supercurrent can close the energy gap in a superconductor and create gapless quasiparticles through the Doppler shift of quasiparticle energy caused by finite Cooper pair momentum. In this gapless superconducting state, zero-energy quasiparticles reside on a segment of the normal-state Fermi surface, whereas the remaining Fermi surface is still gapped. We use quasiparticle interference to image the field-controlled Fermi surface of bismuth telluride (Bi2Te3) thin films under proximity effect from the superconductor niobium diselenide (NbSe2). A small applied in-plane magnetic field induces a screening supercurrent, which leads to finite-momentum pairing on the topological surface states of Bi2Te3. We identify distinct interference patterns that indicate a gapless superconducting state with a segmented Fermi surface. Our results reveal the strong impact of finite Cooper pair momentum on the quasiparticle spectrum.

6.
Nat Commun ; 12(1): 2846, 2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-33990597

RESUMO

We propose a new type of spin-valley locking (SVL), named C-paired SVL, in antiferromagnetic systems, which directly connects the spin/valley space with the real space, and hence enables both static and dynamical controls of spin and valley to realize a multifunctional antiferromagnetic material. The new emergent quantum degree of freedom in the C-paired SVL is comprised of spin-polarized valleys related by a crystal symmetry instead of the time-reversal symmetry. Thus, both spin and valley can be accessed by simply breaking the corresponding crystal symmetry. Typically, one can use a strain field to induce a large net valley polarization/magnetization and use a charge current to generate a large noncollinear spin current. We predict the realization of the C-paired SVL in monolayer V2Se2O, which indeed exhibits giant piezomagnetism and can generate a large transverse spin current. Our findings provide unprecedented opportunities to integrate various controls of spin and valley with nonvolatile information storage in a single material, which is highly desirable for versatile fundamental research and device applications.

7.
J Phys Condens Matter ; 33(21)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33588390

RESUMO

Magnetic topological insulators, such as MnBi2Te4have attracted great attention recently due to their application to the quantum anomalous Hall (QAH) effect. However, the magnetic quantum spin Hall (QSH) effect in two-dimensional (2D) materials has not yet been reported. Here based on first-principle calculations we find that Ti2Te2O, a van der Waals layered compound, can cherish both the QAH and QSH states, depending on the magnetic order in its single layer. If the single layer was in a chessboard antiferromagnetic (FM) state, it is a QSH insulator which carries two counterpropagating helical edge states. The spin-orbit-couplings induced bulk band gap can approach as large as 0.31 eV. On the other hand, if the monolayer becomes FM, exchange interactions would push one pair of bands away from the Fermi energy and leave only one chiral edge state remaining, which turns the compound into a Chern insulator (precisely, it is semimetallic with a topologically direct band gap). Both magnetic orders explicitly break the time reversal symmetry and split the energy bands of different spin orientations. To our knowledge, Ti2Te2O is the first compound that predicted to possess both intrinsic QSH and QAH effects. Our works provide new possibilities to reach a controllable phase transition between two topological nontrivial phases through magnetism tailoring.

8.
Phys Rev Lett ; 125(13): 136802, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-33034492

RESUMO

Superconducting topological crystalline insulators (TCIs) have been proposed to be a new type of topological superconductor where multiple Majorana zero modes may coexist under the protection of lattice symmetries. The bulk superconductivity of TCIs has been realized, but it is quite challenging to detect the superconductivity of topological surface states inside their bulk superconducting gaps. Here, we report high-resolution scanning tunneling spectroscopy measurements on lateral Sn_{1-x}Pb_{x}Te-Pb heterostructures using superconducting tips. Both the bulk superconducting gap and the multiple in-gap states with energy differences of ∼0.3 meV can be clearly resolved on TCI Sn_{1-x}Pb_{x}Te at 0.38 K. Quasiparticle interference measurements further confirm the in-gap states are gapless. Our work demonstrates that the unique topological superconductivity of a TCI can be directly distinguished in the density of states, which helps to further investigate the multiple Dirac and Majorana fermions inside the superconducting gap.

10.
Nat Mater ; 19(1): 27-33, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31591532

RESUMO

One or a few layers of van der Waals (vdW) materials are promising for applications in nanoscale electronics. Established properties include high mobility in graphene, a large direct gap in monolayer MoS2, the quantum spin Hall effect in monolayer WTe2 and so on. These exciting properties arise from electron quantum confinement in the two-dimensional limit. Here, we use angle-resolved photoemission spectroscopy to reveal directional massless Dirac fermions due to one-dimensional confinement of carriers in the layered vdW material NbSi0.45Te2. The one-dimensional directional massless Dirac fermions are protected by non-symmorphic symmetry, and emerge from a stripe-like structural modulation with long-range translational symmetry only along the stripe direction as we show using scanning tunnelling microscopy. Our work not only provides a playground for investigating further the properties of directional massless Dirac fermions, but also introduces a unique component with one-dimensional long-range order for engineering nano-electronic devices based on heterostructures of vdW materials.

11.
Adv Mater ; 31(52): e1905582, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31721337

RESUMO

Superconducting topological crystalline insulators are expected to form a new type of topological superconductors to host Majorana zero modes under the protection of lattice symmetries. The bulk superconductivity of topological crystalline insulators can be induced through chemical doping and the proximity effect. However, only conventional full gaps are observed, so the existence of topological superconductivity in topological crystalline insulators is still controversial. Here, the successful fabrication of atomically flat lateral and vertical Sn1- x Pbx Te-Pb heterostructures by molecular beam epitaxy is reported. The superconductivity of the Sn1- x Pbx Te-Pb heterostructures can be directly investigated by scanning tunneling spectroscopy. Unconventional peak-dip-hump gap features and fourfold symmetric quasiparticle interference patterns taken at the zero energy in the superconducting gap support the presence of the topological superconductivity in superconducting Sn1- x Pbx Te. Strong superconducting proximity effect and easy preparation of various constructions between Sn1- x Pbx Te and Pb make the heterostructures to be a promising candidate for topological superconducting devices to detect and manipulate Majorana zero modes in the future.

12.
Phys Rev Lett ; 123(25): 257001, 2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31922797

RESUMO

Intrigued by the discovery of high-temperature superconductivity in a single unit-cell layer of FeSe film on SrTiO_{3}, researchers recently found large superconductinglike energy gaps in K-adsorbed multilayer FeSe films by angle-resolved photoemission and scanning tunneling spectroscopy. However, the existence and nature of the high-temperature superconductivity inferred by the spectroscopic studies has not been investigated by measurements of zero resistance or the Meissner effect due to the fragility of K atoms in air. Using a self-developed multifunctional scanning tunneling microscope, we succeed in observing the diamagnetic response of K-adsorbed multilayer FeSe films, and thus find a dome-shaped relation between the critical temperature (T_{c}) and K coverage. Intriguingly, T_{c} exhibits an approximately linear dependence on the superfluid density in the whole K adsorbed region. Moreover, the quadratic low-temperature variation in the London penetration depth indicates a sign-reversal order parameter. These results provide compelling information towards further understanding of the high-temperature superconductivity in FeSe-derived superconductors.

13.
Nat Commun ; 9(1): 4153, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-30297777

RESUMO

Non-symmorphic crystals are generating great interest as they are commonly found in quantum materials, like iron-based superconductors, heavy-fermion compounds, and topological semimetals. A new type of surface state, a floating band, was recently discovered in the nodal-line semimetal ZrSiSe, but also exists in many non-symmorphic crystals. Little is known about its physical properties. Here, we employ scanning tunneling microscopy to measure the quasiparticle interference of the floating band state on ZrSiSe (001) surface and discover rotational symmetry breaking interference, healing effect and half-missing-type anomalous Umklapp scattering. Using simulation and theoretical analysis we establish that the phenomena are characteristic properties of a floating band surface state. Moreover, we uncover that the half-missing Umklapp process is derived from the glide mirror symmetry, thus identify a non-symmorphic effect on quasiparticle interferences. Our results may pave a way towards potential new applications of nanoelectronics.

14.
Phys Rev Lett ; 120(9): 097001, 2018 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-29547312

RESUMO

Single monolayer FeSe film grown on a Nb-doped SrTiO_{3}(001) substrate shows the highest superconducting transition temperature (T_{C}∼100 K) among the iron-based superconductors (iron pnictides), while the T_{C} value of bulk FeSe is only ∼8 K. Although bulk FeSe does not show antiferromagnetic order, calculations suggest that the parent FeSe/SrTiO_{3} films are antiferromagnetic. Experimentally, because of a lack of a direct probe, the magnetic state of FeSe/SrTiO_{3} films remains mysterious. Here, we report direct evidence of antiferromagnetic order in the parent FeSe/SrTiO_{3} films by the magnetic exchange bias effect measurements. The magnetic blocking temperature is ∼140 K for a single monolayer film. The antiferromagnetic order disappears after electron doping.

15.
Rev Sci Instrum ; 88(7): 073902, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28764532

RESUMO

Superconducting thin films have been a focal point for intensive research efforts since their reduced dimension allows for a wide variety of quantum phenomena. Many of these films, fabricated in UHV chambers, are highly vulnerable to air exposure, making it difficult to measure intrinsic superconducting properties such as zero resistance and perfect diamagnetism with ex situ experimental techniques. Previously, we developed a multifunctional scanning tunneling microscope (MSTM) containing in situ four-point probe (4PP) electrical transport measurement capability in addition to the usual STM capabilities [Ge et al., Rev. Sci. Instrum. 86, 053903 (2015)]. Here we improve this MSTM via development of both transmission and reflection two-coil mutual inductance techniques for in situ measurement of the diamagnetic response of a superconductor. This addition does not alter the original STM and 4PP functions of the MSTM. We demonstrate the performance of the two-coil mutual inductance setup on a 10-nm-thick NbN thin film grown on a Nb-doped SrTiO3(111) substrate.

16.
Nano Lett ; 17(5): 3035-3039, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28415840

RESUMO

Ultrathin freestanding bismuth film is theoretically predicted to be one kind of two-dimensional topological insulators. Experimentally, the topological nature of bismuth strongly depends on the situations of the Bi films. Film thickness and interaction with the substrate often change the topological properties of Bi films. Using angle-resolved photoemission spectroscopy, scanning tunneling microscopy or spectroscopy and first-principle calculation, the properties of Bi(111) ultrathin film grown on the NbSe2 superconducting substrate have been studied. We find the band structures of the ultrathin film is quasi-freestanding, and one-dimensional edge state exists on Bi(111) film as thin as three bilayers. Superconductivity is also detected on different layers of the film and the pairing potential exhibits an exponential decay with the layer thicknesses. Thus, the topological edge state can coexist with superconductivity, which makes the system a promising platform for exploring Majorana Fermions.

17.
Phys Rev Lett ; 116(25): 257003, 2016 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-27391745

RESUMO

Recently, theory has predicted a Majorana zero mode (MZM) to induce spin selective Andreev reflection (SSAR), a novel magnetic property which can be used to detect the MZM. Here, spin-polarized scanning tunneling microscopy or spectroscopy has been applied to probe SSAR of MZMs in a topological superconductor of the Bi_{2}Te_{3}/NbSe_{2} heterostructure. The zero-bias peak of the tunneling differential conductance at the vortex center is observed substantially higher when the tip polarization and the external magnetic field are parallel rather than antiparallel to each other. This spin dependent tunneling effect provides direct evidence of MZM and reveals its magnetic property in addition to the zero energy modes. Our work will stimulate MZM research on these novel physical properties and, hence, is a step towards experimental study of their statistics and application in quantum computing.

18.
Phys Rev Lett ; 116(17): 176803, 2016 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-27176532

RESUMO

We report an atomic-scale characterization of ZrTe_{5} by using scanning tunneling microscopy. We observe a bulk band gap of ∼80 meV with topological edge states at the step edge and, thus, demonstrate that ZrTe_{5} is a two-dimensional topological insulator. We also find that an applied magnetic field induces an energetic splitting of the topological edge states, which can be attributed to a strong link between the topological edge states and bulk topology. The relatively large band gap makes ZrTe_{5} a potential candidate for future fundamental studies and device applications.

19.
Sci Rep ; 6: 21326, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26888122

RESUMO

Using high-resolution angle-resolved photoemission spectroscopy (ARPES), the topological property of the three-dimensional Bi(111) films grown on the Bi2Te3(111) substrate were studied. Very different from the bulk Bi, we found another surface band near the point besides the two well-known surface bands on the 30 nm films. With this new surface band, the bulk valence band and the bulk conduction band can be connected by the surface states in the Bi(111)/Bi2Te3 films. Our band mapping revealed odd number of Fermi crossings of the surface bands, which provided new experimental evidences that Bi(111)/Bi2Te3 films of a certain thickness can be topologically nontrivial in three dimension.

20.
Nat Mater ; 14(10): 1020-5, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26237127

RESUMO

Following the first experimental realization of graphene, other ultrathin materials with unprecedented electronic properties have been explored, with particular attention given to the heavy group-IV elements Si, Ge and Sn. Two-dimensional buckled Si-based silicene has been recently realized by molecular beam epitaxy growth, whereas Ge-based germanene was obtained by molecular beam epitaxy and mechanical exfoliation. However, the synthesis of Sn-based stanene has proved challenging so far. Here, we report the successful fabrication of 2D stanene by molecular beam epitaxy, confirmed by atomic and electronic characterization using scanning tunnelling microscopy and angle-resolved photoemission spectroscopy, in combination with first-principles calculations. The synthesis of stanene and its derivatives will stimulate further experimental investigation of their theoretically predicted properties, such as a 2D topological insulating behaviour with a very large bandgap, and the capability to support enhanced thermoelectric performance, topological superconductivity and the near-room-temperature quantum anomalous Hall effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA