Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
2.
Sci Rep ; 14(1): 7014, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528051

RESUMO

The seismic deterioration effects of anchor cables and slope structural planes are often neglected in the dynamic stability analysis of anchored rocky slopes to the extent that the stability of slopes is overestimated. In this paper, a dynamic calculation method for anchored rocky slopes considering the seismic deterioration effect is established, and a stability evaluation method for anchored rocky slopes based on the Gaussian mixture model is proposed. The seismic deterioration effect on the stability of anchored rocky slopes is quantitatively analyzed with an engineering example, and the relationship between seismic intensity and the failure probability of slopes is clarified. The results show that compared with the calculation method without considering the seismic deterioration effect, the minimum safety factor and post-earthquake safety factor obtained by the proposed method in this paper are smaller. The number of seismic deteriorations of the slope is used as the number of components of the Gaussian mixture model to construct the failure probability model of the slope, which can accurately predict the failure probability of anchored rocky slopes. The research results significantly improve the accuracy of the stability calculation of anchored rocky slopes, which can be used to guide the seismic design and safety assessment of anchored rocky slopes.

3.
Materials (Basel) ; 13(12)2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32570760

RESUMO

High-performance pumping concrete has been widely used in high-rise building construction because of its superior qualities. However, early cracking problems can occur in cast-in-place pumping concrete, which is due to the excessive use of cement. In this paper, an innovative concrete mixing procedure called "post-filling coarse aggregate concrete" (PFCC) was adopted and applied to large slump concrete. The influence of the post-filling coarse aggregate (PFA) ratio on the mechanical properties of large slump concrete were investigated. Three different concrete strength grades (C30, C40 and C50) and five different PFA ratios (0%, 10%, 15%, 20%, 25%) were considered. The designed slump for the reference concrete was 180-200 mm. Experimental tests on the compressive strength of cubic specimens, axial compressive strength of prism specimens, splitting tensile strength, modulus of rupture and modulus of elasticity were performed. All tests were conducted in room conditions. Results showed that the slump of the PFCC decreases as the PFA ratio increases. It also indicated that, in general, the mechanical properties of PFCC are not linearly increasing as the PFA ratio rises, and there exists a turning point. Based on the experimental investigation and analysis in this study, the optimum post-filling coarse aggregate ratio is recommended to be 20%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA