Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 15: 1339191, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38974575

RESUMO

Background and purpose: Thyroid papillary carcinoma (PTC) had a high possibility of recurrence after surgery, and thyroid stimulating hormone (TSH) suppression and radioactive iodine (131I) were used for postoperative therapy. This study explored the potential mechanism of lymph node metastasis (LNM) and aimed to develop differentiated treatments for PTC. Method: This study explored the risk factors of lymph node metastasis in PTC by analyzing the clinical information of 2073 cases. The Cancer Genome Atlas Thyroid Cancer (TCGA-THCA) and the Gene Expression Omnibus (GEO) databases of gene expression were analyzed to identify the interrelationships between gene expression to phenotype. Results: Analyzing clinical data, we found that male gender, younger age, larger tumor size, and extra-thyroidal extension (ETE) were risk significant risk factors for lymph node metastasis(P<0.05). Conversely, thyroid function parameters such as TSH, FT3, FT4, TSH/FT3, and TSH/FT4 didn't correlate with LNM(P>0.05), and TSH levels were observed to be higher in females(P<0.05). Gene expression analysis revealed that SLC5A5 was down-regulated in males, younger individuals, and those with lymph node metastasis, and a lower level of SLC5A5 was associated with a worse disease-free survival(P<0.05). Additionally, our examination of single-cell RNA sequencing (scRNA-seq) data indicated that SLC5A5 expression was reduced in tumors and lymph node metastasis samples, correlating positively with the expression of TSHR. Conclusion: The impact of TSH on PTC behavior remained unclear, while the capacity for absorbing 131I in dependence on SLC5A5 showed variations across different genders and ages. We conclude that postoperative treatment of PTC should take into account the differences caused by gender and age.


Assuntos
Metástase Linfática , Câncer Papilífero da Tireoide , Neoplasias da Glândula Tireoide , Humanos , Masculino , Feminino , Câncer Papilífero da Tireoide/patologia , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/cirurgia , Câncer Papilífero da Tireoide/terapia , Neoplasias da Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/cirurgia , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/terapia , Neoplasias da Glândula Tireoide/metabolismo , Pessoa de Meia-Idade , Adulto , Radioisótopos do Iodo/uso terapêutico , Fatores Sexuais , Fatores Etários , Simportadores/genética , Simportadores/metabolismo , Tireoidectomia , Fatores de Risco , Tireotropina/sangue , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Idoso , Prognóstico
2.
Environ Toxicol ; 39(2): 539-550, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37347555

RESUMO

Thyroid cancer is the most common endocrine malignancy worldwide. Although significant progress has been made in understanding the genetic and molecular alterations that drive thyroid cancer, the mechanisms underlying thyroid tumor progression remain unclear. In this study, we explored the involvement of Plastin-3 (PLS3) in the progression of papillary thyroid cancer and elucidated the underlying molecular mechanisms. We first analyzed clinical samples from papillary thyroid cancer patients and found that PLS3 expression was significantly upregulated in tumor tissues compared to adjacent normal tissues. Moreover, high PLS3 expression was associated with advanced tumor stage and poor prognosis. Further in vitro and in vivo experiments showed that PLS3 could promote the proliferation, migration, and invasive behavior of papillary thyroid cancer cells, while PLS3 knockdown suppressed these processes. Mechanistically, we found that PLS3 promoted papillary thyroid cancer progression by activating the Notch signaling pathway. Specifically, PLS3 upregulated the expression of Notch receptors (Notch1) and downstream target gene (Hes1) in papillary thyroid cancer cells. In summary, our findings collectively indicate that PLS3 plays a pivotal role in driving the progression of papillary thyroid cancer and holds promise as a viable therapeutic target for the treatment of this disease.


Assuntos
Transdução de Sinais , Neoplasias da Glândula Tireoide , Humanos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Receptores Notch/genética , Receptores Notch/metabolismo , Câncer Papilífero da Tireoide/genética , Neoplasias da Glândula Tireoide/metabolismo
3.
J Cancer Res Clin Oncol ; 149(18): 16837-16850, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37733241

RESUMO

BACKGROUND: Characterizing tumor microenvironment using single-cell RNA sequencing has been a promising strategy for cancer diagnosis and treatment. However, a few studies have focused on diagnosing papillary thyroid cancer (PTC) through this technology. Therefore, our study explored tumor microenvironment (TME) features and identified potential biomarkers to establish a diagnostic model for papillary thyroid cancer. METHODS: The cell types were identified using the markers from the CellMarker database and published research. The CellChat package was conducted to analyze the cell-cell interaction. The SCEVAN package was used to identify malignant thyroid cells. The SCP package was used to perform multiple single-cell downstream analyses, such as GSEA analysis, enrichment analysis, pseudotime trajectory analysis, and differential expression analysis. The diagnostic model of PTC was estimated using the calibration curves, receiver operating characteristic curves, and decision curve analysis. RT-qPCR was performed to validate the expression of candidate genes in human papillary thyroid samples. RESULTS: Eight cell types were identified in the scRNA-seq dataset by published cell markers. Extensive cell-cell interactions like FN1/ITGB1 existed in PTC tissues. We identified 26 critical genes related to PTC progression. Further, eight subgroups of PTC tumor cells were identified and exhibited high heterogeneity. The MDK/LRP1, MDK/ALK, GAS6/MERTK, and GAS6/AXL were identified as potential ligand-receptor pairs involved in the interactions between fibroblasts/endothelial cells and tumor cells. Eventually, the diagnostic model constructed by TRPC5, TENM1, NELL2, DMD, SLC35F3, and AUTS2 showed a good efficiency for distinguishing the PTC and normal tissues. CONCLUSIONS: Our study comprehensively characterized the tumor microenvironment in papillary thyroid cancer. Through combined analysis with bulk RNA-seq, six potential diagnostic biomarkers were identified and validated. The diagnostic model we constructed was a promising tool for PTC diagnosis. Our findings provide new insights into the heterogeneity of thyroid cancer and the theoretical basis for diagnosing thyroid cancer.


Assuntos
Células Endoteliais , Neoplasias da Glândula Tireoide , Humanos , Câncer Papilífero da Tireoide/diagnóstico , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/patologia , Células Endoteliais/patologia , Microambiente Tumoral/genética , Neoplasias da Glândula Tireoide/diagnóstico , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , RNA-Seq , Biomarcadores , Biomarcadores Tumorais/genética
4.
PeerJ ; 11: e15458, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37273536

RESUMO

Anaplastic thyroid carcinoma (ATC) is an extremely aggressive tumor with a high mortality rate and poor prognosis. However, the pathogenesis of ATC is complex and poorly understood, and the effective treatment options are limited. Analysis of data from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases showed that collagen triple helix repeat containing-1 (CTHRC1) was specifically upregulated in ATC tissues and was negatively correlated with overall survival (OS) in thyroid carcinoma patients. In vitro knockdown of CTHRC1 dramatically decreased the proliferation, migration, and invasion abilities of ATC cells, and in vivo studies in BALB/c nude mice confirmed that CTHRC1 knockdown significantly inhibited tumor growth. Mechanistically, CTHRC1 knockdown was found to suppress the Wnt/ß-catenin pathway and epithelial-mesenchymal transition (EMT) at the protein level. These findings suggest that CTHRC1 promotes the progression of ATC via upregulating tumor cell proliferation, migration, and invasion, which may be achieved by activating the Wnt/ß-catenin pathway and EMT.


Assuntos
Proteínas da Matriz Extracelular , Carcinoma Anaplásico da Tireoide , Neoplasias da Glândula Tireoide , Animais , Camundongos , beta Catenina/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Proteínas da Matriz Extracelular/genética , Camundongos Nus , Processos Neoplásicos , Carcinoma Anaplásico da Tireoide/genética , Neoplasias da Glândula Tireoide/genética
5.
Int J Endocrinol ; 2022: 6469740, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35479664

RESUMO

Background: The incidence of pancreatic cancer continues to rise globally, with pancreatic head cancer accounting for nearly 60-70%. Pancreatic head cancer occurs mainly in people over the age of 60, and its morbidity and mortality increase with age. We investigated whether these elderly patients with nondistant metastases would benefit more from expanded pancreaticoduodenectomy (EPD) compared with standard pancreaticoduodenectomy (SPD). Methods: 3317 elderly patients with pancreatic head cancer from the SEER database were included in the study based on the inclusion and exclusion criteria. These patients were divided into a nonsurgical group and surgical group (including EPD and SPD). Univariate and multivariate Cox proportional hazards models were applied to identify the independent risk factors for cancer-specific survival (CSS). The survival differences between the nonsurgical group and surgical group were compared. Propensity score matching (PSM) methods were applied to balance covariates and reduce the interference of confounding variables. The two groups of patients were matched in a 1 : 1 ratio, and the covariates between the two groups were compared to verify the matching validity. The survival difference in different groups was compared after the matching analysis. Results: 3317 enrolled patients were divided into the surgical group (n = 984) and nonsurgical group (n = 2333). Before PSM, there were significant differences in overall survival (OS) and CSS between the nonsurgical group and surgical group (median OS: 8 months vs. 20 months, P < 0.001; median CSS: 8 months vs. 22 months, P < 0.001). The multivariate CSS Cox regression analysis demonstrated surgery is an independent risk factor. However, no significant differences were founded between the SPD and EPD groups (median OS: 20 months vs. 22 months, P=0.636; median CSS: 22 months vs. 22 months, P=0.270). After PSM, there were also no significant differences in OS and CSS between the SPD and EPD groups (median OS: 23 months vs. 18 months, P=0.415; median CSS: 26 months vs. 18 months, P=0.329). Conclusion: This study uses PSM to evaluate the effects of EPD and SPD for elderly patients with nondistant metastatic pancreatic head adenocarcinoma. It found that surgery is an independent prognostic factor, but expanded surgery has no survival advantage for these patients, whereas SPD provides a better survival advantage than EPD. SPD is a reasonable treatment option for these patients.

6.
Front Oncol ; 12: 862313, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359404

RESUMO

Objective: The objective of this research was to screen prognostic related genes of thyroid papillary carcinoma (PTC) by single-cell RNA sequencing (scRNA-seq), to construct the diagnostic and prognostic models based on The Cancer Genome Atlas Thyroid Cancer (TCGA-THCA) data, and to evaluate the association between tumor immune microenvironment and the prognostic model. Method: The differentially expressed genes (DEGs) and tumor evolution were analyzed by scRNA-seq based on public databases. The potential regulatory networks of DEGs related to prognosis were analyzed by multi-omics data in the THCA. Logistic regression and Cox proportional hazards regression were utilized to construct the diagnosis and prognostic model of PTC. The performance of the diagnostic model was verified by bulk RNA sequencing (RNA-seq) of our cohort. The tumor immune microenvironment associated with the prognostic model was evaluated using multi-omics data. In addition, qRT-PCR was performed on tumor tissues and adjacent normal tissues of 20 patients to verify the expression levels of DEGs. Results: The DEGs screened by scRNA-seq can distinguish between tumor and healthy samples. DEGs play different roles in the evolution from normal epithelial cells to malignant cells. Three DEGs ((FN1, CLU, and ANXA1)) related to prognosis were filtered, which may be regulated by DNA methylation, RNA methylation (m6A) and upstream transcription factors. The area under curve (AUC) of the diagnostic model based on 3-gene in the validation of our RNA-seq was 1. In the prognostic model based on 3-gene, the overall survival (OS) of high-risk patients was shorter. Combined with the clinical information of patients, a nomogram was constructed by using tumor size (pT) and risk score to quantify the prognostic risk. The age and tumor size of high-risk patients in the prognostic model were greater. In addition, the increase of tumor mutation burden (TMB) and diversity of T cell receptor (TCR), and the decrease of CD8+ T cells in high-risk group suggest the existence of immunosuppressive microenvironment. Conclusion: We applied the scRNA-seq pipeline to focus on epithelial cells in PTC, simulated the process of tumor evolution, and revealed a prognostic prediction model based on 3 genes, which is related to tumor immune microenvironment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA