Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.314
Filtrar
1.
Int J Biol Sci ; 20(7): 2640-2657, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725843

RESUMO

Esophageal carcinoma is amongst the prevalent malignancies worldwide, characterized by unclear molecular classifications and varying clinical outcomes. The PI3K/AKT/mTOR signaling, one of the frequently perturbed dysregulated pathways in human malignancies, has instigated the development of various inhibitory agents targeting this pathway, but many ESCC patients exhibit intrinsic or adaptive resistance to these inhibitors. Here, we aim to explore the reasons for the insensitivity of ESCC patients to mTOR inhibitors. We assessed the sensitivity to rapamycin in various ESCC cell lines by determining their respective IC50 values and found that cells with a low level of HMGA1 were more tolerant to rapamycin. Subsequent experiments have supported this finding. Through a transcriptome sequencing, we identified a crucial downstream effector of HMGA1, FKBP12, and found that FKBP12 was necessary for HMGA1-induced cell sensitivity to rapamycin. HMGA1 interacted with ETS1, and facilitated the transcription of FKBP12. Finally, we validated this regulatory axis in in vivo experiments, where HMGA1 deficiency in transplanted tumors rendered them resistance to rapamycin. Therefore, we speculate that mTOR inhibitor therapy for individuals exhibiting a reduced level of HMGA1 or FKBP12 may not work. Conversely, individuals exhibiting an elevated level of HMGA1 or FKBP12 are more suitable candidates for mTOR inhibitor treatment.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Proteína HMGA1a , Inibidores de MTOR , Proteína Proto-Oncogênica c-ets-1 , Humanos , Linhagem Celular Tumoral , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Proteína Proto-Oncogênica c-ets-1/metabolismo , Proteína Proto-Oncogênica c-ets-1/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/patologia , Proteína HMGA1a/metabolismo , Proteína HMGA1a/genética , Inibidores de MTOR/farmacologia , Inibidores de MTOR/uso terapêutico , Proteína 1A de Ligação a Tacrolimo/metabolismo , Proteína 1A de Ligação a Tacrolimo/genética , Animais , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/tratamento farmacológico , Serina-Treonina Quinases TOR/metabolismo , Camundongos , Camundongos Nus
2.
Drug Des Devel Ther ; 18: 1469-1495, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38707615

RESUMO

This manuscript offers a comprehensive overview of nanotechnology's impact on the solubility and bioavailability of poorly soluble drugs, with a focus on BCS Class II and IV drugs. We explore various nanoscale drug delivery systems (NDDSs), including lipid-based, polymer-based, nanoemulsions, nanogels, and inorganic carriers. These systems offer improved drug efficacy, targeting, and reduced side effects. Emphasizing the crucial role of nanoparticle size and surface modifications, the review discusses the advancements in NDDSs for enhanced therapeutic outcomes. Challenges such as production cost and safety are acknowledged, yet the potential of NDDSs in transforming drug delivery methods is highlighted. This contribution underscores the importance of nanotechnology in pharmaceutical engineering, suggesting it as a significant advancement for medical applications and patient care.


Assuntos
Disponibilidade Biológica , Nanotecnologia , Solubilidade , Humanos , Preparações Farmacêuticas/química , Preparações Farmacêuticas/administração & dosagem , Sistemas de Liberação de Medicamentos , Nanopartículas/química , Portadores de Fármacos/química , Animais
3.
Adv Clin Exp Med ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38742739

RESUMO

BACKGROUND: Inflammation-induced apoptosis of alveolar type II epithelial cells is a primary contributor to sepsis-induced acute respiratory distress syndrome (ARDS). Klotho is a single-pass transmembrane protein with anti-inflammatory and anti-apoptotic effects. However, the role and mechanism of Klotho in the development of ARDS remains unknown. OBJECTIVES: This study aimed to investigate the effect of Klotho on sepsis-induced apoptosis in human pulmonary alveolar epithelial cells (HPAEpiCs) together with the potential mechanism. MATERIAL AND METHODS: Cecal ligation and puncture (CLP) were performed to generate an in vivo sepsis model, and HPAEpiCs were treated with lipopolysaccharide (LPS) to mimic sepsis in vitro. Both models were administered recombinant Klotho protein. The morphology of the lung tissue was observed, and apoptotic cells and cell viability were detected. Interleukin (IL)-1ß, IL-6, and tumor necrosis factor alpha (TNF-α) levels were detected using enzyme-linked immunosorbent assay (ELISA), while the expression of Bcl-2, Bax and cleaved caspase-3 was detected with western blotting. RESULTS: Klotho reversed the CLP-induced decrease in mouse survival in vivo (p < 0.001) and increased inflammatory cell infiltration and inflammatory substance exudation in the lung tissue of mice with sepsis (both p < 0.001). Klotho also suppressed apoptosis (p < 0.001) as demonstrated by IL-1ß, IL-6 and TNF-α expression (all p < 0.001), and Bcl-2/Bax/caspase-3 pathway activation (p < 0.001). Klotho pretreatment significantly prevented LPS-induced apoptosis in vitro (p < 0.001), as demonstrated by IL-1ß, IL-6 and TNF-α upregulation (all p < 0.001); and Bcl-2/Bax/caspase-3 pathway activation in HPAEpiCs (p < 0.001). CONCLUSIONS: This study demonstrated that Klotho can ameliorate acute lung injury (ALI) induced by sepsis by inhibiting inflammatory responses and exerting anti-apoptotic effects by suppressing Bcl-2/Bax/caspase-3 pathway activation.

4.
Anal Chem ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38717986

RESUMO

Simultaneous sensitive and precise determination of multibiomarkers is of great significance for improving detection efficiency, reducing diagnosis and treatment expenses, and elevating survival rates. However, the development of simple and portable biosensors for simultaneous determination of multiplexed targets in biological fluids still faces challenges. Herein, a unique and versatile immobilization-free dual-target electrochemical biosensing platform, which combines distinguishable magnetic signal reporters with buoyancy-magnetism separation, was designed and constructed for simultaneous detection of carcinoembryonic (CEA) and α-fetoprotein (AFP) in intricate biological fluids. To construct such distinguishable magnetic signal reporters with signal transduction, amplification, and output, secondary antibodies of CEA and AFP were respectively functionalized on methylene blue (MB) and 6-(ferrocenyl)hexanethiol (FeC) modified Fe3O4@Au magnetic nanocomposites. Meanwhile, a multifunctional flotation probe with dual target recognition, capture, and isolation capability was prepared by conjugating primary antibodies (Ab1-CEA, Ab1-AFP) to hollow buoyant microspheres. The target antigens of CEA and AFP can trigger a flotation-mediated sandwich-type immunoreaction and capture a certain amount of the distinguishable magnetic signal reporter, which enables the conversion of the target CEA and AFP quantities to the signal of the potential-resolved MB and FeC. Thus, the MB and FeC currents of magnetically adsorbed distinguishable magnetic reporters can be used to determine the CEA and AFP targets simultaneously and precisely. Accordingly, the proposed strategy exhibited a delightful linear response for CEA and AFP in the range of 100 fg·mL-1-100 ng·mL-1 with detection limits of 33.34 and 17.02 fg·mL-1 (S/N = 3), respectively. Meanwhile, no significant nonspecific adsorption and cross-talk were observed. The biosensing platform has shown satisfactory performance in the determination of real clinical samples. More importantly, the proposed approach can be conveniently extended to universal detection just by simply substituting biorecognition events. Thus, this work opens up a new promising perspective for dual and even multiple targets and offers promising potential applications in clinical diagnosis.

5.
J Inorg Biochem ; 257: 112585, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38718498

RESUMO

Ruthenium complexes are one of the most promising anticancer drugs and ferroptosis is a novel form of regulated cell death, the study on the effect of Ru complexes on ferroptosis is helpful to find more effective antitumor drugs. Here, the synthesis and characterization of two Ru complexes containing 8-hydroxylquinoline and triphenylphosphine as ligands, [Ru(L1) (PPh3)2Cl2] (Ru-1), [Ru(L2) (PPh3)2Cl2] (Ru-2), were reported. Complexes Ru-1 âˆ¼ Ru-2 showed good anticancer activity in Hep-G2 cells. Researches indicated that complexes Ru-1 âˆ¼ Ru-2 could be enriched and appear as red fluorescence in the mitochondria, arouse dysfunction of mitochondria, induce the accumulation of reactive oxygen species (ROS) and lipid peroxidation (LPO), while the morphology of nuclei and cell apoptosis had no significant change. Further experiments proved that GPX4 and Ferritin were down-regulated, which eventually triggered ferroptosis in Hep-G2 cells. Remarkably, Ru-1 showed high inhibitory activity against xenograft tumor growth in vivo (TGIR = 49%). This study shows that the complex Ru-1 could act as a novel drug candidate by triggering cell ferroptosis.

6.
Carbohydr Polym ; 337: 122088, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38710544

RESUMO

The construction of the preferred orientation structure by stretching is an efficient strategy to fabricate high-performance cellulose film and it is still an open issue whether crystalline structure or amorphous molecular chain is the key factor in determining the enhanced mechanical performance. Herein, uniaxial stretching with constant width followed by drying in a stretching state was carried out to cellulose hydrogels with physical and chemical double cross-linking networks, achieving high-performance regenerated cellulose films (RCFs) with an impressive tensile strength of 154.5 MPa and an elastic modulus of 5.4 GPa. The hierarchical structure of RCFs during uniaxial stretching and drying was systematically characterized from micro- to nanoscale, including microscopic morphology, crystalline structure as well as relaxation behavior at a molecular level. The two-dimensional correlation spectra of dynamic mechanical analysis and Havriliak-Negami fitting results verified that the enhanced mechanical properties of RCFs were mainly attributed to the stretch-induced tight packing and restricted relaxation of amorphous molecular chains. The new insight concerning the contribution of molecular chains in the amorphous region to the enhancement of mechanical performance for RCFs is expected to provide valuable guidance for designing and fabricating high-performance eco-friendly cellulose-based films.

7.
Carbohydr Polym ; 337: 122171, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38710561

RESUMO

Commercially available mushroom polysaccharides have found widespread use as adjuvant tumor treatments. However, the bioactivity of polysaccharides in Lactarius hatsudake Tanaka (L. hatsudake), a mushroom with both edible and medicinal uses, remains relatively unexplored. To address this gap, five L. hatsudake polysaccharides with varying molecular weights were isolated, named LHP-1 (898 kDa), LHP-2 (677 kDa), LHP-3 (385 kDa), LHP-4 (20 kDa), and LHP-5 (4.9 kDa). Gas chromatography-mass spectrometry, nuclear magnetic resonance, and atomic force microscopy, etc., were employed to determine their structural characteristics. The results confirmed that spherical aggregates with amorphous flexible fiber chains dominated the conformation of the LHP. LHP-1 and LHP-2 were identified as glucans with α-(1,4)-Glcp as the main chain; LHP-3 and LHP-4 were classified as galactans with varying molecular weights but with α-(1,6)-Galp as the main chain; LHP-5 was a glucan with ß-(1,3)-Glcp as the main chain and ß-(1,6)-Glcp connecting to the side chains. Significant differences were observed in inhibiting tumor cell cytotoxicity and the antioxidant activity of the LHPs, with LHP-5 and LHP-4 identified as the principal bioactive components. These findings provide a theoretical foundation for the valuable use of L. hatsudake and emphasize the potential application of LHPs in therapeutic tumor treatments.


Assuntos
Antioxidantes , Glucanos , Glucanos/química , Glucanos/farmacologia , Glucanos/isolamento & purificação , Humanos , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/isolamento & purificação , Agaricales/química , Polissacarídeos/química , Polissacarídeos/farmacologia , Polissacarídeos/isolamento & purificação , Peso Molecular , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Linhagem Celular Tumoral , Polissacarídeos Fúngicos/química , Polissacarídeos Fúngicos/farmacologia , Polissacarídeos Fúngicos/isolamento & purificação , Basidiomycota/química , Sobrevivência Celular/efeitos dos fármacos
8.
J Vasc Interv Radiol ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38723863

RESUMO

PURPOSE: To examine the relationship between hyperdense artery sign/susceptibility vessel sign (HAS/SVS) and thrombus composition, and evaluate the effect of HAS/SVS status on the association between first-line thrombectomy techniques and outcomes in patients with acute anterior-circulation large vessel occlusion (LVO). MATERIALS AND METHODS: From January 2018 to June 2021, 103 consecutive acute anterior-circulation LVO patients (75 [63.1%] male; median age, 66 years) who underwent thrombectomy, and for whom the removed clot was available for histological analyses were retrospectively reviewed. The presence of HAS and SVS was respectively assessed in noncontrast computed tomography (NCCT) and susceptibility-weighted imaging (SWI). Association of first-line thrombectomy techniques [stent retriever combined with contact aspiration (SR+CA) versus contact aspiration (CA)] with outcomes was assessed by the HAS/SVS status. RESULTS: Among the included patients, 55 (53.4%) were HAS/SVS(-), and 69 (67.0%) chose first-line SR+CA. Higher relative densities of fibrin/platelets (0.56 vs. 0.51, p<0.001) and lower relative densities of erythrocytes (0.32 vs. 0.42, p<0.001) were observed in HAS/SVS(-) than HAS/SVS(+) patients. First-line SR+CA was associated with reduced odds of distal embolization (aOR, 0.18; 95% CI, 0.04-0.83; p=0.027) and a more favorable 90-day functional outcome (aOR, 5.29; 95% CI, 1.06-26.34; p=0.042) in HAS/SVS(-) patients, and a longer recanalization time (53 min vs. 25 min, p=0.025) and higher risk of subarachnoid hemorrhage (24.2% vs. 0%, p=0.044) in HAS/SVS(+) patients. CONCLUSIONS: HAS/SVS(-) may indicate a higher density of fibrin/platelets in the thrombus, and first-line SR+CA may have a possible better performance than CA in acute LVO patients without HAS/SVS.

9.
Front Oncol ; 14: 1389713, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38699634

RESUMO

C1GALT1 plays a pivotal role in colorectal cancer (CRC) development and progression through its involvement in various molecular mechanisms. This enzyme is central to the O-glycosylation process, producing tumor-associated carbohydrate antigens (TACA) like Tn and sTn, which are linked to cancer metastasis and poor prognosis. The interaction between C1GALT1 and core 3 synthase is crucial for the synthesis of core 3 O-glycans, essential for gastrointestinal health and mucosal barrier integrity. Aberrations in this pathway can lead to CRC development. Furthermore, C1GALT1's function is significantly influenced by its molecular chaperone, Cosmc, which is necessary for the proper folding of T-synthase. Dysregulation in this complex interaction contributes to abnormal O-glycan regulation, facilitating cancer progression. Moreover, C1GALT1 affects downstream signaling pathways and cellular behaviors, such as the epithelial-mesenchymal transition (EMT), by modifying O-glycans on key receptors like FGFR2, enhancing cancer cell invasiveness and metastatic potential. Additionally, the enzyme's relationship with MUC1, a mucin protein with abnormal glycosylation in CRC, highlights its role in cancer cell immune evasion and metastasis. Given these insights, targeting C1GALT1 presents a promising therapeutic strategy for CRC, necessitating further research to develop targeted inhibitors or activators. Future efforts should also explore C1GALT1's potential as a biomarker for early diagnosis, prognosis, and treatment response monitoring in CRC, alongside investigating combination therapies to improve patient outcomes.

10.
Adv Sci (Weinh) ; : e2401664, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38704673

RESUMO

Deep-blue multi-resonance (MR) emitters with stable and narrow full-width-at-half-maximum (FWHM) are of great importance for widening the color gamut of organic light-emitting diodes (OLEDs). However, most planar MR emitters are vulnerable to intermolecular interactions from both the host and guest, causing spectral broadening and exciton quenching in thin films. Their emission in the solid state is environmentally sensitive, and the color purity is often inferior to that in solutions. Herein, a molecular design strategy is presented that simultaneously narrows the FWHM and suppresses intermolecular interactions by combining intramolecular locking and peripheral shielding within a carbonyl/nitrogen-based MR core. Intramolecularly locking carbonyl/nitrogen-based bears narrower emission of 2,10-dimethyl-12,12-diphenyl-4H-benzo[9,1]quinolizino[3,4,5,6,7-defg]acridine-4,8(12H)-dione in solution and further with peripheral-shielding groups, deep-blue emitter (12,12-diphenyl-2,10-bis(9-phenyl-9H-fluoren-9-yl)-4H-benzo[9,1]quinolizino[3,4,5,6,7-defg]acridine-4,8(12H)-dione, DPQAO-F) exhibits ultra-pure emission with narrow FWHM (c.a., 24 nm) with minimal variations (∆FWHM ≤ 3 nm) from solution to thin films over a wide doping range. An OLED based on DPQAO-F presents a maximum external quantum efficiency (EQEmax) of 19.9% and color index of (0.134, 0.118). Furthermore, the hyper-device of DPQAO-F exhibits a record-high EQEmax of 32.7% in the deep-blue region, representing the first example of carbonyl/nitrogen-based OLED that can concurrently achieve narrow bandwidth in the deep-blue region and a high electroluminescent efficiency surpassing 30%.

11.
Int J Stroke ; : 17474930241255031, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38699977

RESUMO

BACKGROUND: Many studies have explored the impact of body mass index (BMI) on stroke prognosis, yet findings remain inconsistent. AIMS: The aims of this study were to conduct a systematic review and meta-analyses to summarize the existing evidence on BMI and stroke outcomes. METHODS: PubMed, Web of Science, Embase, The Cochrane Library, CNKI, CBM, Wanfang Database and VIP Database were systematically searched from inception to Jan.1st, 2023. Cohort studies were included if they reported on a population of patients with stroke, evaluated BMI on stroke outcomes (mortality/recurrence/score of mRs) and reported original data. Data extraction and quality assessment were independently undertaken by two reviewers. Stata 16.0 software was used for meta-analysis. RESULTS: 32 studies involving 330,353 patients (5 Chinese language articles) were included in the analysis. The proportion of underweight, overweight, and obese patients was 1.85%, 18.2%, and 15.6%, respectively. Compared with normal weight, being underweight was associated with an increased risk of mortality (RR 1.78, 95% CI 1.60-1.96), poor functional outcomes defined as modified Rankin scale ≥3 (RR 1.33, 95% CI 1.22-1.45), and stroke recurrence (RR 1.19, 95% CI 1.04-1.37). Being overweight but not obese was associated with reduced mortality (RR 0.81, 95% CI 0.74-0.89) and better functional outcomes (RR 0.92, 95% CI 0.89-0.96), but did not alter the risk of stroke recurrence (RR 1.03, 95% CI 0.90-1.17). Obesity was associated with lower risk of mortality (RR 0.76, 95% CI 0.72-0.81), and better functional outcomes (RR 0.89, 95% CI 0.84-0.94). CONCLUSIONS: Our findings indicate that in patients with stroke, being underweight is associated with an increased risk of mortality, poor functional outcomes, and stroke recurrence. In contrast, being overweight but not obese, or being obese, was associated with a decreased risk of mortality and better functional outcomes. This are consistent with the obesity paradox in stroke, whereby obesity increases stroke risk in the general population but is associated with improved outcome in patients suffering stroke.Key Words body mass index; stroke; prognosis; meta-analysis.

12.
J Hazard Mater ; 472: 134556, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38735187

RESUMO

BACKGROUND: Although evidence on the association between per- and polyfluoroalkyl substances (PFASs) and human health outcomes has grown exponentially, specific health outcomes and their potential associations with PFASs have not been conclusively evaluated. METHODS: We conducted a comprehensive search through the databases of PubMed, Embase, and Web of Science from inception to February 29, 2024, to identify systematic reviews with meta-analyses of observational studies examining the associations between the PFASs and multiple health outcomes. The quality of included studies was evaluated using the A Measurement Tool to Assess Systematic Reviews (AMSTAR) tool, and credibility of evidence was assessed using the Grading of Recommendations, Assessment, Development, and Evaluations (GRADE) criteria. The protocol of this umbrella review (UR) had been registered in PROSPERO (CRD 42023480817). RESULTS: The UR identified 157 meta-analyses from 29 articles. Using the AMSTAR measurement tool, all articles were categorized as of moderate-to-high quality. Based on the GRADE assessment, significant associations between specific types of PFASs and low birth weight, tetanus vaccine response, and triglyceride levels showed high certainty of evidence. Moreover, moderate certainty of evidence with statistical significance was observed between PFASs and health outcomes including lower BMI z-score in infancy, poor sperm progressive motility, and decreased risk of preterm birth as well as preeclampsia. Fifty-two (33%) associations (e.g., PFASs and gestational hypertension, cardiovascular disease, etc) presented low certainty evidence. Additionally, eighty-five (55%) associations (e.g., PFASs with infertility, lipid metabolism, etc) presented very low certainty evidence. CONCLUSION: High certainty of evidence supported that certain PFASs were associated with the incidence of low birth weight, low efficiency of the tetanus vaccine, and low triglyceride levels.

13.
Chemistry ; : e202401377, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38738789

RESUMO

(Z)-alkenes are useful synthons but thermodynamically less stable than their (E)-isomers and typically more difficult to prepare. The synthesis of 1,4-hetero-bifunctionalized (Z)-alkenes is particularly challenging due to the inherent regio- and stereoselectivity issues. Herein we demonstrate a general, chemoselective and direct synthesis of (Z)-2-butene-1,4-diol monoesters. The protocol operates within a Pd-catalyzed decarboxylative acyloxylation regime involving vinyl ethylene carbonates (VECs) and various carboxylic acids as the reaction partners under mild and operationally attractive conditions. The newly developed process allows access to a structurally diverse pool of (Z)-2-butene-1,4-diol monoesters in good yields and with excellent regio- and stereoselectivity. Various synthetic transformations of the obtained (Z)-2-butene-1,4-diol monoesters demonstrate how these synthons are of great use to rapidly diversify the portfolio of these formal desymmetrized (Z)-alkenes.

14.
Anal Chem ; 96(19): 7516-7523, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38691765

RESUMO

Herein, single-atom iron doped carbon dots (SA Fe-CDs) were successfully prepared as novel electrochemiluminescence (ECL) emitters with high ECL efficiency, and a biosensor was constructed to ultrasensitively detect microRNA-222 (miRNA-222). Importantly, compared with the conventional without single-atom doped CDs with low ECL efficiency, SA Fe-CDs exhibited strong ECL efficiency, in which single-atom iron as an advanced coreactant accelerator could significantly enhance the generation of reactive oxygen species (ROS) from the coreactant S2O82- for improving the ECL efficiency. Moreover, a neoteric amplification strategy combining the improved strand displacement amplification with Nt.BbvCI enzyme-induced target amplification (ISDA-EITA) could produce 4 output DNAs in every cycle, which greatly improved the amplification efficiency. Thus, a useful ECL biosensor was built with a detection limit of 16.60 aM in the range of 100 aM to 1 nM for detecting traces of miRNA-222. In addition, miRNA-222 in cancer cell lysate (MHCC-97L) was successfully detected by using the ECL biosensor. Therefore, this strategy provides highly efficient single-atom doped ECL emitters for the construction of sensitive ECL biosensing platforms in the biological field and clinical diagnosis.


Assuntos
Técnicas Biossensoriais , Carbono , Técnicas Eletroquímicas , Ferro , Medições Luminescentes , MicroRNAs , Pontos Quânticos , MicroRNAs/análise , Carbono/química , Ferro/química , Técnicas Eletroquímicas/métodos , Pontos Quânticos/química , Humanos , Técnicas Biossensoriais/métodos , Limite de Detecção
15.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124350, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38692108

RESUMO

Smartphone-based digital image colorimetry is a powerful, fast, low-cost approach to detecting target analytes. However, lighting conditions and camera parameters easily affect the detection results, significantly curtailing its applicability in multiple scenarios. In this study, an Android-based mobile application (SMP-CC) is developed, which offers a comprehensive package that includes image acquisition, color correction, and colorimetric analysis functions. Using a custom color card, a built-in algorithm in SMP-CC can minimize the color difference between the standard color block image captured by different smartphones under different lighting conditions and the standard value by an LS171 colorimeter less than 4.36. The algorithm significantly eliminates the impacts of external lighting conditions and differences in cell phone models. Furthermore, the feasibility of SMP-CC was verified by successful colorimetric detection of urine pH, glucose, and protein, demonstrating its potential in smartphone-based digital image colorimetry.

16.
Artigo em Inglês | MEDLINE | ID: mdl-38652598

RESUMO

OBJECTIVES: Patients with systemic lupus erythematosus (SLE) display heightened immune activation and elevated IgG autoantibody levels, indicating compromised regulatory T cell (Tregs) function. Our recent findings pinpoint CD8+ Tregs as crucial regulators within secondary lymphoid organs, operating in a NOX2-dependent mechanism. However, the specific involvement of CD8+ Tregs in SLE pathogenesis and the mechanisms underlying their role remain uncertain. METHODS: SLE and healthy individuals were enlisted to assess the quantity and efficacy of Tregs. CD8+CD45RA+CCR7+ Tregs were generated ex vivo, and their suppressive capability was gauged by measuring pZAP70 levels in targeted T cells. Notch1 activity was evaluated by examining activated Notch1 and HES1, with manipulation of Notch1 accomplished with Notch inhibitor DAPT, Notch1 shRNA, and Notch1-ICD. To create humanized SLE chimeras, immune-deficient NSG mice were engrafted with PBMCs from SLE patients. RESULTS: We observed a reduced frequency and impaired functionality of CD8+ Tregs in SLE patients. There was a downregulation of NOX2 in CD8+ Tregs from SLE patients, leading to a dysfunction. Mechanistically, the reduction of NOX2 in SLE CD8+ Tregs occurred at a post-translational level rather than at the transcriptional level. SLE CD8+ Tregs exhibited heightened Notch1 activity, resulting in increased expression of STUB1, an E3 ubiquitin ligase that binds to NOX2 and facilitates its ubiquitination. Consequently, restoring NOX2 levels and inhibiting Notch1 activity could alleviate the severity of the disease in humanized SLE chimeras. CONCLUSION: Notch1 is the cell-intrinsic mechanism underlying NOX2 deficiency and CD8+ Treg dysfunction, serving as a therapeutic target for clinical management of SLE.

17.
Cell Biol Toxicol ; 40(1): 24, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653919

RESUMO

Elongin B (ELOB), a pivotal element in the ELOB/c-Cullin2/5-SOCS-box E3 ubiquitin-protein ligase complex, plays a significant role in catalyzing the ubiquitination and subsequent degradation of a broad spectrum of target proteins. Notably, it is documented to facilitate these processes. However, the regulatory role of ELOB in breast cancer remains ambiguous. In this study, through bio-informatic analysis of The Cancer Genome Atlas and Fudan University Shanghai Cancer Center database, we demonstrated that ELOB was over-expressed in breast cancer tissues and was related to unfavorable prognosis. Additionally, pathway enrichment analysis illustrated that high expression of ELOB was associated with multiple cancer promoting pathways, like cell cycle, DNA replication, proteasome and PI3K - Akt signaling pathway, indicating ELOB as a potential anticancer target. Then, we confirmed that both in vivo and in vitro, the proliferation of breast cancer cells could be significantly suppressed by the down-regulation of ELOB. Mechanically, immunoprecipitation and in vivo ubiquitination assays prompted that, as the core element of Cullin2-RBX1-ELOB E3 ligase (CRL2) complex, ELOB regulated the ubiquitination and the subsequent degradation of oncoprotein p14/ARF. Moreover, the anticancer efficacy of erasing ELOB could be rescued by simultaneous knockdown of p14/ARF. Finally, through analyzing breast cancer tissue microarrays and western blot of patient samples, we demonstrated that the expression of ELOB in tumor tissues was elevated in compared to adjacent normal tissues. In conclusion, ELOB is identified to be a promising innovative target for the drug development of breast cancer by promoting the ubiquitination and degradation of oncoprotein p14/ARF.


Assuntos
Neoplasias da Mama , Proliferação de Células , Elonguina , Ubiquitinação , Humanos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Feminino , Elonguina/metabolismo , Elonguina/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Progressão da Doença , Camundongos Nus , Camundongos , Regulação Neoplásica da Expressão Gênica , Transdução de Sinais , Camundongos Endogâmicos BALB C , Células MCF-7 , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
18.
Medicine (Baltimore) ; 103(15): e37636, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38608065

RESUMO

This study aimed to investigate the clinical predictors, including traditional Chinese medicine tongue characteristics and other clinical parameters for chemotherapy-induced myelosuppression (CIM), and then to develop a clinical prediction model and construct a nomogram. A total of 103 patients with lung cancer were prospectively enrolled in this study. All of them were scheduled to receive first-line chemotherapy regimens. Participants were randomly assigned to either the training group (n = 52) or the test group (n = 51). Tongue characteristics and clinical parameters were collected before the start of chemotherapy, and then the incidence of myelosuppression was assessed after treatment. We used univariate logistic regression analysis to identify the risk predictors for assessing the incidence of CIM. Moreover, we developed a predictive model and a nomogram using multivariate logistic regression analysis. Finally, we evaluated the predictive performance of the model by examining the area under the curve value of the receiver operating characteristic, calibration curve, and decision curve analysis. As a result, a total of 3 independent predictors were found to be associated with the CIM in multivariate regression analysis: the fat tongue (OR = 3.67), Karnofsky performance status score (OR = 0.11), and the number of high-toxic drugs in chemotherapy regimens (OR = 4.78). Then a model was constructed using these 3 predictors and it exhibited a robust predictive performance with an area under the curve of 0.82 and the consistent calibration curves. Besides, the decision curve analysis results suggested that applying this predictive model can result in more net clinical benefit for patients. We established a traditional Chinese medicine prediction model based on the tongue characteristics and clinical parameters, which could serve as a useful tool for assessing the risk of CIM.


Assuntos
Antineoplásicos , Doenças da Medula Óssea , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Modelos Estatísticos , Prognóstico , Língua
19.
Sci Total Environ ; 927: 172419, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38614335

RESUMO

Co-combustion of sewage sludge (SS) and coal slime (CS) is the preferred method for mitigating their environmental impact and increasing their added value. However, the interaction mechanism between SS and CS during the co-combustion process has not yet developed a unified understanding. This work aims to obtain the effect of CS types on SS-CS co-combustion and reveal the interaction mechanism between SS and CS based on the influence of pretreatment methods on the interaction. The results showed that during co-combustion, SS reduced the ignition and burnout temperatures, and CS with high fixed carbon content (e.g., XCS) improved the comprehensive combustion characteristics. Principal component analysis showed that the effect of CS on co-combustion was more significant. The interaction between SS and CS mainly occurred within 100-700 °C, in which inhibition and synergism coexisted. The large differences in the interactions before and after de-volatilization and pickling treatments revealed that the volatiles and ash in SS were the main interaction factors. The analysis of the interaction mechanisms showed that the free radicals and heat released from the SS volatiles combustion accelerated the weight loss of CS, but the formation of tars from its incomplete combustion may inhibit the decomposition of CS. The interaction in the fixed carbon combustion stage was mainly caused by SS ash, which can catalyze the combustion of CS fixed carbon, but for the high ash CS (e.g., QCS), the combustion of fixed carbon was hindered by the addition of SS ash higher than 10 %. The final manifestation (synergy or inhibition) of SS and CS interactions was the result of the competitive balance of the above interactive behaviors. This work provides a more comprehensive understanding of the interaction between SS and CS during co-combustion.

20.
World J Gastrointest Oncol ; 16(4): 1500-1513, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38660641

RESUMO

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is one of the most common malignancies worldwide, and its development comprises a multistep process from intraepithelial neoplasia (IN) to carcinoma (CA). However, the critical regulators and underlying molecular mechanisms remain largely unknown. AIM: To explore the genes and infiltrating immune cells in the microenvironment that are associated with the multistage progression of ESCC to facilitate diagnosis and early intervention. METHODS: A mouse model mimicking the multistage development of ESCC was established by providing warter containing 4-nitroquinoline 1-oxide (4NQO) to C57BL/6 mice. Moreover, we established a control group without 4NQO treatment of mice. Then, transcriptome sequencing was performed for esophageal tissues from patients with different pathological statuses, including low-grade IN (LGIN), high-grade IN (HGIN), and CA, and controlled normal tissue (NOR) samples. Differentially expressed genes (DEGs) were identified in the LGIN, HGIN, and CA groups, and the biological functions of the DEGs were analyzed via Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. The CIBERSORT algorithm was used to detect the pattern of immune cell infiltration. Immunohistochemistry (IHC) was also conducted to validate our results. Finally, the Luminex multiplex cytokine analysis was utilized to measure the serum cytokine levels in the mice. RESULTS: Compared with those in the NOR group, a total of 681541, and 840 DEGs were obtained in the LGIN, HGIN, and CA groups, respectively. Using the intersection of the three sets of DEGs, we identified 86 genes as key genes involved in the development of ESCC. Enrichment analysis revealed that these genes were enriched mainly in the keratinization, epidermal cell differentiation, and interleukin (IL)-17 signaling pathways. CIBERSORT analysis revealed that, compared with those in the NOR group, M0 and M1 macrophages in the 4NQO group showed stronger infiltration, which was validated by IHC. Serum cytokine analysis revealed that, compared with those in the NOR group, IL-1ß and IL-6 were upregulated, while IL-10 was downregulated in the LGIN, HGIN, and CA groups. Moreover, the expression of the representative key genes, such as S100a8 and Krt6b, was verified in external human samples, and the results of immunohistochemical staining were consistent with the findings in mice. CONCLUSION: We identified a set of key genes represented by S100a8 and Krt6b and investigated their potential biological functions. In addition, we found that macrophage infiltration and abnormal alterations in the levels of inflammation-associated cytokines, such as IL-1ß, IL-6, and IL-10, in the peripheral blood may be closely associated with the development of ESCC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA