Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Heliyon ; 10(8): e29164, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38644881

RESUMO

Gypenosides (Gyp) are bioactive components of Gynostemma pentaphyllum that have a variety of pharmacological properties. Extracts of G. pentaphyllum have been found to be effective in the reduction of blood sugar and lipids and prevention of atherosclerosis. Here, the functions of Gyp and the mechanisms underlying their effects on atherosclerosis were investigated. Mice were allocated to three groups, namely, the control (C57BL/6), atherosclerosis model (ApoE-/- mice with high-fat diet), and Gyp-treated groups. Differentially expressed mRNAs, miRNAs, circRNA, and differential metabolites among the groups were analyzed. The results showed that "Fatty acid metabolism", "Fatty acid elongation", "Cytokine-cytokine receptor interaction", and "PI3K-Akt signaling pathway", amongst others, were involved in treatment process. Differentially expressed genes, including Fabp1, Apoe, FADS1, ADH1, SYNPO2, and Lmod1were also identified. Mmu-miR-30a and mmu-miR-30e showed reduced expression in atherosclerosis models but were increased following Gyp treatment, suggesting involvement in the effects of Gyp. In addition, chr5:150604177-150608440 were found to interact with mmu-miR-30a and mmu-miR-30e to regulate their abundance. In terms of metabolomics, Gyp may regulate biological processes involving PGD2 and PGJ2, potentially alleviating atherosclerosis. In conclusion, Gyp appeared to have complex effects on atherosclerosis, most of which were positive. These results support the use of Gyp in the treatment of atherosclerosis.

2.
J Clin Hypertens (Greenwich) ; 26(4): 382-390, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38450969

RESUMO

It has been suggested that Omega-3 fatty acids may improve endothelial thickness and thereby reduce the onset of cardiovascular diseases such as coronary atherosclerosis and hypertension. However, published observational epidemiological studies on the relationship between cardiovascular disease (CVD) and Omega-3 fatty acids remain inconclusive. Here, we performed a two-sample Mendelian randomisation analysis using publicly available GWAS pooled statistics to study a GWAS dataset of 16 380 466 SNPs in 23 363 cases and 195 429 controls (also of European ancestry) to determine genetic susceptibility to hypertension. We performed random-effects Inverse Variance Weighted (IVW) Mendelian Randomization (MR) analyses supplemented by a series of sensitivity assessments to measure the robustness of the findings and to detect any violations of the MR assumptions. During the course of the study, we used IVW, MR-Egger, and weighted median regression to infer that Omega-3 intake has a potentially adverse effect against atherosclerosis, although the trend was not significant (OR = 1.1198; 95%; CI: 0.9641-1.3006, p = .130). Meanwhile, our analyses showed a statistically significant negative association between Omega-3 fatty acid levels and risk of hypertension (OR = 0.9006; 95% CI: 0.8179-0.9917, p = .033). In addition, we explored the causal relationship between atherosclerosis and hypertension and found a significant correlation (OR = 1.3036; 95% CI: 1.0672-1.5923, p = .009). In conclusion, our extensive data investigated by MR suggest that elevated levels of Omega-3 fatty acids may be associated with an decreased risk of hypertension. Although there is no direct link between hypertension and atherosclerosis, the possibility of a subtle association cannot be categorically excluded.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Doença da Artéria Coronariana , Ácidos Graxos Ômega-3 , Hipertensão , Humanos , Doença da Artéria Coronariana/epidemiologia , Doença da Artéria Coronariana/genética , Hipertensão/epidemiologia , Hipertensão/genética , Análise da Randomização Mendeliana , Aterosclerose/epidemiologia , Aterosclerose/genética , Estudo de Associação Genômica Ampla
3.
Front Pharmacol ; 15: 1319551, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38545554

RESUMO

Objective: The purpose of this network meta-analysis (NMA) was to compare the therapeutic effects of various Danshen (Salvia miltiorrhiza Bunge [Lamiaceae; Salviae miltiorrhizae radix et rhizoma]) injections on heart failure to determine the optimal Danshen injection combined with conventional treatment. Methods: 8 databases were searched from the inception of these databases to May 2023 to collect randomized controlled trials (RCTs) on the effectiveness and safety of Danshen injections in the treatment of heart failure. This NMA was performed using Stata 16.0 software and R 4.1.3 software. Results: A total of 24 RCTs involving 2,186 subjects were included. The intervention group received Danshen injections plus conventional treatment, involving the following 7 Danshen injections. The results of the NMA showed that Compound Danshen injection + Common (SUCRA: 79.6%) and Sodium tanshinone ⅡA sulfonate injection + Common (SUCRA: 78.0%) exhibited higher total effective rates. Sodium tanshinone ⅡA sulfonate injection + Common (SUCRA: 94.3%) and Danshen injection + Common (SUCRA: 68.2%) were superior to other traditional Chinese medicines in improving left ventricular ejection fraction (LVEF). Danshen injection + Common (SUCRA: 99.9%) and Shenxiong glucose injection + Common (SUCRA: 77.2%) were the most effective in reducing brain natriuretic peptide (BNP). In addition, compared with conventional treatment, all Danshen injections did not increase the risk of adverse reactions. Conclusion: Current evidence shows that all seven Danshen injections are effective for heart failure. Due to the limited quantity and quality of the included studies, our findings need to be verified by more high-quality studies.

4.
J Cell Mol Med ; 28(8): e18257, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38526033

RESUMO

This study aims to investigate the mechanism of the anti-atherosclerosis effect of Huayu Qutan Recipe (HYQT) on the inhibition of foam cell formation. In vivo, the mice were randomly divided into three groups: CTRL group, MOD group and HYQT group. The HYQT group received HYQT oral administration twice a day (20.54 g/kg/d), and the plaque formation in ApoE-/- mice was observed using haematoxylin-eosin (HE) staining and oil red O (ORO) staining. The co-localization of aortic macrophages and lipid droplets (LDs) was examined using fluorescent labelling of CD11b and BODIPY fluorescence probe. In vitro, RAW 264.7 cells were exposed to 50 µg/mL ox-LDL for 48 h and then treated with HYQT for 24 h. The accumulation of LDs was evaluated using ORO and BODIPY. Cell viability was assessed using the CCK-8 assay. The co-localization of LC3b and BODIPY was detected via immunofluorescence and fluorescence probe. LysoTracker Red and BODIPY 493/503 were used as markers for lysosomes and LDs, respectively. Autophagosome formation were observed via transmission electron microscopy. The levels of LC3A/B II/LC3A/B I, p-mTOR/mTOR, p-4EBP1/4EBP1, p-P70S6K/P70S6K and TFEB protein level were examined via western blotting, while SQSTM1/p62, Beclin1, ABCA1, ABCG1 and SCARB1 were examined via qRT-PCR and western blotting. The nuclear translocation of TFEB was detected using immunofluorescence. The components of HYQT medicated serum were determined using Q-Orbitrap high-resolution MS analysis. Molecular docking was employed to identify the components of HYQT medicated serum responsible for the mTOR signalling pathway. The mechanism of taurine was illustrated. HYQT has a remarkable effect on atherosclerotic plaque formation and blood lipid level in ApoE-/- mice. HYQT decreased the co-localization of CD11b and BODIPY. HYQT (10% medicated serum) reduced the LDs accumulation in RAW 264.7 cells. HYQT and RAPA (rapamycin, a mTOR inhibitor) could promote cholesterol efflux, while chloroquine (CQ, an autophagy inhibitor) weakened the effect of HYQT. Moreover, MHY1485 (a mTOR agonist) also mitigated the effects of HYQT by reduced cholesterol efflux. qRT-PCR and WB results suggested that HYQT improved the expression of the proteins ABCA1, ABCG1 and SCARB1.HYQT regulates ABCA1 and SCARB1 protein depending on the mTORC1/TFEB signalling pathway. However, the activation of ABCG1 does not depend on this pathway. Q-Orbitrap high-resolution MS analysis results demonstrated that seven core compounds have good binding ability to the mTOR protein. Taurine may play an important role in the mechanism regulation. HYQT may reduce cardiovascular risk by promoting cholesterol efflux and degrading macrophage-derived foam cell formation. It has been observed that HYQT and ox-LDL regulate lipophagy through the mTOR/TFEB signalling pathway, rather than the mTOR/4EBP1/P70S6K pathway. Additionally, HYQT is found to regulate cholesterol efflux through the mTORC1/TFEB/ABCA1-SCARB1 signal axis, while taurine plays a significant role in lipophagy.


Assuntos
Aterosclerose , Compostos de Boro , Proteínas Quinases S6 Ribossômicas 70-kDa , Animais , Camundongos , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Colesterol/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Simulação de Acoplamento Molecular , Células Espumosas/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Autofagia , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Taurina/metabolismo
5.
Artigo em Inglês | MEDLINE | ID: mdl-38213145

RESUMO

PURPOSE: Atherosclerosis is the most common and significant form of arterial disease, characterized primarily by lipid accumulation and inflammatory cell infiltration as its main pathological basis. This study aims to investigate the molecular mechanisms and associated pathways by which iron accumulation may be involved in lipid metabolism abnormalities in atherosclerotic mice. METHODS: Relying on ApoE-/- mouse body position observation, blood biochemical analysis, oxidative stress test and aortic tissue sectioning techniques, the effects of ferroptosis on lipid metabolism in atherosclerotic mice were analyzed. Use RT-PCR analysis and transcriptomics tests to understand the specific molecular mechanism. RESULTS: Our analysis reveals a correlation between Ferroptosis and elevated levels of TC, TG, ALT, AST, IL-1ß, and TNF-α in the blood of atherosclerotic model mice. At the same time, it exacerbates the pathological changes of mouse aorta tissue. Our results suggest a potential link between ferroptosis and the dysregulation of TFR1/SLC11A2/GPX4 expression, along with the presence of oxidative stress, in the progression of AS. Transcriptomics results indicate that ferroptosis- mediated deterioration of atherosclerosis in ApoE-/- mice is potentially associated with cell phagocytosis, apoptosis involving TNF-α, and the expression of atherosclerotic and other process-related genes. CONCLUSION: Ferroptosis exacerbated the lipid metabolism disorder in atherosclerotic mice. The core mechanism of its effect is that ferroptosis activates the TFR1/SLC11A2/GPX4 signaling pathway, which leads to the up-regulation of oxidative stress in ApoE-/- mice, and ultimately aggravates the abnormal lipid metabolism in ApoE-/- mice.

6.
Phytother Res ; 38(3): 1345-1357, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38198804

RESUMO

Cardiorenal syndrome type 4 (CRS4), a progressive deterioration of cardiac function secondary to chronic kidney disease (CKD), is a leading cause of death in patients with CKD. In this study, we aimed to investigate the cardioprotective effect of emodin on CRS4. C57BL/6 mice with 5/6 nephrectomy and HL-1 cells stimulated with 5% CKD mouse serum were used for in vivo and in vitro experiments. To assess the cardioprotective potential of emodin, we employed a comprehensive array of methodologies, including echocardiography, tissue staining, immunofluorescence staining, biochemical detection, flow cytometry, real-time quantitative PCR, and western blot analysis. Our results showed that emodin exerted protective effects on the function and structure of the residual kidney. Emodin also reduced pathologic changes in the cardiac morphology and function of these mice. These effects may have been related to emodin-mediated suppression of reactive oxygen species production, reduction of mitochondrial oxidative damage, and increase of oxidative metabolism via restoration of PGC1α expression and that of its target genes. In contrast, inhibition of PGC1α expression significantly reversed emodin-mediated cardioprotection in vivo. In conclusion, emodin protects the heart from 5/6 nephrectomy-induced mitochondrial damage via activation of the PGC1α signaling. The findings obtained in our study can be used to develop effective therapeutic strategies for patients with CRS4.


Assuntos
Síndrome Cardiorrenal , Emodina , Insuficiência Renal Crônica , Humanos , Camundongos , Animais , Emodina/farmacologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Apoptose , Camundongos Endogâmicos C57BL
7.
Pharmacol Res ; 200: 107054, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38181858

RESUMO

Diabetes, characterized as a well-known chronic metabolic syndrome, with its associated complications pose a substantial and escalating health and healthcare challenge on a global scale. Current strategies addressing diabetes are mainly symptomatic and there are fewer available curative pharmaceuticals for diabetic complications. Thus, there is an urgent need to identify novel pharmacological targets and agents. The impaired mitochondria have been associated with the etiology of diabetes and its complications, and the intervention of mitochondrial dysfunction represents an attractive breakthrough point for the treatments of diabetes and its complications. Natural products (NPs), with multicenter characteristics, multi-pharmacological activities and lower toxicity, have been caught attentions as the modulators of mitochondrial functions in the therapeutical filed of diabetes and its complications. This review mainly summarizes the recent progresses on the potential of 39 NPs and 2 plant-extracted mixtures to improve mitochondrial dysfunction against diabetes and its complications. It is expected that this work may be useful to accelerate the development of innovative drugs originated from NPs and improve upcoming therapeutics in diabetes and its complications.


Assuntos
Produtos Biológicos , Complicações do Diabetes , Diabetes Mellitus , Doenças Mitocondriais , Humanos , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Produtos Biológicos/metabolismo , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/metabolismo , Complicações do Diabetes/tratamento farmacológico , Complicações do Diabetes/metabolismo , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Estudos Multicêntricos como Assunto
8.
Research (Wash D C) ; 6: 0175, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37333972

RESUMO

Interorganelle contacts and communications are increasingly recognized to play a vital role in cellular function and homeostasis. In particular, the mitochondria-endoplasmic reticulum (ER) membrane contact site (MAM) is known to regulate ion and lipid transfer, as well as signaling and organelle dynamics. However, the regulatory mechanisms of MAM formation and their function are still elusive. Here, we identify mitochondrial Lon protease (LonP1), a highly conserved mitochondrial matrix protease, as a new MAM tethering protein. The removal of LonP1 substantially reduces MAM formation and causes mitochondrial fragmentation. Furthermore, deletion of LonP1 in the cardiomyocytes of mouse heart impairs MAM integrity and mitochondrial fusion and activates the unfolded protein response within the ER (UPRER). Consequently, cardiac-specific LonP1 deficiency causes aberrant metabolic reprogramming and pathological heart remodeling. These findings demonstrate that LonP1 is a novel MAM-localized protein orchestrating MAM integrity, mitochondrial dynamics, and UPRER, offering exciting new insights into the potential therapeutic strategy for heart failure.

9.
Z Naturforsch C J Biosci ; 78(5-6): 253-259, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-36762738

RESUMO

Two new natural products, belonging to alkaloids, identified as ((2R,3S,4R,5R)-5-(2,4-dioxo-3,4-dihydropyrimidin-1(2H)-yl)-3,4-dihydroxytetrahydrofuran-2-yl)methyl acetate (1) and (5-hydroxypyridin-2-yl)methyl acetate (2), were isolated from Portulaca oleracea L. The structures were identified by spectroscopic methods, including 1D, 2D NMR, and UHPLC-ESI-QTOF/MS methods. Meanwhile, the anti-inflammatory and anticholinesterase bioactivities were found in these two compounds.


Assuntos
Alcaloides , Portulaca , Portulaca/química , Estrutura Molecular , Alcaloides/farmacologia , Alcaloides/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química
10.
J Anal Methods Chem ; 2023: 5119997, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36691570

RESUMO

A rapid and highly selective and sensitive ultra-high-performance liquid chromatography coupled with triple quadrupole mass spectrometry (UHPLC-QQQ-MS/MS) method was applied to simultaneously determine ephedrine, gastrodin, and liquiritin in rat plasma. The three analytes and vitexin-2″-O-rhamnoside (I.S.) were analyzed on a Waters Acquity UPLC C18 column (1.7 µm, 2.1 mm × 100 mm) at 30°C with gradient mobile phase consisting of 0.1% formic acid aqueous solution (A) and acetonitrile (B) after one-step direct protein precipitation with acetonitrile. The detection was performed by multiple reaction monitoring (MRM) mode via electrospray ionization (ESI) source in positive and negative ion modes. The product ions m/z 166.1⟶148.1, 285.1⟶123.1, 417.1⟶255.1, and 579.0⟶433.1 were used for determination of ephedrine, gastrodin, liquiritin, and I.S., respectively. The calibration curves of the three analytes were linear with r 2 greater than 0.994. The intra and interday precision RSD% was less than 11.5 and 13.4. The intra and interday precision RE% was between -10.4% and 9.33%. The average extraction recoveries of the three analytes were no less than 86.88 ± 1.08%. The developed and validated method was for the first time applied to the pharmacokinetics of three compounds in rat plasma after intragastric administration of Banxia Baizhu Tianma Tang.

11.
Fitoterapia ; 156: 105087, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34798165

RESUMO

Three novel alkaloids, identified as (E)-N-((2R)-3-(2,5-dihydroxy-4-((3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)phenyl)-2-hydroxypropanoyl)-3-(4-hydroxyphenyl)acrylamide (1), named oleracrylimide A, (E)-N-((2R)-3-(2,5-dihydroxy-4-((3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)phenyl)-2-hydroxypropanoyl)-3-(4-hydroxy-3-methoxyphenyl)acrylamide (2), named oleracrylimide B, and (E)-N-((2R)-3-(2,5-dihydroxy-4-((3,4,5-trihydroxy-6-(((3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)phenyl)-2-hydroxypropanoyl)-3-(4-hydroxy-3-methoxyphenyl)acrylamide (3), named oleracrylimide C were isolated from Portulaca oleracea L. and the structures of the three novel compounds were determined by 1D and 2D NMR, circular dichroism, and UHPLC-ESI-QTOF/MS spectroscopic methods. Moreover, the bioactivities of anti-inflammation of the three compounds were investigated via testing RAW 264.7 macrophage cell stimulated by Lipopolysaccharide.


Assuntos
Alcaloides/isolamento & purificação , Alcaloides/farmacologia , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Portulaca/química , Alcaloides/química , Animais , Anti-Inflamatórios/química , Sobrevivência Celular , Citocinas/antagonistas & inibidores , Citocinas/metabolismo , Espectroscopia de Ressonância Magnética , Camundongos , Células RAW 264.7
12.
Aging (Albany NY) ; 13(17): 21309-21324, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34473644

RESUMO

The contribution of gut-liver signaling to the development of non-alcoholic hepatic steatosis (NHS) in non-diabetic adults remains unclear. We therefore performed comprehensive 16S ribosomal RNA sequencing and fecal metabolomics analyses in 32 controls and 59 non-diabetic adults with NHS and performed fecal microbiota transplantation into germ-free mice using controls and NHS patients as donors. Compared to controls, the abundance of the genera Collinsella and Acinetobacter were higher, while that of Lachnospira was lower, in NHS subjects. Fecal metabolomics analysis showed decreased L-tryptophan levels and increased abundance of the tryptophan metabolite kynurenine in individuals with NHS. Correlation analysis showed that kynurenine levels positively associated with the abundance of Collinsella and Acinetobacter. ROC analysis demonstrated that the combination of tryptophan and kynurenine could discriminate NHS patients from controls with good statistical power [P < 0.05; AUC = 0.833 (95% CI, 0.747 to 0.918)]. Supporting a key role of dysbiotic gut microbiota in NHS development, incipient hepatic steatosis and increased kynurenine levels were observed in GF mice colonized with samples from NHS patients. These results indicate that enhanced kynurenine production resulting from altered gut microbiota composition contributes to NHS in nondiabetic adults and suggest the relevance of tryptophan metabolites as diagnostic biomarkers.


Assuntos
Microbioma Gastrointestinal , Cinurenina/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Adulto , Estudos de Casos e Controles , Fezes/química , Feminino , Humanos , Masculino
13.
Fitoterapia ; 154: 105020, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34418491

RESUMO

Three novel alkaloids, named oleracone L (1), portulacatone B (2), and portulacatal (3), were isolated from P. oleracea L.. The structures were determined using UV, IR, 1D and 2D NMR spectroscopy and UHPLC-ESI-QTOF/MS. The three compounds in a dose-dependent manner significantly reduced the secretion of IL-1ß in the lipopolysaccharide-stimulated macrophages RAW 264.7 cell culture supernatant, moreover, exhibited the anticholinesterase activities.


Assuntos
Alcaloides/farmacologia , Anti-Inflamatórios/farmacologia , Inibidores da Colinesterase/farmacologia , Portulaca/química , Alcaloides/isolamento & purificação , Animais , Anti-Inflamatórios/isolamento & purificação , China , Inibidores da Colinesterase/isolamento & purificação , Camundongos , Estrutura Molecular , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Células RAW 264.7
14.
Fitoterapia ; 153: 104993, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34284073

RESUMO

A new skeleton flavonoid, identified as (5aR)-10-hydroxy-8-methoxy-5aH,11H-chromeno[2,3-b]chromen-11-one (1), named oleracone G, and a new lignan, confirmed as 8-(4-hydroxy-3-methoxyphenyl)-3-methoxynaphthalen-2-ol (2), named oleralignan B, were isolated from Portulaca oleracea L., and the structures of them were determined using spectroscopic methods including UV, IR, 1D NMR, 2D NMR, and UHPLC-ESI-QTOF/MS. In addition, compounds 1-2 were applied to investigate the anti-inflammatory activities on lipopolysaccharide-stimulated macrophages and scavenging effects in 1,1-diphenyl-2-picryl-hydrazyl (DPPH) free radical. The results showed that the two compounds at 10 µM and 20 µM could dose-dependently decrease the secretion of interleukin 1ß in RAW 264.7 cells by enzyme-linked immunosorbent assay, moreover, presented remarkable antioxidant activities with IC50 values of 27.57, 20.12 µM, respectively.


Assuntos
Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Flavonoides/farmacologia , Lignanas/farmacologia , Portulaca/química , Animais , Anti-Inflamatórios/isolamento & purificação , Antioxidantes/isolamento & purificação , China , Flavonoides/isolamento & purificação , Lignanas/isolamento & purificação , Camundongos , Estrutura Molecular , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/farmacologia , Células RAW 264.7
15.
BMC Cardiovasc Disord ; 21(1): 280, 2021 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-34090327

RESUMO

BACKGROUND: A high-fat diet can affect lipid metabolism and trigger cardiovascular diseases. A growing body of studies has revealed the HDL-bound miRNA profiles in familial hypercholesterolaemia; in sharp contrast, relevant studies on high-fat diet-induced dyslipidaemia are lacking. In the current study, HDL-bound miRNAs altered by a high-fat diet were explored to offer some clues for elucidating their effects on the pathogenesis of dyslipidaemia. METHODS: Six pigs were randomly divided into two groups of three pigs each, namely, the high-fat diet and the balanced diet groups, which were fed a high-fat diet and balanced diet separately for six months. HDL was separated from plasma, which was followed by dissociation of the miRNA bound to HDL. miRNA sequencing of the isolated miRNA was performed to identify the differential expression profiles between the two groups, which was validated by real-time PCR. TargetScan, miRDB, and miRWalk were used for the prediction of genes targeted by the differential miRNAs. RESULTS: Compared with the balanced diet group, the high-fat diet group had significantly higher levels of TG, TC, LDL-C and HDL-C at six months. miRNA sequencing revealed 6 upregulated and 14 downregulated HDL-bound miRNAs in the high-fat diet group compared to the balanced diet group, which was validated by real-time PCR. GO enrichment analysis showed that dysregulated miRNAs in the high-fat diet group were associated with the positive regulation of lipid metabolic processes, positive regulation of lipid biosynthetic processes, and positive regulation of Ras protein signal transduction. Insulin resistance and the Ras signalling pathway were enriched in the KEGG pathway enrichment analysis. CONCLUSIONS: Twenty HDL-bound miRNAs are significantly dysregulated in high-fat diet-induced dyslipidaemia. This study presents an analysis of a new set of HDL-bound miRNAs that are altered by a high-fat diet and offers some valuable clues for novel mechanistic insights into high-fat diet-induced dyslipidaemia. Further functional verification study using a larger sample size will be required.


Assuntos
Dieta Hiperlipídica , Dislipidemias/sangue , Lipoproteínas HDL/sangue , MicroRNAs/sangue , Animais , Modelos Animais de Doenças , Dislipidemias/etiologia , Dislipidemias/genética , Regulação da Expressão Gênica , Redes Reguladoras de Genes , MicroRNAs/genética , Sus scrofa , Fatores de Tempo
16.
Front Med (Lausanne) ; 8: 617393, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34012969

RESUMO

Acute lung injury (ALI), which is induced by renal ischemia-reperfusion (IR), is one of the leading causes of acute renal IR-related death. Obesity raises the frequency and severity of acute kidney injury (AKI) and ALI. Tanshinone IIA (TIIA) combined with cyclosporine A (CsA) was employed to lessen the lung apoptosis led by renal IR and to evaluate whether TIIA combined with CsA could alleviate lung apoptosis by regulating mitochondrial function through the PI3K/Akt/Bad pathway in obese rats. Hematoxylin-eosin (HE) staining was used to assess the histology of the lung injury. Terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) was used to assess apoptosis of the lung. Electron microscopy was used to assess mitochondrial morphology in lung cells. Arterial blood gas and pulmonary function were used to assess the external respiratory function. Mitochondrial function was used to assess the internal respiratory function and mitochondrial dynamics and biogenesis. Western blot (WB) was used to examine the PI3K/Akt/Bad pathway-related proteins. TIIA combined with CsA can alleviate lung apoptosis by regulating mitochondrial function through the PI3K/Akt/Bad pathway in obese rats.

17.
BMC Complement Med Ther ; 21(1): 100, 2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33752661

RESUMO

BACKGROUND: Acute myocardial injury (AMI), which is induced by renal ischemia-reperfusion (IR), is a significant cause of acute kidney injury (AKI)-related associated death. Obesity increases the severity and frequency of AMI and AKI. Tanshinone IIA (TIIA) combined with cyclosporine A (CsA) pretreatment was used to alleviate myocardial cell apoptosis induced by renal IR, and to determine whether TIIA combined with CsA would attenuate myocardial cell apoptosis by modulating mitochondrial function through the PI3K/Akt/Bad pathway in obese rats. METHODS: Male rates were fed a high fat diet for 8 weeks to generate obesity. AKI was induced by 30 min of kidney ischemia followed 24 h of reperfusion. Obese rats were given TIIA (10 mg/kg·d) for 2 weeks and CsA (5 mg/kg) 30 min before renal IR. After 24 h of reperfusion, the rats were anaesthetized, the blood were fetched from the abdominal aorta and kidney were fetched from abdominal cavity, then related indicators were examined. RESULTS: TIIA combined with CsA can alleviate the pathohistological injury and apoptosis induced by renal IR in myocardial cells. TIIA combined with CsA improved cardiac function after renal ischemia (30 min)-reperfusion (24 h) in obese rats. At the same time, TIIA combined with CsA improved mitochondrial function. Abnormal function of mitochondria was supported by decreases in respiration controlling rate (RCR), intracellular adenosine triphosphate (ATP), oxygen consumption rate, and mitochondrial membrane potential (MMP), and increases in mitochondrial reactive oxygen species (ROS), opening of the mitochondrial permeability transition pore (mPTP), mitochondrial DNA damage, and mitochondrial respiratory chain complex enzymes. The injury of mitochondrial dynamic function was assessed by decrease in dynamin-related protein 1 (Drp1), and increases in mitofusin1/2 (Mfn1/2), and mitochondrial biogenesis injury was assessed by decreases in PPARγ coactivator-1-α (PGC-1), nucleo respiratory factor1 (Nrf1), and transcription factor A of mitochondrial (TFam). CONCLUSION: We used isolated mitochondria from rat myocardial tissues to demonstrate that myocardial mitochondrial dysfunction occurred along with renal IR to induce myocardial cell apoptosis; obesity aggravated apoptosis. TIIA combined with CsA attenuated myocardial cell apoptosis by modulating mitochondrial function through the PI3K/Akt/Bad pathway in obese rats.


Assuntos
Abietanos/farmacologia , Apoptose/efeitos dos fármacos , Ciclosporina/farmacologia , Mitocôndrias Cardíacas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Traumatismo por Reperfusão/tratamento farmacológico , Animais , DNA Mitocondrial , Coração/efeitos dos fármacos , Rim/fisiopatologia , Masculino , Potencial da Membrana Mitocondrial , Mitocôndrias Cardíacas/patologia , Poro de Transição de Permeabilidade Mitocondrial , Obesidade , Ratos , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/patologia , Transdução de Sinais
18.
Front Endocrinol (Lausanne) ; 12: 622768, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33776922

RESUMO

To assess the variations in pulmonary function and vascular endothelial function in their early stages (without related complications). A total of 162 type 2 diabetes mellitus (T2DM) patients without diabetes complications and 55 healthy people were selected, comprising the T2DM group and the control group, respectively, to evaluate changes in vascular endothelial function and lung function and determine the correlation between them. In this study, the T2DM group exhibited significantly lower pulmonary function than that of the control group (P < 0.05). The T2DM group also showed significantly lower flow-mediated dilation (FMD) and nitric oxide (NO) (P < 0.05) than those of the control group. Pulmonary functional indexes correlated positively with FMD and NO (P < 0.05) and correlated negatively with endothelin-1 (ET-1) (P < 0.05). FMD and NO correlated negatively with diabetes duration/HbA1c (P < 0.05), whereas ET-1 correlated positively with glycosylated hemoglobinA1c (HbA1c)/diabetes duration (P < 0.05). Pulmonary functional indexes negatively correlated with HbA1c/diabetes duration (P < 0.05). Multiple linear regression was used to analyze the relationship between vascular endothelial function indexes (FMD, ET-1, and NO) and pulmonary functional indexes. The results indicated that each vascular endothelial function index (FMD, ET-1, and NO) was significantly correlated with the pulmonary functional index (P < 0.05). The patients with T2DM presented changes in the subclinical vascular endothelial and pulmonary function. They also had impaired vascular endothelial functions, which were characterized by reduced vascular endothelial function relative to those of healthy people. Regulating glycemia may improve vascular endothelial and pulmonary functions. Moreover, microvascular lesions in preclinical stages, vascular endothelial function indexes (FMD, ET-1, and NO) were valid predictors of alterations in pulmonary function in T2DM patients without related complications. Clinical Trial Registration: ClinicalTrials.gov, identifier NCT03575988.


Assuntos
Glicemia , Diabetes Mellitus Tipo 2/fisiopatologia , Endotélio Vascular/fisiopatologia , Pulmão/fisiopatologia , Adulto , Diabetes Mellitus Tipo 2/sangue , Endotelina-1/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Óxido Nítrico/sangue
19.
Med Sci Monit ; 27: e928619, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33503016

RESUMO

BACKGROUND The discovery of browning in white adipose tissue has provided new ideas for treating obesity. Many studies have reported that ginsenoside Rb1 (G-Rb1) has activity against diabetes, inflammation, and obesity, but further investigation is needed on the effect and mechanism of G-Rb1 on browning. MATERIAL AND METHODS We treated 3T3-L1 adipocytes with 0-200 µM G-Rb1, and 0.5 µM Compound 3f and 30 µM SKL2001 were used to activate Wnt/b-catenin signaling. Adipocyte activity was evaluated by Cell Counting Kit-8. Oil Red O staining was used to detect the lipid droplets. Quantitative real-time polymerase chain reaction was used to measure the expression of Cd-137, Cited-1, Txb-1, Prdm-16, and Ucp-1 mRNA. Western blotting was used to measure the expression of Ucp-1, pGSK-3ß (Ser 9), GSK- 3ß, and ß-catenin proteins. The expression of Ucp-1 was also detected with immunofluorescence. RESULTS Adipocyte activity was not affected by 0-100 µM G-Rb1. However, G-Rb1 dose-dependently reduced the accumulation of lipid droplets; increased the expression of Cd-137, Cited-1, Txb-1, Prdm-16, and Ucp-1 mRNA; and increased the expression of Ucp-1, pGSK-3ß (Ser 9), GSK-3ß, and ß-catenin proteins. The accumulation of lipid droplets and the expression of Ucp-1 protein decreased as b-catenin increased. CONCLUSIONS G-Rb1 at various concentrations (0-100 µM) promoted the browning of adipocytes in a dose-dependent manner. Further, we confirmed that activation of Wnt/ß-catenin signaling could inhibit browning. Therefore, the browning promoted by G-Rb1 may be associated with the inhibition of Wnt/ß-catenin signaling.


Assuntos
Adipócitos Brancos/efeitos dos fármacos , Ginsenosídeos/farmacologia , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adipócitos Brancos/metabolismo , Adipogenia/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Ginsenosídeos/metabolismo , Metabolismo dos Lipídeos/fisiologia , Lipídeos/fisiologia , Camundongos , Obesidade/metabolismo , Fatores de Transcrição/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/efeitos dos fármacos , beta Catenina/metabolismo
20.
Biomed Res Int ; 2020: 2819658, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32685460

RESUMO

Atherosclerosis remains the most common cause of deaths worldwide. Endothelial cell apoptosis is an important process in the progress of atherosclerosis, as it can cause the endothelium to lose their capability in regulating the lipid homeostasis, inflammation, and immunity. Endothelial cell injury can disrupt the integrity and barrier function of an endothelium and facilitate lipid deposition, leading to atherogenesis. Chinese medicine techniques for preventing and treating atherosclerosis are gaining attention, especially natural products. In this study, we demonstrated that gypenoside could decrease the levels of serum lipid, alleviate the formation of atherosclerotic plaque, and lessen aortic intima thickening. Gypenoside potentially activates the PI3K/Akt/Bad signal pathway to modulate the apoptosis-related protein expression in the aorta. Moreover, gypenoside downregulated mitochondrial fission and fusion proteins, mitochondrial energy-related proteins in the mouse aorta. In conclusion, this study demonstrated a new function of gypenoside in endothelial apoptosis and suggested a therapeutic potential of gypenoside in atherosclerosis associated with apoptosis by modulating mitochondrial function through the PI3K/Akt/Bad pathway.


Assuntos
Apoptose/efeitos dos fármacos , Aterosclerose/patologia , Células Endoteliais/patologia , Mitocôndrias/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína de Morte Celular Associada a bcl/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Aorta/patologia , Aterosclerose/sangue , Caspase 3/metabolismo , Transporte de Elétrons/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Metabolismo Energético/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Ginsenosídeos/farmacologia , Gynostemma , Lipídeos/sangue , Lipoproteínas LDL , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , Extratos Vegetais/farmacologia , Placa Aterosclerótica/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA