Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mikrochim Acta ; 191(3): 145, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38372818

RESUMO

A direct electrochemical sensor based on covalent organic frameworks (COFs)/platinum nanoparticles (PtNPs) composite was fabricated for the detection of ofloxacin (OFX) in water. Firstly, the COF material was synthesized via the condensation reaction of 1,3,5-tris(4-aminophenyl)benzene (TAPB) with terephthalaldehyde (TPA) and integrated with PtNPs by in situ reduction. Then, TAPB-TPA-COFs/PtNPs composite was loaded onto the surface of the glassy carbon electrode (GCE) by drip coating to construct the working electrode (TAPB-TPA-COFs/PtNPs/GCE). The electrochemical performance of TAPB-TPA-COFs/PtNPs/GCE showed a significant improvement compared with that of TAPB-TPA-COFs/GCE, leading to a 3.2-fold increase in the electrochemical signal for 0.01 mM OFX. Under optimal conditions, the TAPB-TPA-COFs/PtNPs/GCE exhibited a wide linear range of 9.901 × 10-3-1.406 µM and 2.024-15.19 µM with a detection limit of 2.184 × 10-3 µM. The TAPB-TPA-COFs/PtNPs/GCE-based electrochemical sensor with excellent performance provides great potential for the rapid and trace detection of residual OFX.

2.
Chemosphere ; 331: 138842, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37142102

RESUMO

In this work, a kind of multifunctional magnetic plasmonic photocatalyst was prepared by a green and efficient process. Magnetic mesoporous anatase titanium dioxide (Fe3O4@mTiO2) was synthesized by microwave-assisted hydrothermal, and Ag NPs were simultaneously in-situ grown on Fe3O4@mTiO2 (Fe3O4@mTiO2@Ag), graphene oxide (GO) was then wrapped on Fe3O4@mTiO2@Ag (Fe3O4@mTiO2@Ag@GO) to increase its adsorption capacity for fluoroquinolone antibiotics (FQs). Owing to the localized surface plasmon resonance (LSPR) effect of Ag, as well as the photocatalytic capacity of TiO2, a multifunctional platform based on Fe3O4@mTiO2@Ag@GO was constructed for adsorption, surface-enhanced Raman spectroscopy (SERS) monitoring and photodegradation of FQs in water. The quantitative SERS detection of norfloxacin (NOR), ciprofloxacin (CIP), and enrofloxacin (ENR) was demonstrated with LOD of 0.1 µg mL-1, and the qualitative analysis was confirmed by density functional theory (DFT) calculation. The photocatalytic degradation rate of NOR over Fe3O4@mTiO2@Ag@GO was about 4.6 and 1.4 times faster than that of Fe3O4@mTiO2 and Fe3O4@mTiO2@Ag, indicating the synergetic effects of Ag NPs and GO, the used Fe3O4@mTiO2@Ag@GO can be easily recovered and recycled for at least 5 times. Thus, the eco-friendly magnetic plasmonic photocatalyst provided a potential solution for the removal and monitoring of residual FQs in environmental water.


Assuntos
Fluoroquinolonas , Água , Fotólise , Adsorção , Norfloxacino , Antibacterianos , Fenômenos Magnéticos
3.
RSC Adv ; 13(15): 10135-10143, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37006373

RESUMO

Internal standard molecule 4-mercaptobenzoic acid (4-MBA) embedded Au core-Ag shell nanorods (Au-MBA@Ag NRs) were prepared by a seed-mediated growth method, then loaded on octahedral MIL-88B-NH2 to obtain a novel ratiometric SERS substrate of Au-MBA@Ag NRs/PSS/MIL-88B-NH2 (AMAPM) for detecting rhodamine 6G (R6G) in chili powder. The porous structure and excellent adsorption ability of MIL-88B-NH2, allowed for increased loading of Au-MBA@Ag NRs, thereby shortening the distance between adsorbed R6G and the "hot spot" resulting from local surface plasmon resonance (LSPR) of Au-MBA@Ag NRs. Based on the SERS characteristic peak ratio of R6G to 4-MBA, the ratiometric SERS substrate displayed improved accuracy and excellent performance for R6G detection, with a wide linear range of 5-320 nM and a low detection limit of 2.29 nM as well as fine stability, reproducibility and specificity. The proposed ratiometric SERS substrate offered a simple, fast and sensitive sensing strategy for R6G detection in chili powder, which demonstrated potential applications in food safety and the analysis of trace analytes in complex matrices.

4.
Nanoscale Adv ; 5(6): 1740-1749, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36926564

RESUMO

Although great progress has been achieved in polyphenylene sulfide (PPS) composites by the use of carbon nanotubes (CNTs), the development of cost-efficient, well dispersive and multifunctional integrated PPS composites has yet to be achieved because of the strong solvent resistance of PPS. In this work, a CNTs-PPS/PVA composite material has been prepared by mucus dispersion-annealing, which employed polyvinyl alcohol (PVA) to disperse PPS particles and CNTs at room temperature. Dispersion and scanning electron microscopy observations revealed that PVA mucus can uniformly suspend and disperse micron-sized PPS particles, promoting the interpenetration of the micro-nano scale between PPS and CNTs. During the annealing process, PPS particles deformed and then crosslinked with CNTs and PVA to form a CNTs-PPS/PVA composite. The as-prepared CNTs-PPS/PVA composite possesses outstanding versatility, including excellent heat stability with resistant temperatures up to 350 °C, corrosion resistance against strong acids and alkalis for up to 30 days, and distinguished electrical conductivity with 2941 S m-1. Besides, a well-dispersed CNTs-PPS/PVA suspension could be used to 3D print microcircuits. Hence, such multifunctional integrated composites will be highly promising in the future of new materials. This research also develops a simple and meaningful method to construct composites for solvent resistant polymers.

5.
RSC Adv ; 13(4): 2392-2401, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36741183

RESUMO

For highly sensitive detection of 4-nitrophenol (4-NP) in the environment, a novel pyridine diketopyrrolopyrrole-functionalized graphene oxide (PDPP-GO) composite was constructed for the first time by an improved Hummers' method. Herein, PDPP was completely dissolved in sulfuric acid (6 mol L-1) and reacted with GO, promoting PDPP evenly adhering to the GO surface. Moreover, the specific surface area increased from 15.51 to 22.033 m2 g-1. Infrared spectroscopy and X-ray photoelectron spectroscopy simultaneously demonstrated that PDPP was bound to GO by the strong intermolecular hydrogen bonding and π-π stacking conjugation. During the cyclic voltammetry test, the PDPP-GO coated glassy carbon electrode (PDPP-GO/GCE) direct electrochemical sensor gave expression to the best electrocatalytic activity for 4-nitrophenol detection than GO/GCE and bare GCE. Under optimization conditions, the as-prepared PDPP-GO/GCE sensor brought out remarkable sensitivities of 18.54 (0.5-50 µM) and 6.61 µA µM-1 cm-2 (50-163 µM) in the linear detection of 4-NP. Besides, a low detection limit of 0.10 µM, reliable long-term stability, excellent selectivity, and reproducibility were obtained. In the real sample test, the PDPP-GO/GCE demonstrated sensitive and reliable determination.

6.
Nanomaterials (Basel) ; 13(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36770354

RESUMO

A novel direct electrochemical sensor, based on a pyridine diketopyrrolopyrrole/graphene oxide nanocomposite-modified glass carbon electrode (PDPP/GO/GCE), was developed herein for chloramphenicol (CAP) detection. In this research, PDPP was grafted onto GO by C-N bonds and π-π conjugation, which were synergistically confirmed by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. The morphology study shows that PDPP was uniformly dispersed on the GO in the form of particles. The constructed PDPP/GO/GCE showed the strongest response signal to CAP in the evaluation of electrocatalytic activity by cyclic voltammetry compared to that of GO-modified and unmodified GCE, revealing that the introduction of PDPP can effectively improve the electrocatalytic activity of sensors. Moreover, PDPP/GO/GCE had a noticeable current signal when the concentration of CAP was as low as 0.001 uM and had a wide line range (0.01-780 uM) with a low limit of detection (1.64 nM). The sensor properties of the as-obtained PDPP/GO/GCE involved anti-interference, reproducibility, and stability, which were also evaluated and revealed satisfactory results.

7.
Chemosphere ; 271: 129830, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33556630

RESUMO

In this work, we have constructed a novel graphitic carbon nitride/multiwall carbon nanotube (GCN/CNT) doped Ti/PbO2 as anode for highly effective degradation of acetaminophen (ACE) wastewater. The ACE removal efficiency of 83.2% and chemical oxygen demand removal efficiency of 76.3% are achieved under the optimal condition of temperature 25 °C, initial pH 7, current density 15 mA cm-2 and Na2SO4 concentration 6.0 g L-1. The excellent electrocatalytic activity of Ti/PbO2-GCN-CNT anode for ACE oxidation is ascribed to the effective suppression of oxygen evolution and the enhanced electron transfer after introducing GCN and CNT. Furthermore, Ti/PbO2-GCN-CNT electrode displays excellent stability and reusability. ACE degradation is accomplished by direct oxidation and indirect oxidation, and ∙OH radical plays primary role in the indirect oxidation of ACE wastewater. The intermediates of ACE degradation are detailly investigated using LC-MS analysis and a possible degradation mechanism is proposed.


Assuntos
Nanotubos de Carbono , Poluentes Químicos da Água , Acetaminofen , Eletrodos , Grafite , Compostos de Nitrogênio , Oxirredução , Óxidos , Titânio , Poluentes Químicos da Água/análise
8.
Chemosphere ; 268: 128799, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33187658

RESUMO

In this work, Ti/PbO2-Co-Sm electrode has been successfully prepared using electrodeposition and further applied for the electrocatalysis of atrazine (ATZ) herbicide wastewater. As expected, Ti/PbO2-Co-Sm electrode displays highest oxygen evolution potential, lowest charge transfer resistance, longest service lifetime and most effective electrocatalytic activity compared with Ti/PbO2, Ti/PbO2-Sm and Ti/PbO2-Co electrodes. Orthogonal and single factor experiments are designed to optimize the condition of ATZ degradation. The maximum degradation efficiency of 92.6% and COD removal efficiency of 84.5% are achieved in electrolysis time 3 h under the optimum condition (current density 20 mA cm-2, Na2SO4 concentration 8.0 g L-1, pH 5 and temperature 35 °C). In addition, Ti/PbO2-Co-Sm electrode exhibits admirable recyclability in degradation progress. The degradation of ATZ is accomplished by indirect electrochemical oxidation and ∙OH is tested as the main active substance in ATZ oxidation. The possible degradation mechanism of ATZ has been proposed according to the degradation intermediates detected by LC-MS. This research suggests that Ti/PbO2-Co-Sm is a promising electrode for ATZ degradation.


Assuntos
Atrazina , Poluentes Químicos da Água , Eletrodos , Oxirredução , Óxidos , Titânio , Poluentes Químicos da Água/análise
9.
Bioelectrochemistry ; 131: 107392, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31707277

RESUMO

A flexible acetylcholinesterase (AChE) film biosensor, based on a AuNPs-MoS2-reduced graphene oxide/polyimide flexible film (rGO/PI) electrode, has been synthesized for paraoxon detection. In this study, the rGO/PI film acts as the flexible substrate and AuNPs are reduced by monolayer MoS2 under illumination. Transmission electron microscopy revealed that AuNPs are uniformly dispersed on the MoS2-rGO/PI electrode surface with a diameter ~10nm. X-ray photoelectron spectroscopy indicated that a strong binding force exists between reduced AuNPs and monolayer MoS2. The AChE modified AuNPs-MoS2-rGO/PI flexible film biosensor is used to hydrolyze acetylcholine chloride and obtain a large current response at 0.49V by differential pulse voltammetry, demonstrating successful immobilization of AChE. In view of the inhibition of paraoxon on the AChE, under optimal conditions, the AChE/AuNPs-MoS2-rGO/PI film biosensor shows a linear response over a concentration range 0.005-0.150µg/mL, a sensitivity of 4.44 uA/µg/mL, a detection limit of 0.0014µg/mL, acceptable reproducibility and stability to paraoxon. The flexible film biosensor has also proved used for detection of paraoxon in real samples.


Assuntos
Acetilcolinesterase/metabolismo , Técnicas Biossensoriais , Dissulfetos/química , Ouro/química , Grafite/química , Inseticidas/análise , Molibdênio/química , Nanopartículas/química , Paraoxon/análise , Limite de Detecção
10.
Ecotoxicol Environ Saf ; 188: 109921, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31711778

RESUMO

The presence of pesticides in water has emerged as a momentous environmental issue over the past decades. Herein, a terbium doped Ti/PbO2 (denoted as Ti/PbO2-Tb) dimensionally stable Ti/PbO2-Tb anode has been successfully prepared by one-step electrodeposition path for electrocatalytic degradation of imidacloprid (IMD) wastewater with high efficiency. Ti/PbO2-Tb electrode presents higher oxygen evolution potential, lower charge transfer resistance, stronger stability, longer service lifetime and outstanding electrocatalytic activity than Ti/PbO2 electrode. The optimum condition for IMD oxidation is obtained by analyzing the effects of some critical operating parameters including temperature, initial pH, current density and electrolyte concentration. It is proved that 70.05% of chemical oxygen demand and 76.07% of IMD are removed after 2.5 h of degradation under current density of 8 mA cm-2, pH 9, temperature 30 °C and 7.0 g L-1 NaCl electrolyte. In addition, the electrode displays commendable energy saving property as well as favorable reusability. The degradation mechanism of IMD is proposed by analyzing the intermediates identified by LC-MS. The present research provides a feasible strategy to degrade IMD wastewater by Ti/PbO2-Tb electrode.


Assuntos
Técnicas Eletroquímicas/métodos , Neonicotinoides/análise , Nitrocompostos/análise , Térbio/química , Águas Residuárias/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Análise da Demanda Biológica de Oxigênio , Técnicas Eletroquímicas/instrumentação , Eletrodos , Chumbo/química , Oxirredução , Óxidos/química , Titânio/química
11.
Chemosphere ; 224: 707-715, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30851522

RESUMO

In this work, dimensionally stable Ti/SnO2-RuO2 electrode is successfully prepared using thermal decomposition method for the electrocatalytic degradation of high-concentration industrial gallic acid (GA) effluent in detail. The surface morphology, crystal structure and element analysis of as-prepared Ti/SnO2-RuO2 electrode are characterized by scanning electron microscopy, X-ray diffraction and X-ray fluorescence spectrometer, respectively. In addition, cyclic voltammetry, polarization curve and accelerated life tests are exploited to investigate the electrocatalytic activity and stability of Ti/SnO2-RuO2 electrode. Orthogonal experiment shows that, among the factors (current density, temperature and initial pH), current density is pivotal parameter influencing the degradation efficiency of industrial GA effluent. COD removal and degradation efficiencies of GA effluent reach up to 76.9% and 80.1% after 6 h, respectively, at the optimal conditions (current density of 10 mA cm-2, pH 6 and 35 °C). The degradation of GA effluent follows pseudo-first-order reaction kinetics. This work provides an in-depth theoretical support and application of electrocatalytic technology to the treatment of high-concentration industrial GA effluent.


Assuntos
Análise da Demanda Biológica de Oxigênio/métodos , Ácido Gálico/química , Compostos de Rutênio/química , Compostos de Estanho/química , Titânio/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Eletrodos , Difração de Raios X
12.
J Colloid Interface Sci ; 533: 750-761, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30199831

RESUMO

In this work, a novel Ti/PbO2-Sm2O3 composite electrode with high electrocatalytic activity is successfully fabricated via simple electrodeposition method and further investigated for electrochemical degradation of alizarin yellow R (AYR) wastewater. The test results of X-ray diffraction, field-emission scanning electron microscopy and energy-dispersive X-ray spectroscopy confirm that Sm2O3 is successfully composited with PbO2. The coating of Ti/PbO2-Sm2O3 composite electrode stacked by typical pyramid-like micro-particles exhibits smooth and compact surface morphology which is conducive to enhancing the corrosion resistance of electrode. Furthermore, electrochemical performance tests indicate that Ti/PbO2-Sm2O3 composite electrode has advantages of higher oxygen evolution potential, lower charge transfer resistance and longer lifetime over Ti/PbO2 electrode. Electrolyte concentration, plate space, initial pH and cell voltage are assessed to optimize the degradation condition of AYR. The results show that COD removal efficiency and degradation efficiency of AYR on Ti/PbO2-Sm2O3 composite electrode reach up to 79.90% and 80.00% under the optimal conditions (Na2SO4 electrolyte concentration 9.0 g L-1, plate space 3.0 cm, initial pH 5, cell voltage 3.0 V and electrolysis time 150 min), respectively. The degradation of AYR follows pseudo-first-order reaction kinetics, and a plausible mineralization pathway of AYR is proposed on the basis of the identification of major intermediate products. These results suggest that Ti/PbO2-Sm2O3 composite electrode is a promising candidate for electrocatalytic degradation of AYR wastewater.

13.
Anal Chim Acta ; 1031: 75-82, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30119746

RESUMO

A novel poly(glycine) (p-GLY)/graphene oxide (GO) composite based sensor (p-GLY/GO) was successfully prepared on glassy carbon electrode by simple electropolymerization. Electrochemical responses of analytes on p-GLY/GO modified electrode were studied by cyclic voltammetry and differential pulse voltammetry. The results demonstrated that p-GLY/GO modified electrode showed a favorable application for the simultaneous determination of dopamine (DA), uric acid (UA), guanine (GU) and adenine (AD). Owing to the synergistic effect of p-GLY and GO, the oxidation peaks of four analytes separated well from each other, and the potential separations of oxidation peaks of DA-UA, UA-GU and GU-AD were large up to 170, 350 and 300 mV, respectively. As-prepared p-GLY/GO modified electrode offered wide linear responses for DA, UA, GU and AD over the ranges of 0.20-62, 0.10-105, 0.15-48 and 0.090-103 µM with detection limits of 0.011, 0.061, 0.026 and 0.030 µM (S/N = 3), respectively. Moreover, p-GLY/GO modified electrode presented favorable selectivity, stability and reproducibility, which was a promising candidate as an electrochemical sensor for the simultaneous determination of DA, UA, GU and AD.


Assuntos
Adenina/análise , Dopamina/análise , Técnicas Eletroquímicas/métodos , Grafite/química , Guanina/análise , Peptídeos/química , Ácido Úrico/análise , Carbono/química , Catálise , Eletrodos , Limite de Detecção , Microscopia Eletrônica de Varredura , Oxirredução , Óxidos/química , Reprodutibilidade dos Testes , Espectroscopia de Infravermelho com Transformada de Fourier
14.
Mikrochim Acta ; 185(2): 107, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29594700

RESUMO

A composite consisting of carbon quantum dots (CQDs) and overoxidized poly(2-aminopyridine) (PAPox) was deposited on a glassy carbon electrode (GCE) through electrochemical polymerization and electrochemical oxidation. The modified GCE was used for the simultaneous determination of guanine and adenine. Electrochemical responses to guanine and adenine were investigated by cyclic voltammetry and differential pulse voltammetry. Owing to the synergistic effect of CQDs and PAPox, two oxidation peaks can be observed, with peaks at 0.81 and 1.13 V (vs. SCE) for guanine and adenine, respectively. The current at the respective peaks has a linear dependence on the concentrations of guanine in the range from 1.0 to 65 µM, and of adenine in the range from 2.0 to 70 µM. The respective detection limits are 0.51 and 0.39 µM (at an S/N ratio of 3). The modified GCE is selective, reproducible and stable. Graphical abstract Schematic of the preparation of a glassy carbon electrode modified with carbon quantum dots and overoxidized poly(2-aminopyridine (CQD/PAPox/GCE), and its application for the simultaneous determination of guanine and adenine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA