Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Elife ; 122023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37144879

RESUMO

The vestibular maculae of the inner ear contain sensory receptor hair cells that detect linear acceleration and contribute to equilibrioception to coordinate posture and ambulatory movements. These hair cells are divided between two groups, separated by a line of polarity reversal (LPR), with oppositely oriented planar-polarized stereociliary bundles that detect motion in opposite directions. The transcription factor EMX2 is known to establish this planar polarized organization in mouse by regulating the distribution of the transmembrane receptor GPR156 at hair cell boundaries in one group of cells. However, the genes regulated by EMX2 in this context were previously not known. Using mouse as a model, we have identified the serine threonine kinase STK32A as a downstream effector negatively regulated by EMX2. Stk32a is expressed in hair cells on one side of the LPR in a pattern complementary to Emx2 expression in hair cells on the opposite side. Stk32a is necessary to align the intrinsic polarity of the bundle with the core planar cell polarity (PCP) proteins in EMX2-negative regions, and is sufficient to reorient bundles when ectopically expressed in neighboring EMX2-positive regions. We demonstrate that STK32A reinforces LPR formation by regulating the apical localization of GPR156. These observations support a model in which bundle orientation is determined through separate mechanisms in hair cells on opposite sides of the maculae, with EMX2-mediated repression of Stk32a determining the final position of the LPR.


Assuntos
Polaridade Celular , Vestíbulo do Labirinto , Animais , Camundongos , Polaridade Celular/fisiologia , Células Ciliadas Auditivas/metabolismo , Células Receptoras Sensoriais/metabolismo , Fatores de Transcrição/metabolismo , Vestíbulo do Labirinto/metabolismo
2.
Antioxidants (Basel) ; 11(12)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36552559

RESUMO

Uncontrolled and sustained inflammation disrupts the wound-healing process and produces excessive reactive oxygen species, resulting in chronic or impaired wound closure. Natural antioxidants such as plant-based extracts and natural polysaccharides have a long history in wound care. However, they are hard to apply to wound beds due to high levels of exudate or anatomical sites to which securing a dressing is difficult. Therefore, we developed a complex coacervate-based drug carrier with underwater adhesive properties that circumvents these challenges by enabling wet adhesion and controlling inflammatory responses. This resulted in significantly accelerated wound healing through balancing the pro- and anti-inflammatory responses in macrophages. In brief, we designed a complex coacervate-based drug carrier (ADC) comprising oligochitosan and inositol hexaphosphate to entrap and release antioxidant proanthocyanins (PA) in a sustained way. The results from in vitro experiments demonstrated that ADC is able to reduce LPS-stimulated pro-inflammatory responses in macrophages. The ability of ADC to reduce LPS-stimulated pro-inflammatory responses in macrophages is even more promising when ADC is encapsulated with PA (ADC-PA). Our results indicate that ADC-PA is able to polarize macrophages into an M2 tissue-healing phenotype via up-regulation of anti-inflammatory and resolution of inflammatory responses. Treatment with ADC-PA around the wound beds fine-tunes the balance between the numbers of inducible nitric oxide synthase-positive (iNOS+) and mannose receptor-negative (CD206-) M1 and iNOS-CD206+ M2 macrophages in the wound microenvironment compared to controls. Achieving such a balance between the numbers of iNOS+CD206- M1 and iNOS-CD206+ M2 macrophages in the wound microenvironment has led to significantly improved wound closure in mouse models of diabetes, which exhibit severe impairments in wound healing. Together, our results demonstrate for the first time the use of a complex coacervate-based drug delivery system to promote timely resolution of the inflammatory responses for diabetic wound healing by fine-tuning the functions of macrophages.

3.
Front Oncol ; 12: 1001126, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36330492

RESUMO

Oral cancer, constituted up to 90% by squamous cell carcinomas, is a significant health burden globally. Grape seed proanthocyanidins (PA) have been suggested as a potential chemopreventive agent for oral cancer. However, their efficacy can be restricted due to the low bioavailability and bioaccessibility. Inspired by sandcastle worm adhesive, we adapted the concept of complex coacervation to generate a new type of drug delivery platform. Complex coacervates are a dense liquid phase formed by the associative separation of a mixture of oppositely charged polyelectrolytes, can serve as a drug delivery platform to protect labile cargo. In this study, we developed a complex coacervates-based delivery of PA. The release kinetics was measured, and anticancer effects were determined in two human tongue squamous cell carcinoma cell lines. The results showed that complex coacervate successfully formed and able to encapsulate PA. Additionally, PA were steadily released from the system in a pH-dependent manner. The drug delivery system could significantly inhibit the cell proliferation, migration, and invasion of cancer cells. Moreover, it could markedly reduce the expression of certain matrix metalloproteinases (MMP-2, 9, and 13) crucial to metastatic processes. We also found that suppression of protein kinase B (Akt) pathway might be the underlying mechanism for these anticancer activities. Taken together, complex coacervates-based delivery of PA can act as an effective anticancer approach for oral cancer therapy.

4.
Tissue Eng Part B Rev ; 27(3): 215-237, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32873216

RESUMO

Clefts of the lip and/or palate are the most prevalent orofacial birth defects occurring in about 1:700 live human births worldwide. Early postnatal surgical interventions are extensive and staged to bring about optimal growth and fusion of palatal shelves. Severe cleft defects pose a challenge to correct with surgery alone, resulting in complications and sequelae requiring life-long, multidisciplinary care. Advances made in materials science innovation, including scaffold-based delivery systems for precision tissue engineering, now offer new avenues for stimulating bone formation at the site of surgical correction for palatal clefts. In this study, we review the present scientific literature on key developmental events that can go awry in palate development and the common surgical practices and challenges faced in correcting cleft defects. How key osteoinductive pathways implicated in palatogenesis inform the design and optimization of constructs for cleft palate correction is discussed within the context of translation to humans. Finally, we highlight new osteogenic agents and innovative delivery systems with the potential to be adopted in engineering-based therapeutic approaches for the correction of palatal defects. Impact statement Tissue-engineered scaffolds supplemented with osteogenic growth factors have attractive, largely unexplored possibilities to modulate molecular signaling networks relevant to driving palatogenesis in the context of congenital anomalies (e.g., cleft palate). Constructs that address this need may obviate current use of autologous bone grafts, thereby avoiding donor-site morbidity and other regenerative challenges in patients afflicted with palatal clefts. Combinations of biomaterials and drug delivery of diverse regenerative cues and biologics are currently transforming strategies exploited by engineers, scientists, and clinicians for palatal cleft repair.


Assuntos
Fissura Palatina , Fissura Palatina/terapia , Humanos , Transdução de Sinais , Engenharia Tecidual , Alicerces Teciduais
5.
Front Physiol ; 11: 581843, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329029

RESUMO

In these studies, we explored for the first time the molecular relationship between the paired-domain-containing transcription factor, Pax9, and the ectodysplasin (Eda) signaling pathway during mouse incisor formation. Mice that were deficient in both Pax9 and Eda were generated, and the status of dentition analyzed in all progeny using gross evaluation and histomorphometric means. When compared to wildtype controls, Pax9+/-Eda-/- mice lack mandibular incisors. Interestingly, Fgf and Shh signaling are down-regulated while Bmp4 and Lef1 appear unaffected. These findings suggest that Pax9-dependent signaling involves the Eda pathway and that this genetic relationship is important for mandibular incisor development. Studies of records of humans affected by mutations in PAX9 lead to the congenital absence of posterior dentition but interestingly involve agenesis of mandibular central incisors. The latter phenotype is exhibited by individuals with EDA or EDAR mutations. Thus, it is likely that PAX9, in addition to playing a role in the formation of more complex dentition, is also involved with EDA signaling in the initiation of odontogenesis within the incisal domain.

6.
J Endod ; 46(9S): S19-S25, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32950190

RESUMO

INTRODUCTION: The ability to resolve pulpal inflammation to achieve predictable regeneration of the dentin-pulp complex has remained elusive and presents a challenge for clinicians and researchers. Although the dentin-pulp complex can react naturally to injury by forming a bridge of reparative dentin that protects the pulp from further damage, this process is significantly impaired if inflammation persists. Because the secretion of inflammatory cytokines by injured pulpal cells causes significant pain and discomfort to patients, it is critical to resolve pulpal inflammation in a timely manner so as to create a microenvironment conducive for pulpal healing and reparative dentin formation. The emergent field of regenerative endodontics has encouraged the development and application of biologically driven therapies that take advantage of the intrinsic healing capacities of host cells within dental pulp and the periapical complex. METHODS: These studies were designed to test the hypothesis that exposure to hypoxic conditions can modulate the production of inflammatory cytokines/factors by mesenchymal cells in vitro. A multi-domain peptide hydrogel system that is highly conducive for the growth and differentiation of tooth-derived stem cells was used for these studies. Stem cells from human exfoliated deciduous teeth (SHEDs) were first cultured within 3-dimensional hydrogel constructs and then challenged with hypoxic stresses via addition of H2O2. RESULTS: MDP constructs were successfully generated, challenged with H2O2, decellularized and lyophilized, forming a potential biomaterial containing hypoxia induced repair molecules. The ability of cell-derived factors to convert the phenotype of lipopolysaccharide-primed macrophages from a proinflammatory to a pro-resolving state was examined in the presence of the lyophilized SHED cell constructs. CONCLUSIONS: Our data suggest that hypoxia induced SHED cell products can be captured within the hydrogel system and may be useful in the resolution of pulpal inflammation to create a favorable microenvironment for regeneration of the dentin-pulp complex.


Assuntos
Polpa Dentária , Regeneração , Humanos , Peróxido de Hidrogênio , Hipóxia , Inflamação
7.
Dev Dyn ; 249(10): 1274-1284, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32390226

RESUMO

BACKGROUND: Despite the strides made in understanding the complex network of key regulatory genes and cellular processes that drive palate morphogenesis, patients suffering from these conditions face treatment options that are limited to complex surgeries and multidisciplinary care throughout life. Hence, a better understanding of how molecular interactions drive palatal growth and fusion is critical for the development of treatment and preventive strategies for cleft palates in humans. Our previous work demonstrated that Pax9-dependent Wnt signaling is critical for the growth and fusion of palatal shelves. We showed that controlled intravenous delivery of small molecule Wnt agonists specifically blocks the action of Dkks (inhibitors of Wnt signaling) and corrects secondary palatal clefts in Pax9-/- mice. While these data underscore the importance of the functional upstream relationship of Pax9 to the Wnt pathway, not much is known about how the genetic nature of Pax9's interactions in vivo and how it modulates the actions of these downstream effectors during palate formation. RESULTS: Here, we show that the genetic reduction of Dkk1 during palatogenesis corrected secondary palatal clefts in Pax9-/- mice with restoration of Wnt signaling activities. In contrast, genetically induced overexpression of Dkk1 mice phenocopied the defects in tooth and palate development visible in Pax9-/- strains. Results of ChIP-qPCR assays showed that Pax9 can bind to regions near the transcription start sites of Dkk1 and Dkk2 as well as the intergenic region of Wnt9b and Wnt3 ligands that are downregulated in Pax9-/- palates. CONCLUSIONS: Taken together, these data suggest that the molecular mechanisms underlying Pax9's role in modulating Wnt signaling activity likely involve the inhibition of Dkk expression and the control of Wnt ligands during palatogenesis.


Assuntos
Fator de Transcrição PAX9/genética , Fator de Transcrição PAX9/fisiologia , Palato/embriologia , Proteínas Wnt/genética , Animais , Fissura Palatina/genética , Modelos Animais de Doenças , Feminino , Genótipo , Ligantes , Masculino , Mesoderma , Camundongos , Mutação , Palato/fisiologia , Fenótipo , Transdução de Sinais , Proteínas Wnt/metabolismo , Proteína Wnt3/genética
8.
SLAS Technol ; 24(1): 55-65, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29842850

RESUMO

Hydrogels are homogenous materials that are limited in their ability to form oriented multilayered architecture in three-dimensional (3D) tissue constructs. Current techniques have led to advancements in this area. Such techniques often require extra devices and/or involve complex processes that are inaccessible to many laboratories. Here is described a one-step methodology that permits reliable alignment of cells into multiple layers using a self-assembling multidomain peptide (MDP) hydrogels. We characterized the structural features, viability, and molecular properties of dental pulp cells fabricated with MDP and demonstrated that manipulation of the layering of cells in the scaffolds was achieved by decreasing the weight by volume percentage (w/v%) of MDP contained within the scaffold. This approach allows cells to remodel their environment and enhanced various gene expression profiles, such as cell proliferation, angiogenesis, and extracellular matrix (ECM) remodeling-related genes. We further validated our approach for constructing various architectural configurations of tissues by fabricating cells into stratified multilayered and tubular structures. Our methodology provides a simple, rapid way to generate 3D tissue constructs with multilayered architectures. This method shows great potential to mimic in vivo microenvironments for cells and may be of benefit in modeling more complex tissues in the field of regenerative medicine.


Assuntos
Polpa Dentária/fisiologia , Hidrogel de Polietilenoglicol-Dimetacrilato/metabolismo , Peptídeos/metabolismo , Técnicas de Cultura de Tecidos/métodos , Alicerces Teciduais , Animais , Linhagem Celular , Camundongos
9.
Development ; 144(20): 3819-3828, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28893947

RESUMO

Clefts of the palate and/or lip are among the most common human craniofacial malformations and involve multiple genetic and environmental factors. Defects can only be corrected surgically and require complex life-long treatments. Our studies utilized the well-characterized Pax9-/- mouse model with a consistent cleft palate phenotype to test small-molecule Wnt agonist therapies. We show that the absence of Pax9 alters the expression of Wnt pathway genes including Dkk1 and Dkk2, proven antagonists of Wnt signaling. The functional interactions between Pax9 and Dkk1 are shown by the genetic rescue of secondary palate clefts in Pax9-/-Dkk1f/+;Wnt1Cre embryos. The controlled intravenous delivery of small-molecule Wnt agonists (Dkk inhibitors) into pregnant Pax9+/- mice restored Wnt signaling and led to the growth and fusion of palatal shelves, as marked by an increase in cell proliferation and osteogenesis in utero, while other organ defects were not corrected. This work underscores the importance of Pax9-dependent Wnt signaling in palatogenesis and suggests that this functional upstream molecular relationship can be exploited for the development of therapies for human cleft palates that arise from single-gene disorders.


Assuntos
Fissura Palatina/genética , Fatores de Transcrição Box Pareados/genética , Palato/embriologia , Proteína Wnt1/agonistas , Proteína Wnt1/genética , Animais , Padronização Corporal , Proliferação de Células , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Peptídeos e Proteínas de Sinalização Intercelular/genética , Masculino , Camundongos , Camundongos Transgênicos , Morfogênese , Osteogênese , Fator de Transcrição PAX9 , Fenótipo , Ligação Proteica , Via de Sinalização Wnt
10.
Dev Biol ; 420(1): 110-119, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27713059

RESUMO

Mutations in MSX1 cause craniofacial developmental defects, including tooth agenesis, in humans and mice. Previous studies suggest that Msx1 activates Bmp4 expression in the developing tooth mesenchyme to drive early tooth organogenesis. Whereas Msx1-/- mice exhibit developmental arrest of all tooth germs at the bud stage, mice with neural crest-specific inactivation of Bmp4 (Bmp4ncko/ncko), which lack Bmp4 expression in the developing tooth mesenchyme, showed developmental arrest of only mandibular molars. We recently demonstrated that deletion of Osr2, which encodes a zinc finger transcription factor expressed in a lingual-to-buccal gradient in the developing tooth bud mesenchyme, rescued molar tooth morphogenesis in both Msx1-/- and Bmp4ncko/ncko mice. In this study, through RNA-seq analyses of the developing tooth mesenchyme in mutant and wildtype embryos, we found that Msx1 and Osr2 have opposite effects on expression of several secreted Wnt antagonists in the tooth bud mesenchyme. Remarkably, both Dkk2 and Sfrp2 exhibit Osr2-dependent preferential expression on the lingual side of the tooth bud mesenchyme and expression of both genes was up-regulated and expanded into the tooth bud mesenchyme in Msx1-/- and Bmp4ncko/ncko mutant embryos. We show that pharmacological activation of canonical Wnt signaling by either lithium chloride (LiCl) treatment or by inhibition of DKKs in utero was sufficient to rescue mandibular molar tooth morphogenesis in Bmp4ncko/ncko mice. Furthermore, whereas inhibition of DKKs or inactivation of Sfrp2 alone was insufficient to rescue tooth morphogenesis in Msx1-/- mice, pharmacological inhibition of DKKs in combination with genetic inactivation of Sfrp2 and Sfrp3 rescued maxillary molar morphogenesis in Msx1-/- mice. Together, these data reveal a novel mechanism that the Bmp4-Msx1 pathway and Osr2 control tooth organogenesis through antagonistic regulation of expression of secreted Wnt antagonists.


Assuntos
Proteína Morfogenética Óssea 4/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Fator de Transcrição MSX1/metabolismo , Proteínas de Membrana/metabolismo , Organogênese , Transdução de Sinais , Dente/embriologia , Proteínas Wnt/antagonistas & inibidores , Animais , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Cloreto de Lítio/farmacologia , Mandíbula/efeitos dos fármacos , Mandíbula/embriologia , Mandíbula/metabolismo , Proteínas de Membrana/genética , Camundongos Knockout , Dente Molar/efeitos dos fármacos , Dente Molar/embriologia , Dente Molar/metabolismo , Morfogênese/efeitos dos fármacos , Organogênese/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Dente/efeitos dos fármacos , Dente/metabolismo , Germe de Dente/efeitos dos fármacos , Germe de Dente/embriologia , Germe de Dente/metabolismo , Fatores de Transcrição , Proteínas Wnt/metabolismo
11.
Semin Cell Dev Biol ; 25-26: 61-70, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24355560

RESUMO

Four conserved signaling pathways, including the bone morphogenetic proteins (Bmp), fibroblast growth factors (Fgf), sonic hedgehog (Shh), and wingless-related (Wnt) pathways, are each repeatedly used throughout tooth development. Inactivation of any of these resulted in early tooth developmental arrest in mice. The mutations identified thus far in human patients with tooth agenesis also affect these pathways. Recent studies show that these signaling pathways interact through positive and negative feedback loops to regulate not only morphogenesis of individual teeth but also tooth number, shape, and spatial pattern. Increased activity of each of the Fgf, Shh, and canonical Wnt signaling pathways revitalizes development of the physiologically arrested mouse diastemal tooth germs whereas constitutive activation of canonical Wnt signaling in the dental epithelium is able to induce supernumerary tooth formation even in the absence of Msx1 and Pax9, two transcription factors required for normal tooth development beyond the early bud stage. Bmp4 and Msx1 act in a positive feedback loop to drive sequential tooth formation whereas the Osr2 transcription factor restricts Msx1-mediated expansion of the mesenchymal odontogenic field along both the buccolingual and anteroposterior axes to pattern mouse molar teeth in a single row. Moreover, the ectodermal-specific ectodysplasin (EDA) signaling pathway controls tooth number and tooth shape through regulation of Fgf20 expression in the dental epithelium, whereas Shh suppresses Wnt signaling through a negative feedback loop to regulate spatial patterning of teeth. In this article, we attempt to integrate these exciting findings in the understanding of the molecular networks regulating tooth development and patterning.


Assuntos
Dentição , Dente/anatomia & histologia , Dente/crescimento & desenvolvimento , Animais , Humanos , Camundongos , Morfogênese
12.
Development ; 140(23): 4709-18, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24173808

RESUMO

Cleft palate is one of the most common birth defects in humans. Whereas gene knockout studies in mice have shown that both the Osr2 and Pax9 transcription factors are essential regulators of palatogenesis, little is known about the molecular mechanisms involving these transcription factors in palate development. We report here that Pax9 plays a crucial role in patterning the anterior-posterior axis and outgrowth of the developing palatal shelves. We found that tissue-specific deletion of Pax9 in the palatal mesenchyme affected Shh expression in palatal epithelial cells, indicating that Pax9 plays a crucial role in the mesenchyme-epithelium interactions during palate development. We found that expression of the Bmp4, Fgf10, Msx1 and Osr2 genes is significantly downregulated in the developing palatal mesenchyme in Pax9 mutant embryos. Remarkably, restoration of Osr2 expression in the early palatal mesenchyme through a Pax9(Osr2KI) allele rescued posterior palate morphogenesis in the absence of Pax9 protein function. Our data indicate that Pax9 regulates a molecular network involving the Bmp4, Fgf10, Shh and Osr2 pathways to control palatal shelf patterning and morphogenesis.


Assuntos
Padronização Corporal/genética , Morfogênese/genética , Fatores de Transcrição Box Pareados/metabolismo , Palato/embriologia , Animais , Proteína Morfogenética Óssea 4/metabolismo , Proliferação de Células , Fissura Palatina/genética , Fator 10 de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/metabolismo , Fator de Transcrição MSX1/biossíntese , Fator de Transcrição MSX1/genética , Fator de Transcrição MSX1/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fator de Transcrição PAX9 , Fatores de Transcrição Box Pareados/genética , Palato/crescimento & desenvolvimento , Palato/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo
13.
Development ; 140(2): 423-32, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23250216

RESUMO

Previous studies have suggested that Bmp4 is a key Msx1-dependent mesenchymal odontogenic signal for driving tooth morphogenesis through the bud-to-cap transition. Whereas all tooth germs were arrested at the bud stage in Msx1(-/-) mice, we show that depleting functional Bmp4 mRNAs in the tooth mesenchyme, through neural crest-specific gene inactivation in Bmp4(f/f);Wnt1Cre mice, caused mandibular molar developmental arrest at the bud stage but allowed maxillary molars and incisors to develop to mineralized teeth. We found that expression of Osr2, which encodes a zinc finger protein that antagonizes Msx1-mediated activation of odontogenic mesenchyme, was significantly upregulated in the molar tooth mesenchyme in Bmp4(f/f);Wnt1Cre embryos. Msx1 heterozygosity enhanced maxillary molar developmental defects whereas Osr2 heterozygosity partially rescued mandibular first molar morphogenesis in Bmp4(f/f);Wnt1Cre mice. Moreover, in contrast to complete lack of supernumerary tooth initiation in Msx1(-/-)Osr2(-/-) mice, Osr2(-/-)Bmp4(f/f);Wnt1Cre compound mutant mice exhibited formation and subsequent arrest of supernumerary tooth germs that correlated with downregulation of Msx1 expression in the tooth mesenchyme. In addition, we found that the Wnt inhibitors Dkk2 and Wif1 were much more abundantly expressed in the mandibular than maxillary molar mesenchyme in wild-type embryos and that Dkk2 expression was significantly upregulated in the molar mesenchyme in Bmp4(f/f);Wnt1Cre embryos, which correlated with the dramatic differences in maxillary and mandibular molar phenotypes in Bmp4(f/f);Wnt1Cre mice. Together, these data indicate that Bmp4 signaling suppresses tooth developmental inhibitors in the tooth mesenchyme, including Dkk2 and Osr2, and synergizes with Msx1 to activate mesenchymal odontogenic potential for tooth morphogenesis and sequential tooth formation.


Assuntos
Proteína Morfogenética Óssea 4/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Dente/embriologia , Animais , Heterozigoto , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Fator de Transcrição MSX1/genética , Fator de Transcrição MSX1/metabolismo , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência/métodos , Morfogênese/genética , Mutação , Odontogênese/genética , Transdução de Sinais , Fatores de Tempo , Fatores de Transcrição/metabolismo , Dedos de Zinco
14.
PLoS One ; 4(3): e4677, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19262741

RESUMO

MicroRNAs (miRNAs) are endogenous non-coding genes that participate in post-transcription regulation by either degrading mRNA or blocking its translation. It is considered to be very important in regulating insect development and metamorphosis. We conducted a large-scale screening for miRNA genes in the silkworm Bombyx mori using sequence-by-synthesis (SBS) deep sequencing of mixed RNAs from egg, larval, pupal, and adult stages. Of 2,227,930 SBS tags, 1,144,485 ranged from 17 to 25 nt, corresponding to 256,604 unique tags. Among these non-redundant tags, 95,184 were matched to the silkworm genome. We identified 3,750 miRNA candidate genes using a computational pipeline combining RNAfold and TripletSVM algorithms. We confirmed 354 miRNA genes using miRNA microarrays and then performed expression profile analysis on these miRNAs for all developmental stages. While 106 miRNAs were expressed in all stages, 248 miRNAs were egg- and pupa-specific, suggesting that insect miRNAs play a significant role in embryogenesis and metamorphosis. We selected eight miRNAs for quantitative RT-PCR analysis; six of these were consistent with our microarray results. In addition, we searched for orthologous miRNA genes in mammals, a nematode, and other insects and found that most silkworm miRNAs are conserved in insects, whereas only a small number of silkworm miRNAs has orthologs in mammals and the nematode. These results suggest that there are many miRNAs unique to insects.


Assuntos
Bombyx/crescimento & desenvolvimento , MicroRNAs/fisiologia , Algoritmos , Animais , Bombyx/genética , Biologia Computacional , Genes , Genoma , Insetos , MicroRNAs/genética , Especificidade da Espécie
15.
Arch Insect Biochem Physiol ; 69(2): 47-59, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18615617

RESUMO

Pair-rule genes (genes that are expressed only in alternate segments, odd or even) play an important role in translating the broad gradients of upstream genes into dual segment periodicity for body plan patterning in Drosophila. However, homologues of pair-rule genes show a remarkable diversity of expression patterns and functions in other insects. We cloned the homologue of runt in the silkworm Bombyx mori, an intermediate germband-type insect. Whole-mount in situ hybridization revealed three stripes arose one by one before gastrulation at the blastoderm stage. Five additional stripes were then generated sequentially as the growth zone elongated. Eight stripes appeared in a pair-rule manner with two-segment periodicity, each of which was confined to the posterior of an odd-numbered parasegment. The weaker segmental secondary stripes emerged de novo in even-numbered parasegments. The Bmrunt transcript vanished before blastokinesis and was then expressed again in the whole embryo. RNA interference for Bmrunt caused severely truncated, almost completely asegmental defects. This cadual-like phenotype suggests that Bmrunt does not function as a pair-rule gene in silkworm segmentation. Bmrunt is required for formation of most body segments and axis elongation in B. mori.


Assuntos
Bombyx/genética , Proteínas de Insetos/genética , Larva/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Bombyx/embriologia , Clonagem Molecular , Primers do DNA , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ , Proteínas de Insetos/química , Dados de Sequência Molecular , Filogenia , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos
16.
J Proteome Res ; 6(8): 3003-10, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17608510

RESUMO

The silk gland of the silkworm Bombyx mori undergoes programmed cell death (PCD) during pupal metamorphosis. On the basis of their morphological changes and the occurrence of a DNA ladder, the tissue cells were categorized into three groups: intact, committed, and dying. To identify the proteins involved in this process, we conducted a comparative proteomic analysis. Protein expression changes among the three different cell types were examined by two-dimensional gel electrophoresis. Among approximately 1000 reproducibly detected protein spots on each gel, 43 were down-regulated and 34 were up-regulated in PCD process. Mass spectrometry identified 17 differentially expressed proteins, including some well-studied proteins as well as some novel PCD related proteins, such as caspases, proteasome subunit, elongation factor, heat shock protein, and hypothetical proteins. Our results suggest that these proteins may participate in the silk gland PCD process of B. mori and, thus, provide new insights for this mechanism.


Assuntos
Proteínas de Insetos/metabolismo , Metamorfose Biológica/fisiologia , Proteoma/metabolismo , Sequência de Aminoácidos , Animais , Apoptose/fisiologia , Bombyx , Morte Celular/fisiologia , Eletroforese em Gel Bidimensional/métodos , Proteínas de Insetos/análise , Dados de Sequência Molecular , Seda/biossíntese
17.
Genomics ; 90(3): 372-9, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17582738

RESUMO

Many genes act together during the complex process of insect larval and pupal development. 20-hydroxyecdysone interacts with juvenile hormone to control insect growth and development and then activates several transcription factors, i.e., Broad, E74, and E75, and, subsequently, the late target genes. To investigate this phenomenon, we used serial analysis of gene expression (SAGE) tag-based cDNA microarray analysis to monitor the global gene expression profile during larval development and larva-pupa metamorphosis of the silkworm Bombyx mori. Of the 330 clones that were dotted to the chip, 267 were obtained by generating longer cDNA fragments from SAGE tags for gene identification, and the others were obtained from SAGE tag-matched genes or expressed sequence tags from public databases. According to the gene expression profile, the genes were classified into 12 clusters using a self-organizing map analysis. The results were partially confirmed using real-time reverse transcription-polymerase chain reaction. We obtained 22 full-length cDNAs using rapid amplification of 5' cDNA ends, of which eight genes were novel in the silkworm. Our results indicated that use of a cDNA microarray based on SAGE tags is effective for identifying and examining some low-expression genes associated with insect development.


Assuntos
DNA Complementar/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Animais , Bombyx , Clonagem Molecular , Etiquetas de Sequências Expressas , Perfilação da Expressão Gênica , Biblioteca Gênica , Genes de Insetos , Técnicas Genéticas , Proteínas de Insetos/metabolismo , Filogenia , Reação em Cadeia da Polimerase , RNA/química
18.
Can J Microbiol ; 52(11): 1085-92, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17215900

RESUMO

We compared the bacterial communities in the larval midgut of field and laboratory populations of a polyphagous pest, the cotton bollworm (Helicoverpa armigera), using denaturing gradient gel electrophoresis (DGGE) of amplified 16S rDNA sequences and 16S library sequence analysis. DGGE profiles and 16S rDNA library sequence analysis indicated similar patterns of midgut microbial community structure and diversity: specific bacterial types existed in both populations, and a more diverse microbial community was observed in caterpillars obtained from the field. The laboratory population harbored a rather simple gut microflora consisting mostly of phylotypes belonging to Enterococcus (84%). For the field population, phylotypes belonging to Enterococcus (28%) and Lactococcus (11%), as well as Flavobacterium (10%), Acinetobacter (19%), and Stenotrophomonas (10%) were dominant members. These results provided the first comprehensive description of the microbial diversity of the midgut of the important pest cotton bollworm and suggested that the environment and food supply might influence the diversity of the gut bacterial community.


Assuntos
Impressões Digitais de DNA , Sistema Digestório/microbiologia , Lepidópteros/microbiologia , RNA Ribossômico 16S/isolamento & purificação , Animais , Biodiversidade , Dieta , Biblioteca Gênica , Gossypium/parasitologia , RNA Ribossômico 16S/classificação
19.
Proc Natl Acad Sci U S A ; 102(45): 16303-8, 2005 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-16263926

RESUMO

We established a genetic linkage map employing 518 simple sequence repeat (SSR, or microsatellite) markers for Bombyx mori (silkworm), the economically and culturally important lepidopteran insect, as part of an international genomics program. A survey of six representative silkworm strains using 2,500 (CA)n- and (CT)n-based SSR markers revealed 17-24% polymorphism, indicating a high degree of homozygosity resulting from a long history of inbreeding. Twenty-nine SSR linkage groups were established in well characterized Dazao and C108 strains based on genotyping of 189 backcross progeny derived from an F(1) male mated with a C108 female. The clustering was further focused to 28 groups by genotyping 22 backcross progeny derived from an F(1) female mated with a C108 male. This set of SSR linkage groups was further assigned to the 28 chromosomes (established linkage groups) of silkworm aided by visible mutations and cleaved amplified polymorphic sequence markers developed from previously mapped genes, cDNA sequences, and cloned random amplified polymorphic DNAs. By integrating a visible mutation p (plain, larval marking) and 29 well conserved genes of insects onto this SSR-based linkage map, a second generation consensus silkworm genetic map with a range of 7-40 markers per linkage group and a total map length of approximately 3431.9 cM was constructed and its high efficiency for genotyping and potential application for synteny studies of Lepidoptera and other insects was demonstrated.


Assuntos
Bombyx/genética , Ligação Genética , Sequências Repetitivas de Ácido Nucleico , Animais , Sequência de Bases , Mapeamento Cromossômico , Marcadores Genéticos , Dados de Sequência Molecular
20.
Z Naturforsch C J Biosci ; 59(11-12): 856-62, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15666546

RESUMO

We investigated the role of the salicylic acid (SA) signaling pathway in defense responses of tomato plants to the herbivore, cotton bollworm. After exposure to the cotton bollworm, tomato leaves rapidly accumulated a high level of SA. The transcription of PR1 and BGL2 genes, the marker genes of SA pathway, was up-regulated. An enhanced endogenous SA level was accompanied by an increase in the endogenous H2O2 level as compared with controls. Spraying tomato plants with a solution containing either SA or methyl salicylic acid (Me-SA), the H2O2 level dramatically increased. These data proved that the SA pathway was involved in the tomato plant defense responses to the herbivore.


Assuntos
Lepidópteros/patogenicidade , Ácido Salicílico/metabolismo , Solanum lycopersicum/parasitologia , Animais , Sequência de Bases , Primers do DNA , Genes de Plantas , Peróxido de Hidrogênio/metabolismo , Imunidade Inata , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Doenças das Plantas/parasitologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA