Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Ying Yong Sheng Tai Xue Bao ; 35(1): 177-185, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38511454

RESUMO

Microbial necromass carbon (MNC) is a crucial source for stable soil carbon pool, and understanding its response to carbon inputs from both aboveground (litter) and belowground (roots) in subtropical forest soils is essential for assessing soil carbon stocks in global ecosystems. In a Castanopsis carlesii plantation at the Sanming Forest Ecosystem National Observation and Research Station in Fujian Province, we conducted an experiment with five treatments, including root removal (NR), aboveground litter removal (NL), no litter input (removals of both aboveground litter and roots, NI), double aboveground litter addition (DL), and control (CK). After seven years, we collected soil samples in the 0-10 cm soil layer to examine changes in MNC content and its contribution to soil organic carbon (SOC). Results showed that NR treatment reduced MNC, bacterial necromass carbon (BNC), and fungal necromass carbon (FNC) by 15.9%, 20.2%, and 14.5%, respectively, while other treatments did not induce significant changes. The NR, NL, NI, and DL treatments did not affect the contributions of BNC, FNC, and MNC to SOC. Correlation and path analyses revealed that litter and root carbon input treatments could alter the MNC content directly or indirectly through changing soil available substrates and microbial community structure. Our results suggested that roots exert a stronger influence on the maintenance of MNC than aboveground carbon source in the mid-subtropical plantations.


Assuntos
Ecossistema , Fagaceae , Solo/química , Carbono/análise , Microbiologia do Solo , Florestas , Bactérias
2.
Ying Yong Sheng Tai Xue Bao ; 30(11): 3662-3670, 2019 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-31833678

RESUMO

Forest harvesting changes the quantity and quality of organic matter inputs into soil, and thus would alter soil nutrient content and availability. Phosphorus (P) is a key element affecting plant growth. The effects of harvest residue treatments on soil P fractions and availability had not yet been evaluated. In this study, harvest residue retainment (RR), residue removal (R) and residue burning (RB) treatments were manipulated after clear-cutting in a mature Chinese fir (Cunninghamia lanceolata) plantation at the Sanming Forest Ecosystem and Global Change Research Station in Fujian, China. This study focused on the dynamics of soil P fractions and their driving factors in the 0-10 cm and 10-20 cm soil layers after 4-year residue treatments. The results showed that, in RR treatment, the contents of easily-available P, moderately-available P and non-available P at the 0-10 cm soil layer were all significantly higher than those in R treatment, while the contents of moderately-available P and non-available P at the 10-20 cm soil layer was significantly higher than those in RB treatments. The ratios of soil organic carbon (C) to organic P (C:Po) in both layers were over 200 for all the three treatments, with ratios in RR treatment being significantly lower than those in RB and R treatments, indicating that RR could alleviate P limitation in this ecosystem. Moreover, results of the redundancy analysis showed that changes in P fractions were mainly affected by dissolved organic C, free Fe and noncrystalline amorphous Fe. The results suggested that soil organic P and available P were mainly from the decomposition of plant residues, which supported continuous P supply for plant growth. RR could enhance soil P content, thereby improve soil P availability and mitigate P limitation in Chinese fir plantation.


Assuntos
Cunninghamia , Carbono , China , Ecossistema , Nitrogênio , Fósforo , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA