Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
J Ethnopharmacol ; 335: 118599, 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39043352

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Shenlin Baizhu Decoction (SLBZD), which comes from 'Taiping Huimin Heji Ju Fang', belongs to a classical prescription for treating spleen deficiency and dampness obstruction (SQDDS)-type ulcerative colitis (UC) in traditional Chinese medicine. However, the mechanism of SLBZD in treating UC with SQDDS remains unclear. AIM OF THE STUDY: This study aims to investigate the mechanism of SLBZD against SQDDS-type UC of based on the "gut microbiota and metabolism - bone marrow" axis to induce endogenous bone marrow mesenchymal stem cells (BMSCs) homing. MATERIALS AND METHODS: Ultra-performance liquid chromatography-mass spectrometry was used to analysis of SLBZD qualitatively. The efficacy of SLBZD in SQDDS-type UC was evaluated based on the following indicators: the body weight, colon length, disease activity index (DAI) score, Haemotoxylin and Eosin (H&E) pathological sections, and intestinal permeability proteins (occluding and ZO-1). 16S rRNA gene sequencing and non-target metabolomics were performed to identify gut microbiota changes and its metabolites in feces, respectively. BMSCs in each group was collected, cultured, and analyzed. Optimal passaged BMSCs were injected by tail vein into UC rats of SQDDS types. BMSCs homing to the colonic mucosal tissue was observed by immunofluorescent. Finally, the repairing effect of BMSCs homing to the colonic mucosal tissue after SLBZD treatment was analyzed by transmission electron microscopy, qRT-PCR, and immunohistochemistry. RESULTS: SLBZD effectively improved the colonic length and the body weight, reduced DAI and H&E scores, and increased the expression of the intestinal permeability proteins, including occluding and ZO-1, to treat SQDDS-type UC. After SLBZD treatment, the α-diversity and ß-diversity of the gut microbiota were improved. The differential microbiota was screened as Aeromonadaceae, Lactobacillaceae, and Clostridiaceae at the family level, and Aeromonas, Lactobacillus, Clostridium_sensu_stricto_1 at the genus level. Meanwhile, the main metabolic pathway was the galactose metabolism pathway. SLBZD treatment timely corrected the aberrant levels of ß-galactose in peripheral blood and bone marrow, senescence-associate-ß-galactosidase in BMSCs, and galactose kinase-2, galactose mutase, and galactosidase beta-1 in peripheral blood to further elevate the expression levels of senescence-associated (SA) proteins (p16, p53, p21, and p27) in BMSCs. The Spearman's correlation analysis demonstrated the relationship between microbiota and metabolism, and the relationship between the galactose metabolism pathway and SA proteins. After BMSCs in each group injection via the tail vein, the pharmacodynamic effects were consistent with those of SLBZD in SQDDS-type UC rats. Furthermore, BMSCs have been homing to colonic mucosal tissue. BMSCs from the SLBZD treatment group had stronger restorative effects on intestinal permeability function due to increasing protein and mRNA expressions of occludin and ZO-1, and decreasing the proteins and mRNA expressions of SDF-1 and CXCR4 in colon. CONCLUSIONS: SLBZD alleviated the damaged structure of gut microbiota and regulated their metabolism, specifically the galactose metabolism, to treat UC of SDDOS types. SLBZD treatment promotes endogenous BMSCs homing to colonic mucosal tissue to repaire the intestinal permeability. The current exploration revealed an underlying mechanism wherein SLBZD activates endogenous BMSCs by targeting 'the gut microbiota and its metabolism-bone marrow' axis and repairs colonic mucosal damage to treat SDDOS-type UC.

2.
BMC Psychiatry ; 24(1): 518, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039484

RESUMO

BACKGROUND: The Sleep Condition Indicator (SCI), an insomnia measurement tool based on the updated Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) criteria with sound psychometric properties when applied in various populations, was evaluated here among healthcare students longitudinally, to demonstrate its measurement properties and invariance in this particularly high-risk population. METHODS: Healthcare students of a Chinese university were recruited into this two-wave longitudinal study, completing the simplified Chinese version of the SCI (SCI-SC), Chinese Regularity, Satisfaction, Alertness, Timing, Efficiency, Duration (RU_SATED-C) scale, Chinese Patient Health Questionnaire-4 (PHQ-4-C), and sociodemographic variables questionnaire (Q-SV) between September and November 2022. Structural validity, measurement invariance (MI), convergent and discriminant validity, internal consistency, and test-retest reliability of the SCI-SC were examined. Subgroups of gender, age, home location, part-time job, physical exercise, and stress-coping strategy were surveyed twice to test cross-sectional and longitudinal MI. RESULTS: We identified 343 valid responses (62.9% female, mean age = 19.650 ± 1.414 years) with a time interval of seven days. The two-factor structure was considered satisfactory (comparative fit index = 0.953-0.989, Tucker-Lewis index = 0.931-0.984, root means square error of approximation = 0.040-0.092, standardized root mean square residual = 0.039-0.054), which mostly endorsed strict invariance except for part-time job subgroups, hence establishing longitudinal invariance. The SCI-SC presented acceptable convergent validity with the RU_SATED-C scale (r ≥ 0.500), discriminant validity with the PHQ-4-C (0.300 ≤ r < 0.500), internal consistency (Cronbach's alpha = 0.811-0.835, McDonald's omega = 0.805-0.832), and test-retest reliability (intraclass correlation coefficient = 0.829). CONCLUSION: The SCI-SC is an appropriate screening instrument available for assessing insomnia symptoms among healthcare students, and the promising measurement properties provide additional evidence about validity and reliability for detecting insomnia in healthcare students.


Assuntos
Psicometria , Distúrbios do Início e da Manutenção do Sono , Humanos , Feminino , Masculino , Estudos Longitudinais , Reprodutibilidade dos Testes , China , Adulto Jovem , Distúrbios do Início e da Manutenção do Sono/diagnóstico , Distúrbios do Início e da Manutenção do Sono/psicologia , Inquéritos e Questionários , Adulto , Estudantes de Ciências da Saúde/psicologia , Adolescente , Estudos Transversais
3.
Cells ; 13(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38786060

RESUMO

Cells defend against oxidative stress by enhancing antioxidant capacity, including stress-activated metabolic alterations, but the underlying intracellular signaling mechanisms remain unclear. This paper reports that immunoglobulin superfamily containing leucine-rich repeat (ISLR) functions as a redox sensor that responds to reactive oxygen species (ROS) stimulation and modulates the antioxidant capacity by suppressing pyruvate kinase isozyme M2 (PKM2) activity. Following oxidative stress, ISLR perceives ROS stimulation through its cysteine residue 19, and rapidly degrades in the autophagy-lysosome pathway. The downregulated ISLR enhances the antioxidant capacity by promoting the tetramerization of PKM2, and then enhancing the pyruvate kinase activity, PKM2-mediated glycolysis is crucial to the ISLR-mediated antioxidant capacity. In addition, our results demonstrated that, in triple-negative breast cancer, cisplatin treatment reduced the level of ISLR, and PKM2 inhibition sensitizes tumors to cisplatin by enhancing ROS production; and argued that PKM2 inhibition can synergize with cisplatin to limit tumor growth. Our results demonstrate a molecular mechanism by which cells respond to oxidative stress and modulate the redox balance.


Assuntos
Antioxidantes , Oxirredução , Estresse Oxidativo , Espécies Reativas de Oxigênio , Humanos , Oxirredução/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Animais , Cisplatino/farmacologia , Feminino , Proteínas de Membrana/metabolismo , Hormônios Tireóideos/metabolismo , Proteínas de Ligação a Hormônio da Tireoide , Camundongos , Piruvato Quinase/metabolismo , Glicólise/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/enzimologia
4.
Talanta ; 275: 126148, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38705016

RESUMO

Latent fingerprints, as one of the most frequently encountered traces in crime scene investigation and also one of the largest sources of forensic evidence, can play a critical role in determining the identity of a person who may be involved in a crime. Due to the invisible characteristic of latent fingerprints, exploring efficient techniques to visualize them (especially the ones resided on metallic surfaces) while retain the biological and chemical information (e.g., touch DNA) has become a multidisciplinary research focus. Herein we reported a new and highly sensitive electrochemical interfacial strategy of simultaneously developing and enhancing latent fingerprints on stainless steel based on synchronous electrodeposition and electrochromism of manganese oxides in a neutral aqueous electrolyte. By utilizing a specially designed device for electrochemical testing and image capture, a series of electrochemical measurements, physical characterization and image analysis have been applied to evaluate the feasibility, development accuracy and enhancement efficacy of the proposed electrochemical system. The qualitative and quantitative analysis on the in situ and ex situ fingerprint images indicates that the three levels of fingerprint features can be precisely developed and effectively enhanced. Forensic DNA typing has also been performed to reveal actual impact of the proposed electrochemical system on subsequent analysis of touch DNA in fingerprint residues. The ratio of detected loci after electrochemical treatment reaches up to 98.5 %, showing non-destructive nature of this fingerprint development and enhancement technique.

5.
ACS Appl Mater Interfaces ; 16(12): 14809-14821, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38497947

RESUMO

Amorphous carbon nitride with typical short-range order arrangement as an effective photocatalyst is worth exploring but remains a great challenge because its disordered structure induces severe recombination of photogenerated charge carriers. Herein, for the first time, we demonstrate that a hierarchical amorphous carbon nitride (HACN) with structural oxygen incorporation can be synthesized via a cyanuric acid-assisted melem hydrothermal process, accompanied by freeze-drying and pyrolysis. The complex composed of melem and cyanuric acid exhibiting a unique 3D self-supporting skeleton and significant phase transformation is responsible for the formation of an interconnected hierarchical framework and amorphous structure for HACN. These features are beneficial to enhance its visible light harvesting by the multiple-reflection effect within the architecture consisting of more exposed porous nanosheets and introducing a long band tail absorption. The well-designed morphology, band tail state, and oxygen doping effectively inhibit rapid band-to-band recombination of the photogenerated electrons and holes and facilitate subsequent separation. Accordingly, the HACN catalyst exhibits exceptional visible light (λ > 420 nm)-driven photoreduction for hydrogen production with a rate of 82.4 µmol h-1, which is 21.7 and 9.5 times higher than those of melem-derived carbon nitride and crystalline nanotube carbon nitride counterparts, respectively, and significantly surpasses those of most reported amorphous carbon nitrides. Our controlling of rearrangement of the in situ supramolecular self-assembly of melem oligomer using cyanuric acid directly instructs the development of highly efficient amorphous photocatalysts for converting solar energy into hydrogen fuel.

6.
Front Vet Sci ; 11: 1333975, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38440384

RESUMO

Background: Deer tuberculosis is a chronic zoonotic infectious disease, despite the existence of socio-economic and zoonotic risk factors, but at present, there has been no systematic review of deer tuberculosis prevalence in mainland China. The aim of this meta-analysis was to estimate the overall prevalence of deer TB in mainland China and to assess possible associations between potential risk factors and the prevalence of deer tuberculosis. Methodology: This study was searched in six databases in Chinese and English, respectively (1981 to December 2023). Four authors independently reviewed the titles and abstracts of all retrieved articles to establish the inclusion exclusion criteria. Using the meta-analysis package estimated the combined effects. Cochran's Q-statistic was used to analyze heterogeneity. Funnel plots (symmetry) and used the Egger's test identifying publication bias. Trim-and-fill analysis methods were used for validation and sensitivity analysis. we also performed subgroup and meta-regression analyses. Results: In this study, we obtained 4,400 studies, 20 cross-sectional studies were screened and conducted a systematic review and meta-analysis. Results show: The overall prevalence of tuberculosis in deer in mainland China was 16.1% (95% confidence interval (CI):10.5 24.6; (Deer tuberculosis infected 5,367 out of 22,215 deer in mainland China) 5,367/22215; 1981 to 2023). The prevalence in Central China was the highest 17.5% (95% CI:14.0-21.9; 63/362), and among provinces, the prevalence in Heilongjiang was the highest at 26.5% (95% CI:13.2-53.0; 1557/4291). Elaphurus davidianus was the most commonly infected species, with a prevalence of 35.3% (95% CI:18.5-67.2; 6/17). We also assessed the association between geographic risk factors and the incidence of deer tuberculosis. Conclusion: Deer tuberculosis is still present in some areas of China. Assessing the association between risk factors and the prevalence of deer tuberculosis showed that reasonable and scientific-based breeding methods, a suitable breeding environment, and rapid and accurate detection methods could effectively reduce the prevalence of deer tuberculosis. In addition, in the management and operation of the breeding base, improving the scientific feed nutrition standards and establishing comprehensive standards for disease prevention, immunization, quarantine, treatment, and disinfection according to the breeding varieties and scale, are suggested as ways to reduce the prevalence of deer tuberculosis.

7.
Small ; : e2307216, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38078782

RESUMO

Phosphors with narrow-band green emissions and high photoluminescent quantum efficiency (PLQY) are significantly required for backlighting displays with wider color gamut. In this work, two centimeter-sized manganese (II) halide single crystals TMG2 MnCl4 and TMG2 MnBr4 (TMG = 1,1,3,3-tetramethylguanidine) are synthesized, exhibiting bright narrow-band green emissions with high PLQYs up to 62% and 90%, respectively. The narrow-band green light emission is located at 520 nm with a full-width at half-maximum (FWHM) of only 57 nm. The photoluminescence mechanisms of two single crystals are elaborated. Two white-light-emitting diodes for backlighting displays (BD-WLEDs) based on them are fabricated, exhibiting the widest color gamut of 122% National Television Standards Committee (NTSC), and a luminous efficacy reached ≈93 lm W-1 with excellent luminescence stability at high temperatures. These properties indicate the potential applications of tetrahedral manganese (II) hybrids in wide-color gamut backlighting displays.

9.
RSC Adv ; 13(37): 25853-25861, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37655351

RESUMO

Metal organic complexes are regarded as a series of promising combustion catalysts for solid rocket propellants. Their effects on the combustion performance of propellants are closely related to the reaction mechanism. Here, the metal-organic complex Cu(Salen) was investigated as a candidate material for the combustion catalyst of the HMX-added composite modified double-base propellant (HMX-CMDB). The combustion performance of the propellant was found to be evidently enhanced in the presence of Cu(Salen) compared with the propellant samples containing Benzoic-Cu or without catalyst. The addition of Cu(Salen) can improve the burning rate and combustion efficiency of the propellant - and greatly reduce the burning rate pressure index. Analysis shows that the addition of Cu(Salen) can increase the combustion area, flame brightness and combustion surface uniformity of the propellant to a higher degree. The sample can spray more beams of bright filaments on the flat combustion section, and the amount of gas generated by decomposition also greatly increases. In addition, Cu(Salen) shows amazing advantages in improving the surface of the propellant and the temperature gradient of the combustion flame.

10.
Nat Genet ; 55(9): 1579-1588, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37640880

RESUMO

Potato (Solanum tuberosum) and tomato (Solanum lycopersicon) crops suffer severe losses to late blight caused by the oomycete pathogen Phytophthora infestans. Solanum americanum, a relative of potato and tomato, is globally distributed and most accessions are highly blight resistant. We generated high-quality reference genomes of four S. americanum accessions, resequenced 52 accessions, and defined a pan-NLRome of S. americanum immune receptor genes. We further screened for variation in recognition of 315P. infestans RXLR effectors in 52 S. americanum accessions. Using these genomic and phenotypic data, we cloned three NLR-encoding genes, Rpi-amr4, R02860 and R04373, that recognize cognate P. infestans RXLR effectors PITG_22825 (AVRamr4), PITG_02860 and PITG_04373. These genomic resources and methodologies will support efforts to engineer potatoes with durable late blight resistance and can be applied to diseases of other crops.


Assuntos
Phytophthora infestans , Solanum lycopersicum , Solanum tuberosum , Solanum , Solanum/genética , Solanum tuberosum/genética , Phytophthora infestans/genética , Solanum lycopersicum/genética , Genômica , Produtos Agrícolas
11.
Wound Repair Regen ; 31(4): 489-499, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37129099

RESUMO

Immunosuppressive medications, which interfere with the activation and proliferation of T and B cells, increase the risk of wound healing complications. To address it, this study aimed to validate the feasibility of drug suspending during wound healing, whilst exploring the mechanisms exerted by T cells, which are important in the wound healing process. For this, a mouse skin wound model was set up. Tacrolimus (FK506) and fingolimod (FTY720) were both administered intraperitoneally prior to wounding to inhibit the T cell activation and migration, respectively. Flow-cytometric analysis subsequently revealed the functional T cell subtypes detected during the healing process. A CD8a antibody was also administered to deplete CD8+ T cells in vivo to verify their specific function. It was found that FK506 or FTY720 administration delayed the early phase of wound healing by reducing collagen production, which was also supported by the downregulation of col1a1, col3a1 and tgfb1. However, there was no significant difference in the total healing period. Both spleen- and skin-derived CD8+ T cells were proliferated and activated after injury without intervention, whereas CD4+ T cells showed no significant changes. Furthermore, selectively depleting CD8+ T cells retarded the healing process by downregulating collagen production-associated genes (col1a1, col3a1, tgfß1 and en1) and proteins (collagen type 1 and 3). In addition, the CD8a antibody decreased the expression of genes lta, tnfa, il13 and il13ra, and protein interleukin-13Rα. In conclusion, suspending immunosuppressive drugs during wound healing was shown to be feasible through restraining the migration of activated T cells. CD8+ T cells represented the primary functional subtype positively associated with wound healing.


Assuntos
Linfócitos T CD8-Positivos , Cicatrização , Camundongos , Animais , Linfócitos T CD8-Positivos/metabolismo , Tacrolimo/farmacologia , Tacrolimo/metabolismo , Preparações Farmacêuticas/metabolismo , Cloridrato de Fingolimode/farmacologia , Cloridrato de Fingolimode/uso terapêutico , Colágeno/metabolismo , Terapia de Imunossupressão
12.
J Colloid Interface Sci ; 634: 1014-1023, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36577254

RESUMO

Template is frequently studied as a structure-directing agent to tune the nanomorphology of photocatalysts. However, the influences of template on the polymerization of precursors and compositions of the resulting samples are rarely considered. Herein, a biomass carbon-modified graphitic carbon nitride (CCNx) with a thin-layer morphology is synthesized via one-pot surface-assisted polymerization of melamine precursor on organic yeast. The formation of the hydrogen bond between melamine and yeast induces a strong interfacial confinement, giving rise to small-sized CCNx. In addition, the carbon materials derived from yeast dramatically broaden n â†’ π* visible light harvesting, improve electron delocalization, and greatly enhance charge carrier separation. The optimized CCNx presents a much higher photocatalytic hydrogen production rate of 2704 µmol g-1h-1 under visible light irradiation (λ ≥ 420 nm), which is nearly 11-fold that of its pristine counterpart. This work realizes the synergistic effect between morphology tunning and composition tailoring by using biomass template, which shows a great potential in developing efficient metal-free photocatalysts.


Assuntos
Hidrogênio , Saccharomyces cerevisiae , Biomassa , Carbono , Luz , Polímeros
13.
Cell Immunol ; 383: 104651, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36493524

RESUMO

Lipopolysaccharides (LPS) is one of the most potent pathogen-associated signals for the immune system of vertebrates. In addition to the canonical pathway of LPS detection mediated by toll-like receptor 4 (TLR4) signaling pathway, TRP channel-mediated pathways endow sensory neurons and epithelial cells with the ability to detect and react to bacterial endotoxins. Previous work revealed that LPS triggers TRPV4-dependent calcium influx in urothelial cells (UCs) and mouse tracheobronchial epithelial cells (mTEC). In marked contrast, here we show that most subtypes of LPS could not directly activate TRPV4 channel. Although LPS from Salmonella enterica serotype Minnesota evoked a [Ca2+]i response in freshly isolated human bronchial epithelial cells (ECs), freshly isolated mouse ear skin single-cell suspensions, or HEK293T cells transiently transfected with mTRPV4, this activation occurred in a TRPV4-independent manner. Additionally, LPS from either E. coli strains or Salmonella enterica serotype Minnesota did not evoke significant difference in inflammation and pain hyperalgesia between wild type and TRPV4 deficient mice. In summary, our results demonstrate that in vitro and in vivo effects induced by LPS are independent of TRPV4, thus providing a clarity to the questioned role of LPS in TRPV4 activation.


Assuntos
Sinalização do Cálcio , Lipopolissacarídeos , Canais de Cátion TRPV , Animais , Humanos , Camundongos , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Escherichia coli/patogenicidade , Células HEK293 , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/farmacologia , Salmonella enterica/patogenicidade
14.
JAMA Netw Open ; 5(12): e2247219, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36525276

RESUMO

This cohort study assesses whether transmission of COVID-19 occurred among individuals staying on different floors at a hotel used as a centralized quarantine location in Hangzhou, China.


Assuntos
COVID-19 , Quarentena , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Surtos de Doenças/prevenção & controle , China/epidemiologia
15.
Int J Biol Macromol ; 222(Pt A): 1500-1510, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36195234

RESUMO

With rising living standards and environmental awareness, materials-oriented chemical engineering has increasingly transitioned from traditional rough models to more resource-saving and eco-friendly models, providing an avenue for bio-based materials in the drug carrier field. Because of its excellent physical and chemical properties, including high specific surface area, abundant accessible hydroxyl groups, biocompatibility, and degradability, nanocellulose (NC) is an emerging bio-based material that has been widely exploited as biomedical materials. The modification techniques of NC, as well as advancements in the design and applications of drug carriers, were primarily discussed in this study. First, the NC modification methods are described; second, the applications of NC and its derivatives as drug carriers are summarized, focusing on NC-based carrier models, types of loaded therapeutic agents, and controlled release stimulators; and finally, the current challenges of NC in the drug carrier field and the directions of future research are also discussed.


Assuntos
Celulose , Portadores de Fármacos , Celulose/química , Materiais Biocompatíveis/química
17.
Int J Mol Sci ; 23(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36077405

RESUMO

Brown adipose tissue (BAT) is functionally linked to skeletal muscle because both tissues originate from a common progenitor cell, but the precise mechanism controlling muscle-to-brown-fat communication is insufficiently understood. This report demonstrates that the immunoglobulin superfamily containing leucine-rich repeat (Islr), a marker of mesenchymal stromal/stem cells, is critical for the control of BAT mitochondrial function and whole-body energy homeostasis. The mice loss of Islr in BAT after cardiotoxin injury resulted in improved mitochondrial function, increased energy expenditure, and enhanced thermogenesis. Importantly, it was found that interleukin-6 (IL-6), as a myokine, participates in this process. Mechanistically, Islr interacts with NADH: Ubiquinone Oxidoreductase Core Subunit S2 (Ndufs2) to regulate IL-6 signaling; consequently, Islr functions as a brake that prevents IL-6 from promoting BAT activity. Together, these findings reveal a previously unrecognized mechanism for muscle-BAT cross talk driven by Islr, Ndufs2, and IL-6 to regulate energy homeostasis, which may be used as a potential therapeutic target in obesity.


Assuntos
Tecido Adiposo Marrom , Interleucina-6 , Tecido Adiposo Marrom/metabolismo , Animais , Diferenciação Celular , Metabolismo Energético , Homeostase , Imunoglobulinas/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Leucina/metabolismo , Camundongos , Músculo Esquelético/metabolismo , NADH Desidrogenase/metabolismo , Termogênese
18.
Neoplasma ; 69(5): 995-1007, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35786997

RESUMO

Despite attempts to apply single therapy such as surgical treatment, chemotherapy, or radiotherapy, pancreatic cancer (PC) is still one of the most lethal solid tumors. Moreover, immune checkpoint inhibitors against PD-1/PD-L1, which have shown good efficacies against many other solid tumors, have not shown encouraging results in PC treatment. Therefore, some studies are evaluating the efficacies of combination therapies based on anti-PD-1/PD-L1 for PC. In this review, we summarized the emerging anti-PD-1/PD-L1 combination therapies for PC in these years. We realized that anti-PD-1/PD-L1-based combination therapies have the potential to be efficacious in PC treatment, and further relevant studies are needed. Moreover, we elucidated the reasons for the ineffectiveness of anti-PD-1/PD-L1 alone in PC treatment. We concluded that this was mainly because PC has an immunosuppressive tumor microenvironment and develops drug resistance during treatment. Anti-PD-1/PD-L1-based combination therapeutic regimens that alter the immunosuppressive tumor microenvironment and reduce the development of drug resistance in PC are summarized in this review, and we expect that these regimens will achieve good clinical application prospects.


Assuntos
Antígeno B7-H1 , Neoplasias Pancreáticas , Humanos , Inibidores de Checkpoint Imunológico , Imunoterapia/métodos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/patologia , Microambiente Tumoral , Receptor de Morte Celular Programada 1 , Neoplasias Pancreáticas
19.
Nature ; 606(7914): 535-541, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35676481

RESUMO

Potato (Solanum tuberosum L.) is the world's most important non-cereal food crop, and the vast majority of commercially grown cultivars are highly heterozygous tetraploids. Advances in diploid hybrid breeding based on true seeds have the potential to revolutionize future potato breeding and production1-4. So far, relatively few studies have examined the genome evolution and diversity of wild and cultivated landrace potatoes, which limits the application of their diversity in potato breeding. Here we assemble 44 high-quality diploid potato genomes from 24 wild and 20 cultivated accessions that are representative of Solanum section Petota, the tuber-bearing clade, as well as 2 genomes from the neighbouring section, Etuberosum. Extensive discordance of phylogenomic relationships suggests the complexity of potato evolution. We find that the potato genome substantially expanded its repertoire of disease-resistance genes when compared with closely related seed-propagated solanaceous crops, indicative of the effect of tuber-based propagation strategies on the evolution of the potato genome. We discover a transcription factor that determines tuber identity and interacts with the mobile tuberization inductive signal SP6A. We also identify 561,433 high-confidence structural variants and construct a map of large inversions, which provides insights for improving inbred lines and precluding potential linkage drag, as exemplified by a 5.8-Mb inversion that is associated with carotenoid content in tubers. This study will accelerate hybrid potato breeding and enrich our understanding of the evolution and biology of potato as a global staple food crop.


Assuntos
Produtos Agrícolas , Evolução Molecular , Genoma de Planta , Solanum tuberosum , Produtos Agrícolas/genética , Genoma de Planta/genética , Melhoramento Vegetal , Tubérculos/genética , Solanum tuberosum/genética
20.
Chin Herb Med ; 14(2): 294-302, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35382000

RESUMO

Objective: Network pharmacology combines drug and disease targets with biological information networks based on the integrity and systematicness of the interactions between drugs and disease targets. This study aims to explore the molecular basis of Hanshi Zufei formula for treatment of COVID-19 based on network pharmacology and molecular docking techniques. Methods: Using TCMSP, the chemical constituents and molecular targets of Atractylodis Rhizoma, Citri Reticulatae Pericarpium, Magnoliae Officinalis Cortex, Pogostemonis Herba, Tsaoko Fructus, Ephedrae Herba, Notopterygii Rhizoma et Radix, Zingiberis Rhizoma Recens, and Arecae Semen were investigated. The predicted targets of novel coronavirus were screened using the NCBI and GeneCards databases. To further screen the drug-disease core targets network, the corresponding target proteins were queried using multiple databases (Biogrid, DIP, and HPRD), a protein interaction network graph was constructed, and the network topology was analyzed. The molecular docking studies were also performed between the network's top 15 compounds and the coronavirus (SARS-CoV-2) 3CL hydrolytic enzyme and angiotensin conversion enzyme II (ACE2). Results: The herb-active ingredient-target network contained nine drugs, 86 compounds, and 49 drug-disease targets. Gene ontology (GO) enrichment analysis resulted in 1566 GO items (P < 0.05), among which 1438 were biological process items, 35 were cell composition items, and 93 were molecular function items. Fourteen signal pathways were obtained by enrichment screening of the KEGG pathway database (P < 0.05). The molecular docking results showed that the affinity of the core active compounds with the SARS-CoV-2 3CL hydrolase was better than for the other compounds. Conclusion: Several core compounds can regulate multiple signaling pathways by binding with 3CL hydrolase and ACE2, which might contribute to the treatment of COVID-19.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA