Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ChemSusChem ; 17(5): e202301386, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-37953461

RESUMO

Lithium-ion batteries (LIBs) with high energy density, long cycle life and safety have earned recognition as outstanding energy storage devices, and have been used in extensive applications, such as portable electronics and new energy vehicles. However, traditional graphite anodes deliver low specific capacity and inferior rate performance, which is difficult to satisfy ever-increasing demands in LIBs. Very recently, two-dimensional metal phosphides (2D MPs) emerge as the cutting-edge materials in LIBs due to their overwhelming advantages including high theoretical capacity, excellent conductivity and short lithium diffusion pathway. This review summarizes the up-to-date advances of 2D MPs from typical structures, main synthesis methods and LIBs applications. The corresponding lithium storage mechanism, and relationship between 2D structure and lithium storage performance is deeply discussed to provide new enlightening insights in application of 2D materials for LIBs. Several potential challenges and inspiring outlooks are highlighted to provide guidance for future research and applications of 2D MPs.

2.
Small ; 19(14): e2206563, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36642823

RESUMO

Heterostructured materials integrate the advantages of adjustable electronic structure, fast electron/ions transfer kinetics, and robust architectures, which have attracted considerable interest in the fields of rechargeable batteries, photo/electrocatalysis, and supercapacitors. However, the construction of heterostructures still faces some severe problems, such as inferior random packing of components and serious agglomeration. Herein, a terminal group-oriented self-assembly strategy to controllably synthesize a homogeneous layer-by-layer SnSe2 and MXene heterostructure (LBL-SnSe2 @MXene) is designed. Benefitting from the abundant polar terminal groups on the MXene surface, Sn2+ is induced into the interlayer of MXene with large interlayer spacing, which is selenized in situ to obtain LBL-SnSe2 @MXene. In the heterostructure, SnSe2 layers and MXene layers are uniformly intercalated in each other, superior to other heterostructures formed by random stacking. As an anode for lithium-ion batteries, the LBL-SnSe2 @MXene is revealed to possess strong lithium adsorption ability, the small activation energy for lithium diffusion, and excellent structure stability, thus achieving outstanding electrochemical performance, especially with high specific capacities (1311 and 839 mAh g-1 for initial discharge and charge respectively) and ultralong cycling stability (410 mAh g-1 at 5C even after 16 000 cycles). This work conveys an inspiration for the controllable design and construction of homogeneous layered heterostructures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA