Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Adv Mater ; 36(23): e2312618, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38439598

RESUMO

Spin engineering is a promising way to modulate the interaction between the metal d-orbital and the intermediates and thus enhance the catalytic kinetics. Herein, an innovative strategy is reported to modulate the spin state of Co by regulating its coordinating environment. o-c-CoSe2-Ni is prepared as pre-catalyst, then in situ electrochemical impedance spectroscopy (EIS) and in situ Raman spectroscopy are employed to prove phase transition, and CoOOH/Co3O4 is formed on the surface as active sites. In hybrid water electrolysis, the voltage has a negative shift, and in zinc-ethanol-air battery, the charging voltage is lowered and the cycling stability is greatly increased. Coordinated atom substitution and crystalline symmetry change are combined to regulate the absorption ability of reaction intermediates with balanced optimal adsorption. Coordinated atom substitution weakens the adsorption while the crystalline symmetry change strengthens the adsorption. Importantly, the tetrahedral sites are introduced by Ni doping which enables the co-existence of four-coordinated sites and six-coordination sites in o-c-CoSe2-Ni. The dz2 + dx2-y2 orbital occupancy decreases after the atomic substitution, while increases after replacing the CoSe6-Oh field with CoSe6-Oh/CoSe4-Td. This work explores a new direction for the preparation of efficient catalysts for water electrolysis and innovative zinc-ethanol-air battery.

2.
Small ; 20(11): e2305905, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37926774

RESUMO

To overcome the low efficiency of overall water splitting, highly effective and stable catalysts are in urgent need, especially for the anode oxygen evolution reaction (OER). In this case, nickel selenides appear as good candidates to catalyze OER and other substitutable anodic reactions due to their high electronic conductivity and easily tunable electronic structure to meet the optimized adsorption ability. Herein, an interesting phase transition from the hexagonal phase of NiSe (H-NiSe) to the rhombohedral phase of NiSe (R-NiSe) induced by the doping of cobalt atoms is reported. The five-coordinated R-NiSe is found to grow adjacent to the six-coordinated H-NiSe, resulting in the formation of the H-NiSe/R-NiSe heterostructure. Further characterizations and calculations prove the reduced splitting energy for R-NiSe and thus the less occupancy in the t2g orbits, which can facilitate the electron transfer process. As a result, the Co2 -NiSe/NF shows a satisfying catalytic performance toward OER, hydrogen evolution reaction, and (hybrid) overall water splitting. This work proves that trace amounts of Co doping can induce the phase transition from H-NiSe to R-NiSe. The formation of less-coordinated species can reduce the t2g occupancy and thus enhance the catalytic performance, which might guide rational material design.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA