RESUMO
In 2018, Nouioui et al. proposed that Bifidobacterium coryneforme was a later synonym of Bifidobacterium indicum on the basis of the digital DNA-DNA hybridization (dDDH) value (85.0%) between B. coryneforme LMG 18911T and B. indicum LMG 11587T. However, in the study of Scardovi et al. (1970), the type strains of B. indicum and B. coryneforme only exhibited 60% DNA-DNA hybridization value. In the present study, the genomes of B. coryneforme CGMCC 1.2279T, B. coryneforme JCM 5819T, B. indicum JCM 1302T, B. indicum CGMCC 1.2275T, B. indicum DSM 20214T, B. indicum LMG 27437T, B. indicum ATCC 25912T, B. indicum KCTC 3230T, B. indicum CCUG 34985T, were sequenced, and the taxonomic relationship between B. coryneforme and B. indicum was re-evaluated. On the basis of the results presented here, (i) ATCC 25912 and DSM 20214 deposited by Vittorio Scardovi are two different strains; (ii) the type strain of B. indicum is ATCC 25912T (= JCM 1302T = LMG 27437T = CGMCC 1.2275T = KCTC 3230T), and not DSM 20214 (= BCRC 14674 = CCUG 34985 = LMG 11587); (iii) B. coryneforme and B. indicum represent two different species of the genus Bifidobacterium; (iv) strain DSM 20214 (= BCRC 14674 = CCUG 34985 = LMG 11587) belongs to B. coryneforme.
Assuntos
Bifidobacterium , DNA Bacteriano , Genoma Bacteriano , Filogenia , Bifidobacterium/genética , Bifidobacterium/classificação , Bifidobacterium/isolamento & purificação , DNA Bacteriano/genética , Hibridização de Ácido Nucleico , Técnicas de Tipagem Bacteriana , RNA Ribossômico 16S/genética , Análise de Sequência de DNARESUMO
A novel bifidobacterium (designated F753-1T) was isolated from the gut of honeybee (Apis mellifera). Strain F753-1T was characterized using a polyphasic taxonomic approach. Strain F753-1T was phylogenetically related to the type strains of Bifidobacterium mizhiensis, Bifidobacterium asteroides, Bifidobacterium choladohabitans, Bifidobacterium mellis, Bifidobacterium apousia and Bifidobacterium polysaccharolyticum, having 98.4-99.8â% 16S rRNA gene sequence similarities. The phylogenomic tree indicated that strain F753-1T was most closely related to the type strains of B. mellis and B. choladohabitans. Strain F753-1T had the highest average nucleotide identity (94.1-94.5â%) and digital DNA-DNA hybridization (56.3â%) values with B. mellis Bin7NT. Acid production from amygdalin, d-fructose, gentiobiose, d-mannose, maltose, sucrose and d-xylose, activity of α-galactosidase, pyruvate utilization and hydrolysis of hippurate could differentiate strain F753-1T from B. mellis CCUG 66113T and B. choladohabitans JCM 34586T. Based upon the data obtained in the present study, a novel species, Bifidobacterium apis sp. nov., is proposed, and the type strain is F753-1T (=CCTCC AB 2023227T=JCM 36562T=LMG 33388T).
Assuntos
Técnicas de Tipagem Bacteriana , Bifidobacterium , DNA Bacteriano , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Abelhas/microbiologia , Animais , RNA Ribossômico 16S/genética , Bifidobacterium/isolamento & purificação , Bifidobacterium/classificação , Bifidobacterium/genética , DNA Bacteriano/genética , Ácidos Graxos , Composição de Bases , Microbioma GastrointestinalRESUMO
Four lactic acid bacteria, designated F690T, F697, F790T and F769-2, were isolated from the gut of honeybee (Apis mellifera). Results of 16S rRNA gene sequence analysis indicated that strains F690T and F697 were phylogenetically related to the type strains of Lactobacillus kimbladii, Lactobacillus laiwuensis, Lactobacillus kullabergensis and Lactobacillus huangpiensis, having 99.1-99.6â% 16S rRNA gene sequence similarities; and that strains F790T and F769-2 were most closely related to the type strain of Lactobacillus melliventris, having 99.2-99.3â% 16S rRNA gene sequence similarities. The phylogenies based on concatenated pheS, rpoA, gyrB, hsp60, recA, rpoB and tuf sequences and based on whole genome sequences were identical to that based on 16S rRNA gene sequences. Strains F690T and F697 exhibited the highest average nucleotide identity (ANI; 92.1-93.2â%), digital DNA-DNA hybridization (dDDH; 50-50.1â%) and average amino acid identity (AAI; 94.9-95.1â%) values with L. kimbladii Hma2NT. Strains F790T and F769-2 had the highest ANI (93.1-94â%), dDDH (54.4â%) and AAI (94.4-94.7â%) values with L. melliventris Hma8NT. Based upon the data obtained in the present study, two novel species, Lactobacillus juensis sp. nov. and Lactobacillus rizhaonensis sp. nov., are proposed and the type strains are F690T (=JCM 36259T=CCTCC AB 2023131T) and F790T (=JCM 36260T=CCTCC AB 2023132T), respectively.
Assuntos
Alimentos Fermentados , Genes Bacterianos , Abelhas , Animais , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Filogenia , Microbiologia de Alimentos , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Alimentos Fermentados/microbiologia , LactobacillusRESUMO
Previous studies have shown that Lactobacillus futsaii (now Companilactobacillus futsaii) can be subdivided at the subspecies level. The main purpose of this study is to explore whether this is correct by using a polyphasic taxonomic approach. Lactobacillus futsaii subsp. chongqingii was proposed and effectively published in 2019. The names L. futsaii subsp. chongqingensis corrig. and Lactobacillus futsaii subsp. futsaii were not validated until March 2023. However, in the reclassification of the genus Lactobacillus by Zheng et al. in April 2020, L. futsaii was transferred to Companilactobacillus as Companilactobacillus futsaii. So Lactobacillus futsaii subsp. chongqingensis and Lactobacillus futsaii subsp. futsaii should be transferred to Companilactobacillus futsaii now. In the present study, the relationship between L. futsaii subsp. chongqingensis and L. futsaii subsp. futsaii was re-evaluated. The type strains of L. futsaii subsp. chongqingensis and L. futsaii subsp. futsaii shared identical pheS and rpoA sequences, high dDDH value, similar phenotypic characteristics and fatty acid compositions, indicating that they belonged to the same subspecies. Here, we propose to reclassify Lactobacillus futsaii subsp. chongqingensis and Lactobacillus futsaii subsp. futsaii as Companilactobacillus futsaii subsp. chongqingensis comb. nov. and Companilactobacillus futsaii subsp. futsaii comb. nov., respectively, and Companilactobacillus futsaii subsp. chongqingensis as a later heterotypic synonym of Companilactobacillus futsaii subsp. futsaii.
Assuntos
Ácidos Graxos , Lactobacillus , Análise de Sequência de DNA , Técnicas de Tipagem Bacteriana , Filogenia , DNA Bacteriano/genética , RNA Ribossômico 16S/genética , Hibridização de Ácido Nucleico , Lactobacillus/genética , Ácidos Graxos/análiseRESUMO
Lactobacillus mishanensis was isolated from Chinese traditional pickle, and validly published in October 2019. Lactobacillus salsicarnum was isolated from salami products in Germany, and effectively described in November 2019. In the reclassification of the genus Lactobacillus by Zheng et al. in April 2020, L. mishanensis was transferred to Companilactobacillus as Companilactobacillus mishanensis comb. nov., and Companilactobacillus salsicarnum was proposed as a novel species. In the present study, the relationship between C. mishanensis and C. salsicarnum was evaluated. The type strains of C. mishanensis and C. salsicarnum shared 100â% 16S rRNA gene sequence similarity, 100â% pheS sequence similarity, 99.9â% rpoA sequence similarity, a 99.9â% average nucleotide identity value and a 99.5â% digital DNA-DNA hybridization value, indicating that they represent the same species. On the basis of the results presented here, we propose C. salsicarnum [Zheng et al. 2020] as a later heterotypic synonym of C. mishanensis (Wei and Gu 2019) [Zheng et al. 2020].