Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Inorg Biochem ; 219: 111450, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33826973

RESUMO

Mitochondrial damage will hinder the energy production of cells and produce excessive ROS (reactive oxygen species), resulting in cell death through autophagy or apoptosis. In this paper, four cyclometalated iridium(III) complexes (Ir1: [Ir(piq)2L]PF6; Ir2: [Ir(bzq)2L]PF6; Ir3: [Ir(dfppy)2L]PF6; Ir4: [Ir(thpy)2L]PF6; piq = 1-phenylisoquinoline; bzq = benzo[h]quinoline; dfppy = 2-(2,4-difluorophenyl)pyridine;thpy = 2-(2-thienyl)pyridine; L = 1,10-phenanthroline-5-amine) were synthesized and characterized. Cytotoxicity tests show that these complexes have excellent cytotoxicity to cancer cells, and mechanism studies indicatethat these complexes can specifically target mitochondria. Complexes Ir1 and Ir2 can damage the function of mitochondria, subsequently increasing intracellular levels of ROS, decreasing MMP (mitochondrial membrane potential), and interfering with ATP energy production, which leads to autophagy and apoptosis. Furthermore, autophagy induced by Ir1 and Ir2 can promote cell death in coordination with apoptosis. Surprisingly, these four complexes also showed moderate antibacterial activity to S. aureusand P. aeruginosa.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Complexos de Coordenação/farmacologia , Irídio/química , Mitocôndrias/metabolismo , Células A549 , Antibacterianos/química , Antineoplásicos/química , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Complexos de Coordenação/química , Humanos , Espectroscopia de Ressonância Magnética/métodos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Quinolinas/química , Espécies Reativas de Oxigênio/metabolismo , Espectrometria de Massas por Ionização por Electrospray/métodos , Staphylococcus aureus/efeitos dos fármacos
2.
DNA Cell Biol ; 2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33147068

RESUMO

The emerging role of miRNA as regulators in esophageal squamous cell carcinoma (ESCC) progression has aroused great attention recently. In this study, the effects of miR-624-3p in ESCC progression were explored through cell proliferation, colony formation, cell cycle, and apoptosis analyses. Results showed that increased expression of miR-624-3p enhanced cancer cell viability, proliferation, migration, and invasion but inhibited apoptosis in ESCC. Moreover, luciferase reporter assay demonstrated that miR-624-3p bound to the 3'-untranslated region of phosphatase and tensin homologue (PTEN). Further study showed that miR-624-3p exerted its tumor promoting role through targeting PTEN. Taken together, these results elucidate the regulatory role of miR-624-3p in ESCC progression, shedding light on its possible clinical application in ESCC treatment.

3.
J Biol Inorg Chem ; 25(8): 1107-1116, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33079244

RESUMO

As the "powerhouse" of a cell, mitochondria maintain energy homeostasis, synthesize ATP via oxidative phosphorylation, generate ROS signaling molecules, and modulate cell apoptosis. Herein, three Re(I) complexes bearing guanidinium derivatives have been synthesized and characterized. All of these complexes exhibit moderate anticancer activity in HepG2, HeLa, MCF-7, and A549 cancer cells. Mechanism studies indicate that complex 3, [Re(CO)3(L)(Im)](PF6)2, can selectively localize in the mitochondria and induce cancer cell death through mitochondria-associated pathways. In addition, complex 3 can effectively depress the ability of cell migration, cell invasion, and colony formation.


Assuntos
Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Guanidina/química , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Rênio/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Humanos , Ligantes , Invasividade Neoplásica , Relação Estrutura-Atividade
4.
Oncol Lett ; 14(3): 2765-2770, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28928817

RESUMO

Dichloroacetate (DCA) is an inhibitor of pyruvate dehydrogenase kinase, which promotes the flux of carbohydrates into mitochondria and enhances the aerobic oxidation of glucose. DCA has previously been demonstrated to exhibit antitumor properties. The present study revealed that treatment with DCA induced increased levels of autophagy-associated proteins in esophageal squamous carcinoma cells while minimally affecting apoptosis. The present study examined the localization of light chain (LC)-3 by adenovirus infection with a green fluorescent protein (FP)-red FP-LC3 reporter construction and confirmed that DCA treatment induced significant autophagy. Furthermore, the inhibition of DCA-induced autophagy facilitated cell apoptosis and improved the drug sensitivity of esophageal squamous carcinoma cells to DCA and 5-FU (5-fluorouracil). The proliferation of TE-1 cells was markedly inhibited at low concentrations of DCA and 5-FU treatment when subjected to Atg5 mRNA interference, indicating that autophagy performed a protective role in cell survival upon DCA treatment. To determine the underlying mechanism of DCA-induced autophagy, the present study measured alterations in autophagy-associated signaling pathways. Notably, the protein kinase B (Akt)-mechanistic target of rapamycin (mTOR) signaling pathway, an important negative regulator of autophagy, was demonstrated to be suppressed by DCA treatment. These results may direct the development of novel strategies for the treatment of esophageal squamous carcinoma based on the combined use of DCA and autophagy inhibitors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA