Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nutrients ; 16(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38474872

RESUMO

Sodium bicarbonate is used as an ergogenic supplement to enhance people's performances in various exercises. This study aimed to evaluate the effects of intestinal delivery of sodium bicarbonate on bicarbonate absorption and associated side effects in an experimental human trial. After preparing and assessing enteric-coated and uncoated sodium bicarbonate tablet formulations, pharmacokinetic analysis and gastrointestinal symptom tests were performed after oral administration in the human body. The dose required to increase blood bicarbonate concentration over 5 mmol∙L-1 for the purpose of improving performance during high-intensity exercise was also determined. Enteric-coated tablet formulation protects sodium bicarbonate under acidic conditions and releases bicarbonate in the intestine. Enteric-coated tablet formulation also reduced the oral dose required to achieve a blood bicarbonate concentration over 5 mmol∙L-1 from 300 mg∙kg-1 of uncoated tablet formulation to 225 mg∙kg-1. Gastrointestinal discomfort was significantly decreased for the group given 225 mg∙kg-1 enteric-coated tablets compared to that given 300 mg∙kg-1 uncoated tablets. These results suggest that enteric-coated tablet formulation could reduce the oral dose required in order to achieve a blood bicarbonate concentration over 5 mmol∙L-1 by 25%, from 300 mg∙kg-1 to 225 mg∙kg-1, along with its ability to reduce gastrointestinal discomfort associated with the dosage.


Assuntos
Bicarbonatos , Bicarbonato de Sódio , Humanos , Administração Oral , Disponibilidade Biológica , Comprimidos com Revestimento Entérico
2.
Sensors (Basel) ; 23(16)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37631626

RESUMO

PURPOSE: This study aimed to verify whether bioelectrical impedance vector analysis (BIVA) can support the clinical evaluation of sarcopenia in elderly individuals and evaluate the relationships between phase angle (PhA), physical performance, and muscle mass. METHODS: The sample comprised 134 free-living elderly individuals of both sexes aged 69-91 years. Anthropometric parameters, grip strength, dual-energy X-ray absorptiometry findings, bioimpedance analysis results, and physical performance were also measured. The impedance vector distributions were evaluated in elderly individuals using BIVA. RESULTS: BIVA revealed significant differences between the sarcopenia and non-sarcopenia groups (both sexes). The sarcopenia group had a significantly lower PhA than the non-sarcopenia group in both sexes (p < 0.05). PhA was significantly correlated with age, appendicular skeletal muscle (ASM), handgrip strength (HGS), and muscle quality in both sexes and significantly correlated with ASM/Height2 and physical performance in males. CONCLUSION: BIVA can be used as a field assessment method in elderly Koreans with sarcopenia. PhA is a good indicator of muscle strength, muscle quality, and physical performance in males. These methods can help diagnose sarcopenia in elderly individuals with reduced mobility.


Assuntos
Força da Mão , Sarcopenia , Feminino , Masculino , Idoso , Humanos , Impedância Elétrica , Sarcopenia/diagnóstico , Força Muscular , República da Coreia
4.
BMC Geriatr ; 22(1): 385, 2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35501769

RESUMO

BACKGROUND: Whole-body bioelectrical impedance analysis (BIA) has been accepted as an indirect method to estimate appendicular lean mass (ALM) comparable to dual-energy X-ray absorptiometry (DXA). However, single or limited frequencies currently used for these estimates may over or under-estimate ALM. Accordingly, there is a need to measure the impedance parameter with appendicular lean-specific across multiple frequencies to more accurately estimate ALM. We aimed to validate muscle-specific frequency BIA equation for ALM using multifrequency BIA (MF-BIA) with DXA as the reference. METHODS: 195 community-dwelling Korean older people (94 men and 101 women) aged 70 ~ 92y participated in this study. ALM was measured by DXA and bioimpedance measures at frequencies of 5 kHz ~ 3 MHz were assessed for independent predictive variables. Regression analyses were used to find limb-specific frequencies of bioimpedance, to develop the ALM equations and to conduct the internal cross-validation. The six published equations and the final equation of MF-BIA were externally cross-validated. RESULTS: 195 participants completed the measurements of MF-BIA and DXA. Using bivariate regression analysis, the 2 MHz impedance index explained R2 = 91.5% of variability (P < 0.001) in ALM and predictive accuracy of standard error of estimate (SEE) was 1.0822 kg ALM (P < 0.001). Multiple stepwise regression analysis obtained in the development group had an adjusted R2 of 9.28% (P < 0.001) and a SEE of 0.97 kg ALM. The cross-validation group had no significant difference between the measured ALM and the predicted ALM (17.8 ± 3.9 kg vs. 17.7 ± 3.8 kg, P = .486) with 93.1% of R2 (P < 0.001) and 1.00 kg ALM of total error. The final regression equation was as follows: ALM = 0.247ZI@2 MHz + 1.254SEXM1F0 + 0.067Xc@5 kHz + 1.739 with 93% of R2 (P < 0.001), 0.97 kg ALM of SEE (Subjective Rating as "excellent" for men and "very good" for women). In the analysis of the diagnostic level for sarcopenia of the final regression, the overall agreement was 94.9% (k = 0.779, P < 0.001) with 71.4% of sensitivity, 98.8% of specificity, 91.3 of positive prediction value and 95.3% of negative prediction value. CONCLUSION: The newly developed appendicular lean-specific high-frequency BIA prediction equation has a high predictive accuracy, sensitivity, specificity, and agreement for both individual and group measurements. Thus, the high-frequency BIA prediction equation is suitable not only for epidemiological studies, but also for the diagnosis of sarcopenia in clinical settings.


Assuntos
Sarcopenia , Absorciometria de Fóton/métodos , Idoso , Composição Corporal , Impedância Elétrica , Feminino , Humanos , Masculino , República da Coreia/epidemiologia , Sarcopenia/diagnóstico , Sarcopenia/epidemiologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-32806737

RESUMO

Bioimpedance analysis (BIA) has been demanded for the assessment of appendicular skeletal muscle mass (ASM) in clinical and epidemiological settings. This study aimed to validate BIA equations for predicting ASM in the standing and supine positions; externally to cross-validate the new and published and built-in BIA equations for group and individual predictive accuracy; and to assess the overall agreement between the measured and predicted ASM index as sarcopenia diagnosis. In total, 199 healthy older adults completed the measurements of multifrequency BIA (InBody770 and InBodyS10) and dual-energy X-ray absorptiometry (DXA). Multiple regression analysis was used to validate the new multifrequency bioelectrical impedance analysis (MF-BIA) prediction equations. Each MF-BIA equation in the standing and supine position developed in the entire group included height2/resistance, sex, and reactance as predictors (R2 = 92.7% and 92.8%, SEE = 1.02 kg and 1.01 kg ASM for the standing and supine MF-BIA). The new MF-BIA equations had a specificity positive predictive value and negative predictive value of 85% or more except for a sensitivity of about 60.0%. The new standing and supine MF-BIA prediction equation are useful for epidemiological and field settings as well as a clinical diagnosis of sarcopenia. Future research is needed to improve the sensitivity of diagnosis of sarcopenia using MF-BIA.


Assuntos
Composição Corporal , Impedância Elétrica , Músculo Esquelético , Absorciometria de Fóton , Idoso , Idoso de 80 Anos ou mais , Índice de Massa Corporal , Feminino , Humanos , Masculino , Músculo Esquelético/anatomia & histologia , Reprodutibilidade dos Testes , República da Coreia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA