Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Chin J Nat Med ; 22(6): 541-553, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38906601

RESUMO

Thromboangiitis obliterans (TAO) is a rare, chronic, progressive, and segmental inflammatory disease characterized by a high rate of amputation, significantly compromising the quality of life of patients. Si-Miao-Yong-An decoction (SMYA), a traditional prescription, exhibits anti-inflammatory, anti-thrombotic, and various other pharmacological properties. Clinically, it was fully proved to be effective for TAO therapy, but the specific therapeutic effect of SMYA on TAO has been unknown. Thus, deep unveiling the mechanism of SMYA in TAO for identifying clinical therapeutic targets is extremely important. In this study, we observed elevated levels of IL-17A in the peripheral blood mononuclear cells (PBMCs) of TAO patients, whereas the expression of miR-548j-5p was significantly decreased. A negative correlation between the levels of miR-548j-5p and IL-17A was also demonstrated. In vitro experiments showed that overexpression of miR-548j-5p led to a decrease in IL-17A levels, whereas downregulation of miR-548j-5p showed the opposite effect. Using a dual luciferase assay, we confirmed that miR-548j-5p directly targets IL-17A. Furthermore, serum containing SMYA effectively decreased IL-17A levels by increasing the expression of miR-548j-5p. More importantly, the results of in vivo tests indicated that SMYA mitigated the development of TAO by inhibiting IL-17A through the upregulation of miR-548j-5p in vascular tissues. In conclusion, SMYA significantly enhances the expression of miR-548j-5p, thereby reducing the levels of the target gene IL-17A and alleviating TAO. Our research not only identifies novel targets and pathways for the clinical diagnosis and treatment of TAO but also advances the innovation in traditional Chinese medicine through the elucidation of the SMYA/miR-548j-5p/IL-17A regulatory axis in the pathogenesis of TAO.


Assuntos
Medicamentos de Ervas Chinesas , Interleucina-17 , MicroRNAs , Transdução de Sinais , Tromboangiite Obliterante , Tromboangiite Obliterante/tratamento farmacológico , Tromboangiite Obliterante/genética , Tromboangiite Obliterante/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Interleucina-17/genética , Interleucina-17/metabolismo , Humanos , Medicamentos de Ervas Chinesas/farmacologia , Animais , Transdução de Sinais/efeitos dos fármacos , Masculino , Camundongos , Feminino , Pessoa de Meia-Idade , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Adulto , Camundongos Endogâmicos C57BL
2.
Heliyon ; 10(5): e27261, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38468927

RESUMO

To investigate the variation in the mechanical properties of clay under freeze-thaw cycles (FTCs), a series of experiments were conducted in the laboratory. Samples with different water contents and dry densities were subjected to FTCs ranging from 0 to 11 times. Then, cohesion, shear strength, internal friction angle and elastic modulus were obtained using triaxial test. The results show that with the increase in the number of FTCs, the shear strength, cohesion and elastic modulus decreased, while the internal friction angle increased slightly. However, the variation in the internal friction angle is not obvious, and the maximum increment is within 4°. The cohesion exhibited the most decrease after the first freeze-thaw action. Besides, under a same number of FTCs, four mechanical properties are significantly affected by water content and dry density. The shear strength, cohesion, elastic modulus and internal friction angle decrease with water content while increasing with dry density. Additionally, the elastic modulus is associated with confining pressure, which increases with confining pressure. This study provides evidence for the variation in mechanical properties of the soils subjected to FTCs and guides the design and construction of the cold regional engineering.

3.
Anal Methods ; 16(7): 1083-1092, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38284158

RESUMO

Atherosclerosis (AS) is a chronic inflammatory disease with disorders of lipid metabolism. Metabolic disorders, inflammation and lipid deposition are prominent pathological features of atherosclerosis. Isorhynchophylline (IRN) has pharmacological effects such as protection of vascular endothelial cells, anti-inflammatory, anti-thrombotic, and anti-smooth muscle cell proliferation. However, it is unclear whether IRN is efficacious in atherosclerosis. In the present study, we verified the pharmacological efficacy and hepatoprotective effects of IRN in intervening in AS. LC-MS-based serum untargeted metabolomics was performed to search for potential biomarkers and related pathways in IRN-treated AS in ApoE-/- mice. Fifty-eight biomarkers were metabolically disturbed in the model mice compared to controls. Thirteen biomarkers showed optimal recovery methods after IRN-40 mg ml-1 intervention. We identified three metabolic pathways involved in IRN: glycerophospholipid metabolism, linoleic acid metabolism, and alpha-linolenic acid metabolism. These findings provide a research basis for the intervention of IRN in atherosclerosis.


Assuntos
Aterosclerose , Células Endoteliais , Oxindóis , Camundongos , Animais , Aterosclerose/tratamento farmacológico , Apolipoproteínas E , Biomarcadores
4.
Artigo em Inglês | MEDLINE | ID: mdl-38236378

RESUMO

Metabolic disorders of cardiomyocytes play an important role in the progression of various cardiovascular diseases. Metabolic reprogramming can provide ATP to cardiomyocytes and protect them during diseases, but this transformation also leads to adverse consequences such as oxidative stress, mitochondrial dysfunction, and eventually aggravates myocardial injury. Moreover, abnormal accumulation of metabolites induced by metabolic reprogramming of cardiomyocytes alters the cardiac microenvironment and affects the metabolism of immune cells. Immunometabolism, as a research hotspot, is involved in regulating the phenotype and function of immune cells. After myocardial injury, both cardiac resident immune cells and heart-infiltrating immune cells significantly contribute to the inflammation, repair and remodeling of the heart. In addition, metabolites generated by the metabolic reprogramming of immune cells can further affect the microenvironment, thereby affecting the function of cardiomyocytes and other immune cells. Therefore, metabolic reprogramming and abnormal metabolite levels may serve as a bridge between cardiomyocytes and immune cells, leading to the development of cardiovascular diseases. Herein, we summarize the metabolic relationship between cardiomyocytes and immune cells in cardiovascular diseases, and the effect on cardiac injury, which could be therapeutic strategy for cardiovascular diseases, especially in drug research.

5.
Acta Physiol (Oxf) ; 240(3): e14088, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38230805

RESUMO

Cardiac resident macrophages (CRMs) are integral components of the heart and play significant roles in cardiac development, steady-state, and injury. Advances in sequencing technology have revealed that CRMs are a highly heterogeneous population, with significant differences in phenotype and function at different developmental stages and locations within the heart. In addition to research focused on diseases, recent years have witnessed a heightened interest in elucidating the involvement of CRMs in heart development and the maintenance of cardiac function. In this review, we primarily concentrated on summarizing the developmental trajectories, both spatial and temporal, of CRMs and their impact on cardiac development and steady-state. Moreover, we discuss the possible factors by which the cardiac microenvironment regulates macrophages from the perspectives of migration, proliferation, and differentiation under physiological conditions. Gaining insight into the spatiotemporal heterogeneity and regulatory mechanisms of CRMs is of paramount importance in comprehending the involvement of macrophages in cardiac development, injury, and repair, and also provides new ideas and therapeutic methods for treating heart diseases.


Assuntos
Cardiopatias , Miocárdio , Humanos , Coração/fisiologia , Macrófagos/fisiologia , Fenótipo
6.
JCI Insight ; 8(21)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37937646

RESUMO

Cerebrotendinous xanthomatosis (CTX), an autosomal recessive disorder characterized by high levels of cholestanol in the blood and accumulation of cholestanol in multiple tissues, especially the brain, often presents in parkinsonism. However, it remains unknown whether cholestanol plays a role in the pathogenesis of sporadic Parkinson's disease (PD). Here, we show that the levels of serum cholestanol in patients with sporadic PD are higher than those in control participants. Cholestanol activates the protease asparagine endopeptidase (AEP) and induces the fragmentation of α-synuclein (α-syn) and facilitates its aggregation. Furthermore, cholestanol promotes the spreading of α-syn pathology in a mouse model induced by intrastriatal injection of α-syn fibrils. KO of AEP or administration of an AEP inhibitor ameliorates α-syn pathology, degeneration of the nigrostriatal dopaminergic pathway, and PD-like motor symptoms. These results not only indicate that cholestanol contributes to the aggregation and spreading of α-syn by activating AEP but also reveal an opportunity for treating PD with AEP inhibitors.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Camundongos , Animais , Humanos , alfa-Sinucleína/metabolismo , Doença de Parkinson/metabolismo , Cisteína Endopeptidases/metabolismo , Colestanóis
7.
Phytother Res ; 37(12): 5991-6005, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37752617

RESUMO

Hypertension is a progressive metabolic disease characterized by circadian regulation of lipid metabolism disorder. Identifying specific lipid components and maintaining circadian homeostasis of lipid metabolism might be a promising therapeutic strategy for hypertension. Isorhynchophylline (IRP) can regulate lipid metabolism; however, the underlying mechanism of IRP in improving lipid metabolism rhythm disorder is still unclear. The lipid circadian biomarkers and abnormal metabolic pathways intervened by IRP were investigated using diurnal lipidomic research methods. The 24-h circadian changes in mRNA and protein expression levels of circadian genes, including Bmal1, Clock, Cry1, Cry2, Per1, and Per2, and lipid metabolism-related factors (PPARα and LPL) were determined using RT-PCR and western blot analyses, respectively. The underlying mechanisms were intensively investigated by inhibiting Bmal1. Molecular docking and drug affinity responsive target stability analyses were performed to assess the binding affinity of IRP and Bmal1. IRP treatment could effectively improve 24-h blood pressure, ameliorate the lipid metabolic rhythm disorder, reverse the expression levels of circadian rhythm genes, and regulate lipid metabolism-related genes (PPARα and LPL) by mediating Bmal1. This study highlighted the potential effects of IRP in maintaining the circadian homeostasis of lipid metabolism and the treatment of hypertension.


Assuntos
Hipertensão , Transtornos do Metabolismo dos Lipídeos , Ratos , Animais , Ratos Endogâmicos SHR , Metabolismo dos Lipídeos , Simulação de Acoplamento Molecular , PPAR alfa/genética , Ritmo Circadiano/genética , Hipertensão/tratamento farmacológico , Hipertensão/genética , Lipídeos
8.
Anal Chem ; 95(33): 12240-12246, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37556358

RESUMO

Ferroptosis is an iron-regulated, caspase-mediated pathway of cell death that is associated with the excessive aggregation of lipid-reactive oxygen species and is extensively involved in the evolution of many diseases, including epilepsy. The superoxide anion (O2•-), as the primary precursor of ROS, is closely related to ferroptosis-mediated epilepsy. Therefore, it is crucial to establish a highly effective and convenient method for the real-time dynamic monitoring of O2•- during the ferroptosis process in epilepsy for the diagnosis and therapy of ferroptosis-mediated epilepsy. Nevertheless, no probes for detecting O2•- in ferroptosis-mediated epilepsy have been reported. Herein, we systematically conceptualized and developed a novel near-infrared (NIR) fluorescence probe, NIR-FP, for accurately tracking the fluctuation of O2•- in ferroptosis-mediated epilepsy. The probe showed exceptional sensitivity and outstanding selectivity toward O2•-. In addition, the probe has been utilized effectively to bioimage and evaluate endogenous O2•- variations in three types of ferroptosis-mediated epilepsy models (the kainic acid-induced chronic epilepsy model, the pentylenetetrazole-induced acute epilepsy model, and the pilocarpine-induced status epilepticus model). The above applications illustrated that NIR-FP could serve as a reliable and suitable tool for guiding the accurate diagnosis and therapy of ferroptosis-mediated epilepsy.


Assuntos
Epilepsia , Ferroptose , Humanos , Superóxidos/metabolismo , Fluorescência , Epilepsia/diagnóstico por imagem , Epilepsia/metabolismo , Espécies Reativas de Oxigênio
9.
Biosens Bioelectron ; 237: 115521, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37429146

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder caused by various factors such as neuroinflammation, oxidative stress, mitochondrial dysfunction, and neuronal apoptosis. Recent studies have shown that H2S supplementation reverses neuronal loss and mitigates motor deficits in PD patients through anti-inflammatory, antioxidant, improved mitochondrial function and proautophagic. Therefore, the discovery and use of H2S donors may be an exciting and intriguing strategy for the treatment of PD. Herein, we report a red emission mitochondria-targetable fluorescent probe, Rho-H2S, which can specifically and sensitively detect H2S with a limit of detection of 62.5 nM. Bioimaging experiments have shown that the probe has excellent mitochondrial targeting and good imaging capabilities for the detection of exogenous and endogenous H2S in cells. More importantly, based on the Rho-H2S probe, we first confirmed the sulforaphane (SFN) among 15 glucosinolate and isothiocyanate compounds from cruciferous vegetables with an outstanding ability to release H2S and we further proved that SFN could alleviate the symptoms of PD in vivo. All results demonstrate that Rho-H2S could be an effective tool for screening H2S donors and can contribute to the development of new therapeutic strategies for PD.


Assuntos
Técnicas Biossensoriais , Sulfeto de Hidrogênio , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doença de Parkinson/tratamento farmacológico , Corantes Fluorescentes , Células HeLa , Mitocôndrias
10.
Food Chem ; 424: 136400, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37236079

RESUMO

The purpose of this study is to develop an improved comprehensive data filtering strategy, which was implemented primarily through the Microsoft Office platform's Excel software for rapid screening of potential 2-(2-phenylethyl)chromone (PEC) monomers and their dimers (PEC dimers) obtained from agarwood. A total of 108 PEC monomers and 30 PEC dimers in agarwood were characterized. In conclusion, the results obtained in this work could provide useful information for the future utilization of agarwood. In particular, it is the first time to conduct an in-depth analysis of the MS/MS fragmentation behavior of a large number of PEC monomers and PEC dimers, including the identification of substituent positions of them. The proposed data filtering strategy could improve the comprehensive characterization efficiency of complex components in spices.


Assuntos
Cromonas , Thymelaeaceae , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão , Flavonoides
11.
BMC Complement Med Ther ; 23(1): 80, 2023 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-36906555

RESUMO

BACKGROUND: Atherosclerosis is a chronic inflammatory disease of arterial wall, which is closely related to inflammatory reaction. In this study, the anti-inflammatory effect of isorhynchophylline was studied by NF- κB / NLRP3 pathway. METHODS: (1) ApoE-/- mice were fed with high-fat diet to establish atherosclerotic model, while C57 with the same genetic background was fed with common diet as control group. Body weight was recorded and blood lipids were detected. The expression of NLRP3, NF-κB, IL-18 and Caspase-1 in aorta was detected by Western-Blot and PCR, and plaque formation was detected by HE and oil red O staining. (2) Lipopolysaccharide interfered with Human Umbilical Vein Endothelial Cells (HUVECs) and RAW264.7 to form inflammatory model, and was treated with isorhynchophylline. The expression of NLRP3, NF-κB, IL-18 and Caspase-1 in aorta was detected by Western-Blot and PCR, and the ability of cell migration was detected by Transwell and scratch test. RESULTS: (1) the expression of NLRP3, NF- κB, IL-18 and Caspase-1 in aorta of model group was higher than that of control group, and plaque formation was obvious. (2) the expressions of NLRP3, NF- κB, IL-18 and Caspase-1 in HUVECs and RAW264.7 model groups were higher than those in control group, while isorhynchophylline decreased their expression and enhanced cell migration ability. CONCLUSION: Isorhynchophylline can reduce the inflammatory reaction induced by lipopolysaccharide and promote the ability of cell migration.


Assuntos
Aterosclerose , NF-kappa B , Camundongos , Humanos , Animais , NF-kappa B/metabolismo , Interleucina-18/metabolismo , Interleucina-18/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Lipopolissacarídeos/farmacologia , Transdução de Sinais , Macrófagos , Inflamação/metabolismo , Células Endoteliais da Veia Umbilical Humana , Caspases/metabolismo
12.
J Ethnopharmacol ; 307: 116240, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-36764560

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The regulation of epigenetic factors is considered a crucial target for solving complex chronic diseases such as cardio-cerebrovascular diseases. HuangqiGuizhiWuwu Decoction (HGWWD), a classic Chinese prescription, is mainly used to treat various vascular diseases. Although our previous studies reported that HGWWD could effectively prevent vascular dysfunction in diabetic rodent models, the precise mechanism is still elusive. AIM OF THE STUDY: In this study, we investigated the epigenetic mechanisms of modulating the damage of vascular endothelial cells in diabetes by HGWWD. METHODS: We first analyzed common active components of HGWWD by using HPLC-Q-TOF-MS/MS analysis, and predicted the isoforms of histone deacetylase (HDAC) that can potentially combine the above active components by systems pharmacology. Next, we screened the involvement of specific HDAC isoforms in the protective effect of HGWWD on vascular injury by using pharmacological blockade combined with the evaluation of vascular function in vivo and in vitro. RESULTS: Firstly, HDAC1, HDAC2, HDAC3, HDAC4, HDAC6, HDAC7, SIRT2, and SIRT3 have been implicated with the possibility of binding to the thirty-one common active components in HGWWD. Furthermore, the protective effect of HGWWD is reversed by both TSA (HDAC inhibitor) and MC1568 (class II HDAC inhibitor) on vascular impairment accompanied by reduced aortic HDAC activity in STZ mice. Finally, inhibition of HDAC4 blocked the protective effect of HGWWD on microvascular and endothelial dysfunction in diabetic mice. CONCLUSIONS: These results prove the key role of HDAC4 in diabetes-induced microvascular dysfunction and underlying epigenetic mechanisms for the protective effect of HGWWD in diabetes.


Assuntos
Diabetes Mellitus Experimental , Doenças Vasculares , Camundongos , Animais , Inibidores de Histona Desacetilases/farmacologia , Células Endoteliais/metabolismo , Microcirculação , Espectrometria de Massas em Tandem , Histona Desacetilases/metabolismo
13.
Environ Sci Pollut Res Int ; 30(5): 12857-12871, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36114965

RESUMO

Cemented paste backfill (CPB) that contains alkali-activated slag (AAS) produces more desirable properties and performance (enhanced fluidity, higher strength, lower cost, and limited carbon emission) as compared with CPB made with cement. Significant efforts have been devoted to the study of the effect of the individual factor on the rheology of AAS-CPB. However, the synergistic effect of curing temperature, time, and activator nature is still unclear. Therefore, the current research aims to investigate the time-dependent rheology of AAS-CPB under the combined influence of curing temperature, silica modulus (Ms), and activator concentration (AC). The findings revealed that a higher curing temperature results in a reduction in fluidity and an increase in the thixotropy of CPB. The evolution of rheological parameters of AAS-CPB is more insensitive to the curing temperature as compared to that of OPC-CPB. During the initial 2 h, higher AC can weaken the rheological parameter. However, a more rapid growth rate of rheological properties was observed after 2 h. The rheological parameters of AAS-CPB with higher Ms are always lower than those of AAS-CPB with lower Ms at all temperatures studied. In addition, the discrepancy in the linear correlation between thixotropy and plastic viscosity for OPC-CPBs and AAS-CPBs indicates the different hydration rates of slag and Portland cement. These findings are beneficial in guiding the mix proportion design of AAS-CPB in mines with various underground temperatures.


Assuntos
Materiais de Construção , Sulfetos , Temperatura , Mineração , Reologia
14.
Curr Pharm Des ; 29(2): 139-148, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36567301

RESUMO

BACKGROUND: The neurotransmitter metabolism in spontaneously hypertensive rats (SHR) is disordered, and these disturbances in neurotransmitter levels can further exacerbate the development of hypertension. Neurotransmitters can affect the expression of circadian clock genes. OBJECTIVE: To clarify the time-dependent internal mechanism of the imbalance of the target neurotransmitter metabolic rhythm of spontaneously hypertensive rats, the circadian research was carried out by the method of targeted metabolomics and molecular biology technology. METHODS: We have explored the mechanism of isorhynchophylline regulating the circadian rhythm through the ERK signaling pathway and thus treating hypertension by detecting the changes of central hypothalamic biological clock rhythm genes after isorhynchophylline intervention, from hypothalamic neurotransmitter rhythmicity. RESULTS: The expression of rhythm genes in normal rats showed a certain rhythm at 6 time points, while the expression of rhythm genes in model rats decreased, and the gene rhythm returned to normal after isorhynchophylline treatment. Cosine analysis of 12 neurotransmitters in hypothalamus showed that there were 6 rhythmic neurotransmitters in the normal group, while in the model group, 4 of the 6 neurotransmitters lost their rhythmicity, and the rhythmicity returned to normal after isorhynchophylline intervention. Compared with the normal group, the expression of ERK protein in the model group increased significantly and decreased after isorhynchophylline treatment. CONCLUSION: The mechanism of isorhynchophylline treating hypertension is not only the regulation of serum neurotransmitters rhythm, but also acting on rhythm genes in the feedback loop of the central biological clock.


Assuntos
Ritmo Circadiano , Hipertensão , Ratos , Animais , Ratos Endogâmicos SHR , Ritmo Circadiano/fisiologia , Hipertensão/metabolismo , Hipotálamo
15.
Molecules ; 27(22)2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36431839

RESUMO

Licorice (Gan-Cao, licorice) is a natural antioxidant and roasted licorice is the most common processing specification used in traditional Chinese medicine prescriptions. Traditional Chinese medicine theory deems that the honey-roasting process can promote the efficacy of licorice, including tonifying the spleen and augmenting "Qi" (energy). The antioxidant activity and mechanisms underlying roasted licorice have not yet been reported. In this study, we found that roasted licorice could relieve the oxidative stress injury induced by metronidazole (MTZ) and could restrain the production of excessive reactive oxygen species (ROS) induced by 2,2'-azobis (2-methylpropionamidine) dihydrochloride (AAPH) in a zebrafish model. It was further found that roasted licorice could exert its oxidative activity by upregulating the expression of key genes such as heme oxygenase 1 (HO-1), NAD(P)H quinone dehydrogenase 1 (NQO1), glutamate-cysteine ligase modifier subunit (GCLM), and glutamate-cysteine ligase catalytic subunit (GCLC) in the nuclear factor erythroid 2-related factor 2 (NRF2) signaling pathway both in vivo and in vitro. Furthermore, consistent results were obtained showing that rat serum containing roasted licorice was estimated to reduce cell apoptosis induced by H2O2. Then, the UHPLC-Q-Exactive Orbitrap MS analysis results elucidated the chemical composition of rat plasma containing roasted licorice extracts, including ten prototype chemical components and five metabolic components. Among them, six compounds were found to have binding activity with Kelch-like ECH-associated protein 1 (KEAP1), which plays a crucial role in the transcriptional activity of NRF2, using a molecular docking simulation. The results also showed that liquiritigenin had the strongest binding ability with KEAP1. Immunofluorescence further confirmed that liquiritigenin could induce the nuclear translocation of NRF2. In summary, this study provides a better understanding of the antioxidant effect and mechanisms of roasted licorice, and lays a theoretical foundation for the development of a potential antioxidant for use in clinical practice.


Assuntos
Glycyrrhiza , Triterpenos , Ratos , Animais , Glycyrrhiza/química , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Peixe-Zebra/metabolismo , Glutamato-Cisteína Ligase/metabolismo , Peróxido de Hidrogênio/metabolismo , Simulação de Acoplamento Molecular , Extratos Vegetais
16.
Food Sci Nutr ; 10(10): 3380-3394, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36249962

RESUMO

Chaenomeles Fructus is a plant that can be used for both food and medicine. Modern studies have shown that Chaenomeles Fructus has anti-inflammatory and immunosuppressive effects on arthritis. However, the mechanism of action of Chaenomeles Fructus on rheumatoid arthritis (RA) and its main active ingredients are still unclear. This study was aimed at devising an integrated strategy for investigating the bioactivity constituents and possible pharmacological mechanisms of Chaenomeles Fructus against RA. The components of Chaenomeles Fructus were analyzed using UPLC-Q-Exactive orbitrap MS techniques and applied to screen the active components of Chaenomeles Fructus according to their oral bioavailability and drug-likeness index. Then, we speculated on the potential molecular mechanisms of Chaenomeles Fructus against RA through a network pharmacology analysis. Finally, the potential molecular mechanisms of Chaenomeles Fructus against RA were validated in a complete Freund's adjuvant (CFA)-induced RA rat model. We identified 48 components in Chaenomeles Fructus and screened seven bioactive ingredients. The results of the network pharmacology prediction and the experimental verification results were analyzed by Venn analysis, and the experimental results concluded that Chaenomeles Fructus mainly interferes with the inflammation of RA by inhibiting arachidonic acid metabolism and the MAPK signaling pathway. This study identified the ingredients of Chaenomeles Fructus by UPLC-Q-Exactive orbitrap MS and explained the possible mechanisms of Chaenomeles Fructus against RA by integrating network pharmacology and experimental validation.

17.
Anal Chem ; 94(42): 14778-14784, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36223488

RESUMO

Sepsis-induced acute lung injury (ALI) is mostly attributed to an outbreak of reactive oxygen species (ROS), which makes leukocytes infiltrate into the lung and results in lung hypoxia. Nitroreductase (NTR) is significantly upregulated under hypoxia, which is commonly regarded as a potential biomarker for assessing sepsis-induced acute lung hypoxia. Increasing evidence shows that NTR in the Golgi apparatus could be induced in sepsis-induced ALI. Meanwhile, the prolyl hydroxylase (PHD) inhibitor (dimethyloxalylglycine, DMOG) attenuated sepsis-induced ALI through further increasing the level of Golgi NTR by improving hypoxia inducible factor-1α (HIF-1α) activity, but as yet, no Golgi-targetable probe has been developed for monitoring and assessing treatment response of sepsis-induced ALI. Herein, we report a Golgi-targetable probe, Gol-NTR, for monitoring and assessing treatment response of sepsis-induced ALI through mapping the generation of NTR. The probe displayed high sensitivity with a low detection limit of 54.8 ng/mL and good selectivity to NTR. In addition, due to the excellent characteristics of Golgi-targetable, Gol-NTR was successfully applied in mapping the change of Golgi NTR in cells and zebrafish caused by various stimuli. Most importantly, the production of Golgi NTR in the sepsis-induced ALI and the PHD inhibitor (DMOG) against sepsis-induced ALI were visualized and precisely assessed for the first time with the assistance of Gol-NTR. The results demonstrated the practicability of Gol-NTR for the precise monitoring and assessing of the personalized treatment response of sepsis-induced ALI.


Assuntos
Corantes Fluorescentes , Sepse , Animais , Espécies Reativas de Oxigênio , Peixe-Zebra , Nitrorredutases , Hipóxia , Sepse/complicações , Sepse/tratamento farmacológico , Pulmão , Prolil Hidroxilases , Complexo de Golgi
18.
Mov Disord ; 37(9): 1817-1830, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36054165

RESUMO

BACKGROUND: The deposition of α-synuclein (α-Syn) in the brain is the pathological hallmark of Parkinson's disease (PD). Epidemiological data indicate that exposure to fine particulate matter (≤2.5 µm in aerodynamic diameter [PM2.5]) is associated with an increased risk for PD. OBJECTIVE: The aim of this study is to investigate whether PM2.5 has a direct effect on α-Syn pathology and how it drives the risk for PD. METHODS: PM2.5 was added into α-Syn monomers and different cell models to test whether PM2.5 can promote the fibrillization and aggregation of α-Syn. α-Syn A53T transgenic mice and α-Syn knockout mice were used to investigate the effects of PM2.5 on PD-like pathology. RESULTS: PM2.5 triggers the fibrillization of α-Syn and promotes the formation of α-Syn fibrils with enhanced seeding activity and neurotoxicity. PM2.5 also induces mitochondrial dysfunction and oxidative stress. Intrastriatal injection or intranasal administration of PM2.5 exacerbates α-Syn pathology and dopaminergic neuronal degeneration in α-Syn A53T transgenic mice. The detrimental effect of PM2.5 was attenuated in α-Syn knockout mice. CONCLUSIONS: Our results identify that PM2.5 exposure could promote the α-Syn pathology, providing mechanistic insights into how PM2.5 increases the risk for PD. © 2022 International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , Sinucleinopatias , Animais , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Doença de Parkinson/etiologia , Doença de Parkinson/patologia , Material Particulado/toxicidade , alfa-Sinucleína/genética
19.
Chemosphere ; 308(Pt 2): 136344, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36087732

RESUMO

Maneb is a typical dithiocarbamate fungicide that has been extensively used worldwide. Epidemiological evidence shows that exposure to maneb is an environmental risk factor for Parkinson's disease (PD). However, the mechanisms underlying maneb-induced neurotoxicity have yet to be elucidated. In this study, we exposed SH-SY5Y cells to maneb at environmentally relevant concentrations (0, 0.1, 5, 10 mg/L) and found that maneb dose-dependently decreased the cell viability. Furthermore, maneb (60 mg/kg) induced PD-like motor impairment in α-synuclein A53T transgenic mice. The results of tandem mass tag (TMT) proteomics and metabolomics studies of mouse brain and serum revealed significant changes in proteins and metabolites in the pathways involved in the neurotransmitter system. The omics results were verified by targeted metabolomics and Western blot analysis, which demonstrated that maneb induced disturbance of the PD-related pathways, including the phenylalanine and tryptophan metabolism pathways, dopaminergic synapse, synaptic vesicle cycle, mitochondrial dysfunction, and oxidative stress. In addition, the PD-like phenotype induced by maneb was attenuated by the asparagine endopeptidase (AEP) inhibitor compound #11 (CP11) (10 mg/kg), indicating that AEP may play a role in maneb-induced neurotoxicity. To the best of our knowledge, this is the first study to investigate the molecular mechanisms underlying maneb-induced PD-like phenotypes using multiomics analysis, which identified novel therapeutic targets for PD associated with pesticides and other environmental pollutants.


Assuntos
Poluentes Ambientais , Fungicidas Industriais , Maneb , Neuroblastoma , Síndromes Neurotóxicas , Doença de Parkinson , Praguicidas , Animais , Fungicidas Industriais/toxicidade , Humanos , Maneb/toxicidade , Metabolômica , Camundongos , Paraquat/toxicidade , Doença de Parkinson/etiologia , Praguicidas/toxicidade , Fenilalanina , Proteômica , Triptofano , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
20.
Front Pharmacol ; 13: 963280, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36016567

RESUMO

At present, many experiments provide support for the cardiovascular protective effect of hawthorn (Crataegus oxyacantha) flower, leaf and fruit extracts. The aim of this study was to investigate the intervention mechanism of hawthorn fruit extract on spontaneously hypertensive rats (SHR) and its effect on their lipid metabolic pattern. After SHR was intervened by hawthorn extract (1.08 g/kg/d) for 6 weeks, the blood pressure and liver histopathology of rats were evaluated. An UHPLC-Q Extractive metabolomics approach was used to collect information on rat liver lipid metabolites, combined with multivariate data analysis to identify significantly different substances and potential biomarkers through mass spectrometry and database searches. Histomorphology of the liver was partially restored in the hawthorn-treated group. Hawthorn extract interferes with sphingolipid metabolism, glycerophospholipid metabolism and glycerolipids metabolism, improving partially disturbed metabolic pathways. This study showed that hawthorn could partially restore liver histomorphology and has anti-hypertensive effect by regulating lipid metabolism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA