Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.002
Filtrar
1.
J Gen Intern Med ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724741

RESUMO

BACKGROUND: The Maintaining Internal Systems and Strengthening Integrated Outside Networks (MISSION) Act of 2018 authorized a major expansion of purchased care in the community for Veterans experiencing access barriers in the Veterans Affairs (VA) health care system. OBJECTIVE: To estimate changes in primary care, mental health, and emergency/urgent care visits in the VA and community fiscal years (FY) 2018-2021 and differences between rural and urban clinics. DESIGN: A national, longitudinal study of VA clinics and outpatient utilization. Clinic-level analysis was conducted to estimate changes in number and proportion of clinic visits provided in the community associated with the MISSION Act adjusting for clinic characteristics and underlying time trends. PARTICIPANTS: In total, 1050 VA clinics and 6.6 million Veterans assigned to primary care. MAIN MEASURES: Number of primary care, mental health, and emergency/urgent care visits provided in the VA and community and the proportion provided in the community. KEY RESULTS: Nationally, community primary care visits increased by 107% (50,611 to 104,923), community mental health visits increased by 167% (100,701 to 268,976), and community emergency/urgent care visits increased by 129% (142,262 to 325,407) from the first quarter of 2018 to last quarter of 2021. In adjusted analysis, after MISSION Act implementation, there was an increase in community visits as a proportion of total clinic visits for emergency/urgent care and mental health but not primary care. Rural clinics had larger increases in the proportion of community visits for primary care and emergency/urgent care than urban clinics. CONCLUSIONS: After the MISSION Act, more outpatient care shifted to the community for emergency/urgent care and mental health care but not primary care. Community care utilization increased more in rural compared to urban clinics for primary care and emergency/urgent care. These findings highlight the challenges and importance of maintaining provider networks in rural areas to ensure access to care.

2.
J Hazard Mater ; 472: 134502, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38743980

RESUMO

The development of intelligently released and environmentally safe nanocarriers not only aligns with the sustainable agricultural strategy but also offers a potential solution for controlling severe soil-borne bacterial diseases. Herein, the core-shell structured nanocarrier loaded with honokiol bactericide (honokiol@ZnO-ZIF-8) was synthesized via a one-pot method for the targeted control of Ralstonia solanacearum, the causative agent of tobacco bacterial wilt disease. Results indicated that honokiol@ZnO-ZIF-8 nanoparticles induced bacterial cell membrane and DNA damage through the production of excessive reactive oxygen species (ROS), thereby reducing bacterial cell viability and ultimately leading to bacterial death. Additionally, the dissociation mechanism of the nanocarriers was elucidated for the first time through thermodynamic computational simulation. The nanocarriers dissociate primarily due to H+ attacking the N atom on imidazole, causing the rupture of the Zn-N bond under acidic conditions and at room temperature. Furthermore, honokiol@ZnO-ZIF-8 exhibited potent inhibitory effects against other prominent Solanaceae pathogenic bacteria (Pseudomonas syringae pv. tabaci), demonstrating its broad-spectrum antibacterial activity. Biosafety assessment results indicated that honokiol@ZnO-ZIF-8 exhibited non-phytotoxicity towards tobacco and tomato plants, with its predominant accumulation in the roots and no translocation to aboveground tissues within a short period. This study provides potential application value for the intelligent release of green pesticides. ENVIRONMENT IMPLICATION: The indiscriminate use of agrochemicals poses a significant threat to environmental, ecological security, and sustainable development. Slow-release pesticides offer a green and durable strategy for crop disease control. In this study, we developed a non-phytotoxic and pH-responsive honokiol@ZnO-ZIF-8 nano-bactericide based on the pathogenesis of Ralstonia solanacearum. Thermodynamic simulation revealed the dissociation mechanism of ZIF-8, with different acidity controlling the dissociation rate. This provides a theoretical basis for on-demand pesticide release while reducing residue in the. Our findings provide strong evidence for effective soil-borne bacterial disease control and on-demand pesticide release.

3.
Theriogenology ; 224: 119-133, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38762919

RESUMO

Lysine-specific demethylase 1 (LSD1) stands as the pioneering histone demethylase uncovered, proficient in demethylating H3K4me1/2 and H3K9me1/2, thereby governing transcription and participating in cell apoptosis, proliferation, or differentiation. Nevertheless, the complete understanding of LSD1 during porcine early embryonic development and the underlying molecular mechanism remains unclear. Thus, we investigated the mechanism by which LSD1 plays a regulatory role in porcine early embryos. This study revealed that LSD1 inhibition resulted in parthenogenetic activation (PA) and in vitro fertilization (IVF) embryo arrested the development, and decreased blastocyst quality. Meanwhile, H3K4me1/2 and H3K9me1/2 methylase activity was increased at the 4-cell embryo stage. RNA-seq results revealed that autophagy related biological processes were highly enriched through GO and KEGG pathway analyses when LSD1 inhibition. Further studies showed that LSD1 depletion in porcine early embryos resulted in low mTOR and p-mTOR levels and high autophagy and apoptosis levels. The LSD1 deletion-induced increases in autophagy and apoptosis could be reversed by addition of mTOR activators. We further demonstrated that LSD1 inhibition induced mitochondrial dysfunction and mitophagy. In summary, our research results indicate that LSD1 may regulate autophagy and apoptosis through the mTOR pathway and affect early embryonic development of pigs.

4.
J Cell Mol Med ; 28(10): e18252, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38766688

RESUMO

In order to explore the risk factors of relapse and potential optimized therapeutic regimen of low-risk acute promyelocytic leukaemia (APL), here we retrospectively analysed 282 patients who were diagnosed between February 2014 and September 2021. The median follow-up was 59 (9-102) months. The 5-year overall survival and cumulative relapse incidence were 97.9% and 5.9%, respectively. In terms of different cytoreductive therapies, 86 patients were administered with hydroxycarbamide (30.5%), 113 with anthracyclines or cytarabine (40.1%), 31 with etoposide (11.0%) and 52 with no cytoreductive therapy (18.4%) during the induction therapy. The hydroxycarbamide treatment group did not decrease the relapse rate compared to the no cytoreduction group (11.4% vs. 5.9%, p = 0.289). Compared with the hydroxycarbamide group, the anthracyclines/cytarabine treatment group showed improved 5-year RFS (88.145% vs. 98.113%, p = 0.008). Multivariate Cox regression analysis revealed that myeloblasts in bone marrow at diagnosis, and PML-RARA transcript level of 6.5% or more after induction therapy were associated with a subsequent risk of relapse. The only factor positively reducing the relapse rate was anthracyclines/cytarabine cytoreductive treatment. In conclusion, cytoreductive chemotherapy in induction therapy plays a potential key role in the prognosis of low-risk APL.


Assuntos
Quimioterapia de Indução , Leucemia Promielocítica Aguda , Humanos , Leucemia Promielocítica Aguda/tratamento farmacológico , Leucemia Promielocítica Aguda/mortalidade , Leucemia Promielocítica Aguda/genética , Feminino , Masculino , Adulto , Pessoa de Meia-Idade , Prognóstico , Adulto Jovem , Adolescente , Estudos Retrospectivos , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Fatores de Risco , Recidiva
5.
Cancer Med ; 13(10): e7203, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38769930

RESUMO

OBJECTIVE: To explore the efficacy of serplulimab plus chemotherapy in esophageal squamous cell carcinoma (ESCC) patients with liver metastases. METHODS: A post hoc exploratory analysis of ASTRUM-007 study was performed, focusing on the association between the liver metastases status and the clinical outcomes. A systematic literature search of electronic databases was conducted to identify eligible randomized controlled trials for the meta-analysis. Study-level pooled analyses of hazard ratios (HRs) for PFS according to liver metastases were performed. RESULTS: The post hoc analysis of ASTRUM-007 showed that although patients with liver metastases had a worse prognosis comparing with the non-liver metastases patients in both treatment arms (serplulimab plus chemotherapy arm: median PFS, 5.7 vs. 6.6 months, HR 1.57 [95% CI, 1.15-2.13]; median OS, 13.7 vs. 15.3 months, HR 1.48 [95% CI, 1.09-1.98]; placebo plus chemotherapy arm: median PFS, 4.3 vs. 5.5 months, HR 1.58 [95% CI, 1.01-2.39]; median OS, 10.3 vs. 11.2 months, HR 1.32 [95% CI, 0.84-2.00]), OS and PFS benefits derived from serplulimab plus chemotherapy versus placebo plus chemotherapy in this study were observed in both patients with liver metastases (HR of PFS: 0.60; 95% CI, 0.37-0.97; HR of OS: 0.68; 95% CI, 0.43-1.11) and the non-liver metastases patients (HR of PFS: 0.62; 95% CI, 0.49-0.80; HR of OS: 0.69; 95% CI, 0.55-0.87) with similar magnitude. Three randomized controlled trials were included in the meta-analysis. Pooled HRs demonstrated that the addition of anti-PD-1 antibodies significantly improved PFS compared to chemotherapy alone regardless of liver metastases status. CONCLUSIONS: This study reveals that the presence of liver metastases is a poor prognostic factor but does not affect the improvements in both PFS and OS brought by adding PD-1 blockade to chemotherapy in ESCC patients. Predictive biomarkers for survival in these patients warrant further investigation.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/mortalidade , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/secundário , Carcinoma de Células Escamosas do Esôfago/mortalidade , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/patologia , Neoplasias Esofágicas/mortalidade , Masculino , Inibidores de Checkpoint Imunológico/uso terapêutico , Feminino , Pessoa de Meia-Idade , Ensaios Clínicos Controlados Aleatórios como Assunto , Idoso , Resultado do Tratamento , Anticorpos Monoclonais Humanizados/uso terapêutico , Anticorpos Monoclonais Humanizados/administração & dosagem
6.
Small Methods ; : e2301768, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38738735

RESUMO

The synthesis of high-entropy alloys (HEAs) with ultra-small particle sizes has long been a challenging task. The complex and time-consuming synthesis process hinders their practical application and widespread adoption. This study presents the novel synthesis of TiO2 nanoparticles loaded with a quinary high-entropy alloy through flame spray pyrolysis (FSP) for the first time. The extremely fast heating rate of flame combustion makes the precursor fast pyrolysis gasification, high temperature in the flame field promotes the metal vapor mixing uniformly, and the fast quenching process can reduce the particle aggregation sintering, the ultra-small particle size of HEA firmly attached to the TiO2 surface. The catalysts prepared via this gas-to-particle pathway exhibit excellent performance in CO2 hydrogenation, achieving a conversion rate of 62% at 450 °C, and maintaining their activity for over 220 h without significant particle agglomeration. This finding provides valuable insights for the future design of catalytically active materials with enhanced activity and long-term stability.

7.
Int J Biol Macromol ; 269(Pt 2): 132159, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38719018

RESUMO

In recent years, the focus has shifted towards carbohydrate-based hydrogels and their eco-friendly preparation methods. This study involved an investigation into the treatment of wheat starch using dielectric barrier discharge (DBD) plasma technology over varying time gradients (0, 2, 5, 10, 15, and 20 min). The objective was to systematically examine the impact of different treatment durations on the physicochemical properties of wheat starch and the suitability of its gels for 3D printing. Morphology of wheat starch remained intact after DBD treatment. However, it led to a reduction in the amylose content, molecular weight, and crystallinity. This subsequently resulted in a decrease in the pasting temperature and viscosity. Moreover, the gels of the DBD-treated starch exhibited superior 3D printing performance. After a 2-min DBD treatment, the 3D printed samples of the wheat starch gel showed no significant improvements, as broken bars were evident on the surface of the 3D printed graphic, whereas DBD-20 showed better printing accuracy and surface structure, compared to the original starch without slumping. These results suggested that DBD technology holds potential for developing new starch-based gels with impressive 3D printing properties.

8.
Nat Commun ; 15(1): 4347, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773146

RESUMO

Epigenetic mechanisms bridge genetic and environmental factors that contribute to the pathogenesis of major depression disorder (MDD). However, the cellular specificity and sensitivity of environmental stress on brain epitranscriptomics and its impact on depression remain unclear. Here, we found that ALKBH5, an RNA demethylase of N6-methyladenosine (m6A), was increased in MDD patients' blood and depression models. ALKBH5 in astrocytes was more sensitive to stress than that in neurons and endothelial cells. Selective deletion of ALKBH5 in astrocytes, but not in neurons and endothelial cells, produced antidepressant-like behaviors. Astrocytic ALKBH5 in the mPFC regulated depression-related behaviors bidirectionally. Meanwhile, ALKBH5 modulated glutamate transporter-1 (GLT-1) m6A modification and increased the expression of GLT-1 in astrocytes. ALKBH5 astrocyte-specific knockout preserved stress-induced disruption of glutamatergic synaptic transmission, neuronal atrophy and defective Ca2+ activity. Moreover, enhanced m6A modification with S-adenosylmethionine (SAMe) produced antidepressant-like effects. Our findings indicate that astrocytic epitranscriptomics contribute to depressive-like behaviors and that astrocytic ALKBH5 may be a therapeutic target for depression.


Assuntos
Homólogo AlkB 5 da RNA Desmetilase , Astrócitos , Transtorno Depressivo Maior , Camundongos Knockout , Animais , Astrócitos/metabolismo , Homólogo AlkB 5 da RNA Desmetilase/metabolismo , Homólogo AlkB 5 da RNA Desmetilase/genética , Camundongos , Humanos , Transtorno Depressivo Maior/metabolismo , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/patologia , Masculino , Feminino , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Estresse Psicológico/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Transportador 2 de Aminoácido Excitatório/genética , Comportamento Animal , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , Depressão/metabolismo , Depressão/genética , Adulto , Transmissão Sináptica , Pessoa de Meia-Idade
9.
Artigo em Inglês | MEDLINE | ID: mdl-38773325

RESUMO

Biomolecular condensates, sometimes also known as membraneless organelles (MLOs), can form through weak multivalent intermolecular interactions of proteins and nucleic acids, a process often associated with liquid-liquid phase separation. Biomolecular condensates are emerging as sites and regulatory platforms of vital cellular functions, including transcription and RNA processing. In the first part of this Review, we comprehensively discuss how alternative splicing regulates the formation and properties of condensates, and conversely the roles of biomolecular condensates in splicing regulation. In the second part, we focus on the spatial connection between splicing regulation and nuclear MLOs such as transcriptional condensates, splicing condensates and nuclear speckles. We then discuss key studies showing how splicing regulation through biomolecular condensates is implicated in human pathologies such as neurodegenerative diseases, different types of cancer, developmental disorders and cardiomyopathies, and conclude with a discussion of outstanding questions pertaining to the roles of condensates and MLOs in splicing regulation and how to experimentally study them.

10.
J Endocrinol ; 262(1)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38692289

RESUMO

CD44, a cell surface adhesion receptor and stem cell biomarker, is recently implicated in chronic metabolic diseases. Ablation of CD44 ameliorates adipose tissue inflammation and insulin resistance in obesity. Here, we investigated cell type-specific CD44 expression in human and mouse adipose tissue and further studied how CD44 in preadipocytes regulates adipocyte function. Using Crispr Cas9-mdediated gene deletion and lentivirus-mediated gene re-expression, we discovered that deletion of CD44 promotes adipocyte differentiation and adipogenesis, whereas re-expression of CD44 abolishes this effect and decreases insulin responsiveness and adiponectin secretion in 3T3-L1 cells. Mechanistically, CD44 does so via suppressing Pparg expression. Using quantitative proteomics analysis, we further discovered that cell cycle-regulated pathways were mostly decreased by deletion of CD44. Indeed, re-expression of CD44 moderately restored expression of proteins involved in all phases of the cell cycle. These data were further supported by increased preadipocyte proliferation rates in CD44-deficient cells and re-expression of CD44 diminished this effect. Our data suggest that CD44 plays a crucial role in regulating adipogenesis and adipocyte function possibly through regulating PPARγ and cell cycle-related pathways. This study provides evidence for the first time that CD44 expressed in preadipocytes plays key roles in regulating adipocyte function outside immune cells where CD44 is primarily expressed. Therefore, targeting CD44 in (pre)adipocytes may provide therapeutic potential to treat obesity-associated metabolic complications.


Assuntos
Células 3T3-L1 , Adipócitos , Adipogenia , Ciclo Celular , Receptores de Hialuronatos , PPAR gama , Adipogenia/genética , Adipogenia/fisiologia , Receptores de Hialuronatos/metabolismo , Receptores de Hialuronatos/genética , Animais , PPAR gama/metabolismo , PPAR gama/genética , Camundongos , Ciclo Celular/genética , Ciclo Celular/fisiologia , Humanos , Adipócitos/metabolismo , Deleção de Genes , Diferenciação Celular/genética , Masculino , Tecido Adiposo/metabolismo , Tecido Adiposo/citologia , Transdução de Sinais/fisiologia
11.
Expert Rev Hematol ; : 1-6, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38753450

RESUMO

BACKGROUND: Despite advancements in chemotherapy and stem cell transplantation, the recurrence and chemoresistance of childhood acute lymphoblastic leukemia (cALL) remain a significant challenge, thus indicating the need for novel therapeutic targets. RESEARCH DESIGN AND METHODS: The protein levels of YAP1, p-YAP1, TAZ, and Cyr61 of cALL patients and healthy volunteers were measured by western blot analysis. Then the leukemic cell line SUP-B15 was transfected with sh-YAP1 and pcDNA3.1-YAP1 to knockdown or overexpress YAP1. The viability, chemosensitivity, apoptosis, migration, and invasion of SUP-B15 cells were determined by MTT, flow cytometry, and Transwell assay. RESULTS: The cALL patients had higher YAP1, TAZ, and Cyr61 protein expression and lower p-YAP1 protein expression in bone marrow tissues compared with healthy volunteers (p < 0.01). In SUP-B15 cells, YAP1 knockdown upregulated p-YAP1 protein expression (p < 0.01) and downregulated TAZ and Cyr61 protein expression (p < 0.01). In addition, knocking down YAP1 significantly inhibited cell viability, migration, and invasion, and induced apoptosis (p < 0.01). YAP1 knockdown also reduced the IC50 value following treatment with vincristine, daunorubicin, cyclophosphamide, and dexamethasone (p < 0.05). CONCLUSIONS: Disruption of the Hippo pathway attenuates the development of cALL by promoting cell proliferation while suppressing apoptosis and drug sensitivity.

12.
ACS Nano ; 18(20): 13428-13436, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38725103

RESUMO

The Co-free Ni-rich layered cathodes become pivotal to reduce cost and increase benefit toward next-generation Li-ion batteries yet raise a major challenge for their extremely fragile cathode-electrolyte interface (CEI) film. Herein, we report the in situ construction of the Si/B-enriched organic-inorganic hybrid CEI films on LiNi0.9Mn0.1O2 (NM91) with the assistance of tris(trimethylsilyl) borate (TMSB) additive. The hybrid film exhibits superior Young's modulus, mechanical strength, and ductility, which greatly dissipate the microstrain of Co-free Ni-rich cathodes under various states of charge with high structural integrity. Furthermore, the surface oxygen anions have been significantly stabilized by bonding with the Si and B ions of TMSB with high safety. These merits enable a durable Co-free Ni-rich layered cathode with 96.9% and 87.7% capacity retentions (versus 72.7% and 70.2% of NM91) at a high rate of 5C and a high-temperature of 55 °C after 100 cycles. In a pouch-type full cell, 88.8% of initial capacity is still maintained after cycling at 1C for 500 times, greatly expediting the development and application of Co-free Ni-rich layered cathodes.

13.
Mol Med ; 30(1): 61, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760717

RESUMO

BACKGROUND: Triple negative breast cancer (TNBC) is a heterogeneous and aggressive disease characterized by a high risk of mortality and poor prognosis. It has been reported that Laminin γ2 (LAMC2) is highly expressed in a variety of tumors, and its high expression is correlated with cancer development and progression. However, the function and mechanism by which LAMC2 influences TNBC remain unclear. METHODS: Kaplan-Meier survival analysis and Immunohistochemical (IHC) staining were used to examine the expression level of LAMC2 in TNBC. Subsequently, cell viability assay, wound healing and transwell assay were performed to detect the function of LAMC2 in cell proliferation and migration. A xenograft mouse model was used to assess tumorigenic function of LAMC2 in vivo. Luciferase reporter assay and western blot were performed to unravel the underlying mechanism. RESULTS: In this study, we found that higher expression of LAMC2 significantly correlated with poor survival in the TNBC cohort. Functional characterization showed that LAMC2 promoted cell proliferation and migration capacity of TNBC cell lines via up-regulating CD44. Moreover, LAMC2 exerted oncogenic roles in TNBC through modulating the expression of epithelial-mesenchymal transition (EMT) markers. Luciferase reporter assay verified that LAMC2 targeted ZEB1 to promote its transcription. Interestingly, LAMC2 regulated cell migration in TNBC via STAT3 signaling pathway. CONCLUSION: LAMC2 targeted ZEB1 via activating CD44/STAT3 signaling pathway to promote TNBC proliferation and migration, suggesting that LAMC2 could be a potential therapeutic target in TNBC patients.


Assuntos
Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Receptores de Hialuronatos , Laminina , Fator de Transcrição STAT3 , Transdução de Sinais , Neoplasias de Mama Triplo Negativas , Homeobox 1 de Ligação a E-box em Dedo de Zinco , Humanos , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Animais , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/mortalidade , Linhagem Celular Tumoral , Feminino , Receptores de Hialuronatos/metabolismo , Receptores de Hialuronatos/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Laminina/metabolismo , Laminina/genética , Camundongos , Transição Epitelial-Mesenquimal/genética , Movimento Celular/genética , Pessoa de Meia-Idade , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética
14.
Small ; : e2401360, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38708800

RESUMO

Alloying multiple immiscible elements into a nanoparticle with single-phase solid solution structure (high-entropy-alloy nanoparticles, HEA-NPs) merits great potential. To date, various kinds of synthesis techniques of HEA-NPs are developed; however, a continuous-flow synthesis of freestanding HEA-NPs remains a challenge. Here a micron-droplet-confined strategy by flame spray pyrolysis (FSP) to achieve the continuous-flow synthesis of freestanding HEA-NPs, is proposed. The continuous precursor solution undergoes gas shearing and micro-explosion to form nano droplets which act as the micron-droplet-confined reactors. The ultrafast evolution (<5 ms) from droplets to <10 nm nanoparticles of binary to septenary alloys is achieved through thermodynamic and kinetic control (high temperature and ultrafast colling). Among them, the AuPtPdRuIr HEA-NPs exhibit excellent electrocatalytic performance for alkaline hydrogen evolution reaction with 23 mV overpotential to achieve 10 mA cm-2, which is twofold better than that of the commercial Pt/C. It is anticipated that the continuous-flow synthesis by FSP can introduce a new way for the continuous synthesis of freestanding HEA-NP with a high productivity rate.

15.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38701413

RESUMO

With the emergence of large amount of single-cell RNA sequencing (scRNA-seq) data, the exploration of computational methods has become critical in revealing biological mechanisms. Clustering is a representative for deciphering cellular heterogeneity embedded in scRNA-seq data. However, due to the diversity of datasets, none of the existing single-cell clustering methods shows overwhelming performance on all datasets. Weighted ensemble methods are proposed to integrate multiple results to improve heterogeneity analysis performance. These methods are usually weighted by considering the reliability of the base clustering results, ignoring the performance difference of the same base clustering on different cells. In this paper, we propose a high-order element-wise weighting strategy based self-representative ensemble learning framework: scEWE. By assigning different base clustering weights to individual cells, we construct and optimize the consensus matrix in a careful and exquisite way. In addition, we extracted the high-order information between cells, which enhanced the ability to represent the similarity relationship between cells. scEWE is experimentally shown to significantly outperform the state-of-the-art methods, which strongly demonstrates the effectiveness of the method and supports the potential applications in complex single-cell data analytical problems.


Assuntos
Análise de Sequência de RNA , Análise de Célula Única , Análise de Célula Única/métodos , Análise por Conglomerados , Análise de Sequência de RNA/métodos , Algoritmos , Biologia Computacional/métodos , Humanos , RNA-Seq/métodos
16.
Biomed Pharmacother ; 175: 116706, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38713944

RESUMO

Excessive oxidative stress and NLRP3 inflammasome activation are considered the main drivers of inflammatory bowel disease (IBD), and inhibition of inflammasomes ameliorates clinical symptoms and morphological manifestations of IBD. Herein, we examined the roles of NLRP3 activation in IBD and modulation of NLRP3 by sulforaphane (SFN), a compound with multiple pharmacological activities that is extracted from cruciferous plants. To simulate human IBD, we established a mouse colitis model by administering dextran sodium sulfate in the drinking water. SFN (25, 50 mg·kg-1·d-1, ig) or the positive control sulfasalazine (500 mg/kg, ig) was administered to colitis-affected mice for 7 days. Model mice displayed pathological alterations in colon tissue as well as classic symptoms of colitis beyond substantial tissue inflammation. Expression of NLRP3, ASC, and caspase-1 was significantly elevated in the colonic epithelium. The expression of NLRP3 inflammasomes led to activation of downstream proteins and increases in the cytokines IL-18 and IL-1ß. SFN administration either fully or partially reversed these changes, thus restoring IL-18 and IL-1ß, substantially inhibiting NLRP3 activation, and decreasing inflammation. SFN alleviated the inflammation induced by LPS and NLRP3 agonists in RAW264.7 cells by decreasing the levels of reactive oxygen species. In summary, our results revealed the pathological roles of oxidative stress and NLRP3 in colitis, and indicated that SFN might serve as a natural NLRP3 inhibitor, thereby providing a new strategy for alternative colitis treatment.

17.
Nat Commun ; 15(1): 3780, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710714

RESUMO

Recombinant adeno-associated viruses (rAAVs) have emerged as promising gene therapy vectors due to their proven efficacy and safety in clinical applications. In non-human primates (NHPs), rAAVs are administered via suprachoroidal injection at a higher dose. However, high doses of rAAVs tend to increase additional safety risks. Here, we present a novel AAV capsid (AAVv128), which exhibits significantly enhanced transduction efficiency for photoreceptors and retinal pigment epithelial (RPE) cells, along with a broader distribution across the layers of retinal tissues in different animal models (mice, rabbits, and NHPs) following intraocular injection. Notably, the suprachoroidal delivery of AAVv128-anti-VEGF vector completely suppresses the Grade IV lesions in a laser-induced choroidal neovascularization (CNV) NHP model for neovascular age-related macular degeneration (nAMD). Furthermore, cryo-EM analysis at 2.1 Å resolution reveals that the critical residues of AAVv128 exhibit a more robust advantage in AAV binding, the nuclear uptake and endosome escaping. Collectively, our findings highlight the potential of AAVv128 as a next generation ocular gene therapy vector, particularly using the suprachoroidal delivery route.


Assuntos
Neovascularização de Coroide , Dependovirus , Terapia Genética , Vetores Genéticos , Epitélio Pigmentado da Retina , Animais , Dependovirus/genética , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , Terapia Genética/métodos , Camundongos , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/virologia , Neovascularização de Coroide/terapia , Neovascularização de Coroide/genética , Coelhos , Humanos , Técnicas de Transferência de Genes , Degeneração Macular/terapia , Degeneração Macular/genética , Degeneração Macular/patologia , Modelos Animais de Doenças , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Transdução Genética , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Camundongos Endogâmicos C57BL , Retina/metabolismo , Retina/virologia , Masculino , Células HEK293
18.
Pediatr Res ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710942

RESUMO

BACKGROUND: This study aims to investigate the role of endoplasmic reticulum stress (ER stress) in human dermal lymphatic endothelial cells (HDLECs) and lymphatic malformations (LMs) and its relationship with aerobic glycolysis and inflammation. METHODS: The proliferation and apoptosis of HDLECs were examined with lipopolysaccharide (LPS) treatment. ER stress-associated proteins and glycolysis-related markers were detected by western blot. Glycolysis indexes were detected by seahorse analysis and lactic acid production assay kits. Immunohistochemistry was used to reveal the ER stress state of lymphatic endothelial cells (LECs) in LMs. RESULTS: LPS induced ER stress in HDLECs but did not trigger detectable apoptosis. Intriguingly, LPS-treated HDLECs also showed increased glycolysis flux. Knockdown of Hexokinase 2, a key enzyme for aerobic glycolysis, significantly inhibited the ability of HDLECs to resist ER stress-induced apoptosis. Moreover, compared to normal skin, glucose-regulated protein 78 (GRP78/BIP), and phosphorylation protein kinase R-like kinase (p-PERK), two key ER stress-associated markers, were upregulated in LECs of LMs, which was correlated with the inflected state. In addition, excessively activated ER stress inhibited the progression of LMs in rat models. CONCLUSIONS: These data indicate that glycolysis could rescue activated ER stress in HDLECs, which is required for the accelerated development of LMs. IMPACT: Inflammation enhances both ER stress and glycolysis in LECs while glycolysis is required to attenuate the pro-apoptotic effect of ER stress. Endoplasmic reticulum (ER) stress is activated in lymphatic endothelial cells (LECs) of LMs, especially in inflammatory condition. The expression of ER stress-related proteins is increased in LMs and correlated with Hexokinase 2 expression. Pharmacological activation of ER stress suppresses the formation of LM lesions in the rat model. ER stress may be a promising and effective therapeutic target for the treatment of LMs.

19.
BMC Nurs ; 23(1): 307, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702727

RESUMO

BACKGROUND: Family-centered empowerment programs have been widely used in the pediatric field. Therefore, the current study investigated the effectiveness of family empowerment programs on caregiving ability and adverse mood among caregivers of children with acute leukemia. OBJECTIVE: To evaluate the effect of a family empowerment program on the caregiving ability and adverse mood of caregivers of children with acute leukemia. METHODS: Sixty-eight children with acute leukemia and their family caregivers admitted to our hospital were selected for the study. The control group received routine care during hospitalization, and the family empowerment program was implemented in the intervention group to compare the changes in caregiving capacity (FCTI), illness uncertainty (PPUS) and anxiety(SAS)of the caregivers of the two groups. RESULTS: After 8 weeks of intervention, the FCTI score of the intervention group was significantly lower than that of the control group (P < 0.001), and the difference between the scores before and after the intervention was statistically significant (P < 0.001); the PPUS score of the intervention group was significantly lower than that of the control group (P < 0.05), and the difference between the scores before and after the intervention was statistically significant (P < 0.001); the SAS score of the intervention group was lower than that of the control group after intervention(P < 0.05), and the score difference before and after intervention was statistically significant (P < 0.001). CONCLUSION: Family empowerment program is beneficial in improving caregiving capacity and reducing disease uncertainty and anxiety among caregivers of children with acute leukemia. TRIAL REGISTRATION: Chinese Clinical Trial Registry ChiCTR2300073476 2023-07-12 Retrospectively registered.

20.
Waste Manag ; 183: 174-183, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38759275

RESUMO

Solid-phase residues from pyrolysis of oily wastes (OS) are widely used due to their rich pore structure and strong adsorption capacity. In this study, pyrolysis residues (OS-P) were obtained from the pyrolysis treatment of four typical OS in Karamay, Xinjiang. The results indicate that the crystalline substances in OS-P mainly were SiO2, BaSO4, and graphite. The heavy metals of OS-P were higher than that of OS in the following order: Zn > Cu > Ni > Cr > Pb > Cd. The results of the improvement of Community Bureau of Reference (BCR) sequential extraction showed that the proportion of Cu, Ni and Cr in OS1-P in the residual fraction was higher than that of the other three OS. The residual fraction of Cu, Ni, and Cr in OS1-P increased from 16.0 %, 30.0 %, and 11.0 % to 66.1 %, 81.9 %, and 89.2 %, respectively. After pyrolysis treatment, the leaching concentration of heavy metals in the residue was reduced. Referring to the requirements for heavy metal control limits (GB 4284-2018), all heavy metals in OS-P showed low risk. Their potential ecological risk indices were 4.11, 3.13, 4.87 and 5.35, respectively, indicating that the potential ecological hazards of heavy metals from OS-P were slight. There was no significant effect on the histopathological changes of kidney, lung, liver, ovary and testis of mice, showing that the rational use of OS-P in production will not produce toxic effects on target animals. Based on risk assessment and safety evaluation, the application of OS-P is controllable, safe and reliable for resource utilization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA