RESUMO
Ulcerative colitis (UC) is a chronic inflammatory bowel disease (IBD) that primarily affects mucosa and submucosa of colon and rectum. Although the exact etiology of UC remains elusive, increasing evidence has demonstrated that the gut microbiome and its interaction with host metabolism plays an important role in UC development. The objective of this study was to investigate the therapeutic potential and mechanism of dimeric proanthocyanidins (PAC) enriched from ethyl acetate extract of Ephedra roots on UC from the perspective of gut microbiota and metabolic regulation. In this study, a bio-guided strategy integrating LC-MS analysis, DMAC assay, antioxidant screening, and antiinflammation activity screening was used to enrich dimeric PAC from Ephedra roots, then untargeted metabolomics combined with gut microbiota analysis was performed to investigate the therapeutic mechanism of PRE on UC. This is the first study that combines a bio-guided strategy to enrich dimeric PAC from Ephedra roots and a comprehensive analysis of their effects on gut microbiota and host metabolism. Oral administration of PRE was found to significantly relieve dextran sodium sulfate (DSS)-induced ulcerative colitis symptoms in mice, characterized by the reduced disease activity index (DAI), increased colon length and improved colon pathological damage, together with the down-regulation of colonic inflammatory and oxidative stress levels. In addition, 16â¯S rRNA sequencing combined with untargeted metabolomics was conducted to reveal the effects of PRE on gut microbiota composition and serum metabolites. PRE improved gut microbiota dysbiosis through increasing the relative abundance of beneficial bacteria Lachnospiraceae_NK4A136_group and decreasing the level of potentially pathogenic bacteria such as Escherichia-Shigella. Serum metabolomics showed that the disturbed tryptophan and glycerophospholipid metabolism in UC mice was restored after PRE treatment. Collectively, PRE was proved to be a promising anti-UC candidate, which deserves further investigation in future research.
Assuntos
Colite Ulcerativa , Sulfato de Dextrana , Ephedra sinica , Microbioma Gastrointestinal , Metabolômica , Raízes de Plantas , Proantocianidinas , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Animais , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/microbiologia , Colite Ulcerativa/metabolismo , Camundongos , Metabolômica/métodos , Proantocianidinas/farmacologia , Proantocianidinas/isolamento & purificação , Ephedra sinica/química , Masculino , Extratos Vegetais/farmacologia , Modelos Animais de Doenças , Colo/efeitos dos fármacos , Colo/metabolismo , Colo/microbiologia , Camundongos Endogâmicos C57BLRESUMO
Two new lindenane-type sesquiterpenoid dimers, chlotrichenes C and D (1 and 2) together with five known lindenane-type sesquiterpenoid dimers (3-7) were isolated from the roots of Chloranthus holostegius var. trichoneurus, a famous natural medicine named as "Sikuaiwa" for subduing swellings and relieving pain. The structures including absolute configuration were elucidated by their 1D and 2D NMR, HRESIMS, and ECD data. Compounds 1 and 2 were classical [4 + 2] lindenane-type sesquiterpenoid dimers that differed from known analogs in oxidation profile, side chain profile, and double bond position. The new isolates and compound 3 exhibited significant inhibitory activity on IL-1ß production (IC50: 1-15 µM) in LPS-induced THP-1 cells and other compounds exhibited inhibitory activity on NO production in LPS-induced RAW 264.7 cells (IC50: 24-33 µM).
Assuntos
Anti-Inflamatórios , Raízes de Plantas , Sesquiterpenos , Animais , Raízes de Plantas/química , Camundongos , Sesquiterpenos/farmacologia , Sesquiterpenos/química , Sesquiterpenos/isolamento & purificação , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Células RAW 264.7 , Estrutura Molecular , Humanos , Óxido Nítrico/metabolismo , Óxido Nítrico/antagonistas & inibidores , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Lipopolissacarídeos/farmacologia , Interleucina-1beta/metabolismoRESUMO
A group of phenanthrene derivatives with different deformed types, including four previously undescribed derivatives (1-4), an undescribed natural product (5) and five known compounds (6-10), were isolated from the leaves and stems of Strophioblachia fimbricalyx by molecular networking based on UPLC-MS/MS method. Their structures were established by 1D/2D NMR spectroscopy, HRESIMS, quantum chemistry calculation, and single crystal X-ray diffraction. In biogenic pathways, series of deformed phenanthrenes were all suspected to be derived from 6/6/6 tricyclic phenanthrenes with a gem-dimethyl unit in one ring as characteristic components of Strophioblachia. Fimbricalyxone (1) and trigoxyphin M (6) with a 6/6/5 tricyclic carbon skeleton were reported for the first time from the genus and fimbricalyxanhydride C (2) is the first example of anhydride type bearing a rare 8,9-oxycycle. All the isolates were evaluated for their cytotoxic activity against three tumor cell lines, and compounds 8 and 10 exhibited significant activity with IC50 values of 4.65-9.02 µM, and the structure-activity relationship of the deformed phenanthrenes was discussed. In addition, the X-ray structure of 8 and 10 and the antineoplastic activity of 10 are reported herein for the first time. Trigohowilol G (10) inhibiting the proliferation of A549 cells might be related to cell cycle distribution and the induction of S phase arrest, and it induced cell apoptosis through Bad/Bax/Cleaved PARP1 pathway.
Assuntos
Antineoplásicos Fitogênicos , Antineoplásicos , Fenantrenos , Estrutura Molecular , Antineoplásicos Fitogênicos/química , Fenantrenos/química , Cromatografia Líquida , Espectrometria de Massas em Tandem , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , ApoptoseRESUMO
Two rearranged norditerpenoids with novel tricyclic carbon skeletons, strophiofimbrin A (1) and strophiofimbrin B (2), were isolated from Strophioblachia fimbricalyx. Their structures were established by 1D/2D NMR spectroscopy, HRESIMS, quantum chemistry calculations, and X-ray diffraction analyses. 1 and 2 represented the first examples of diterpenoids with unprecedented 5/6/7-fused ring systems. In the proposed biosynthetic pathway, they were suspected to derive from cleistanthane norditerpenoids via ring opening, expansion, cyclization, and rearrangement based on the existence of phenanthrenone and cleistanthane diterpenoids from Strophioblachia and Trigonostemon, two closely related genera of the Euphorbiaceae family. Furthermore, compounds 1 and 2 exhibited significant proliferation inhibition and obvious neuroprotective effects.
Assuntos
Diterpenos , Euphorbiaceae , Estrutura Molecular , Carbono/química , Diterpenos/farmacologia , Diterpenos/química , Espectroscopia de Ressonância Magnética , Euphorbiaceae/químicaRESUMO
BACKGROUND: Previous preclinical evidence has suggested that the elevation of epoxyeicosatrienoic acids (EETs) derived from the cytochrome P450 (CYP) epoxygenases-dependent metabolism of arachidonic acid has important anti-inflammatory effects. However, the levels of EETs and their synthetic and metabolic enzymes in human ulcerative colitis has not been evaluated. METHOD: To evaluate EETs and the expression of relevant CYP isoforms and the metabolizing enzyme, soluble epoxide hydrolase (sEH), tissue biopsies were collected from 16 pairs of ulcerative colitis patients' tissues and matched with adjacent non-inflamed tissues. EETs were extracted from tissue homogenates and analyzed by liquid chromatography coupled with tandem mass spectrometry. RESULTS: The concentration of EETs was higher in ulcerative colitis tissues compared with matched adjacent non-inflamed tissues (1.91⯱â¯0.98â¯ng/mg vs. 0.96⯱â¯0.77â¯ng/mg, mean⯱â¯SD, Pâ¯<â¯0.01). As shown by immunohistochemistry, sEH was present in the cytoplasm and intestinal mucosa and showed a decline in ulcerative colitis tissues compared with matched adjacent non-inflamed tissues. Western blot analyses showed reduced sEH expression in ulcerative colitis tissues compared with matched adjacent non-inflamed tissues, whereas CYP2J2 increased in ulcerative colitis tissues (Pâ¯<â¯0.05). However, there was no statistically significant difference observed in CYP2C8 and CYP2C9 protein expression between them (Pâ¯>â¯0.05). CONCLUSION: Our data suggest that the increase in EET levels may be part of a protective mechanism in ulcerative colitis. Furthermore, the concentration of EETs could be a key factor for drug therapy for ulcerative colitis.
Assuntos
Ácido 8,11,14-Eicosatrienoico/metabolismo , Colite Ulcerativa/metabolismo , Sistema Enzimático do Citocromo P-450/biossíntese , Epóxido Hidrolases/biossíntese , Regulação Enzimológica da Expressão Gênica , Adulto , Idoso , Colite Ulcerativa/patologia , Citocromo P-450 CYP2J2 , Feminino , Humanos , Masculino , Pessoa de Meia-IdadeRESUMO
As the lipidomics field continues to advance, self-evaluation within the community is critical. Here, we performed an interlaboratory comparison exercise for lipidomics using Standard Reference Material (SRM) 1950-Metabolites in Frozen Human Plasma, a commercially available reference material. The interlaboratory study comprised 31 diverse laboratories, with each laboratory using a different lipidomics workflow. A total of 1,527 unique lipids were measured across all laboratories and consensus location estimates and associated uncertainties were determined for 339 of these lipids measured at the sum composition level by five or more participating laboratories. These evaluated lipids detected in SRM 1950 serve as community-wide benchmarks for intra- and interlaboratory quality control and method validation. These analyses were performed using nonstandardized laboratory-independent workflows. The consensus locations were also compared with a previous examination of SRM 1950 by the LIPID MAPS consortium. While the central theme of the interlaboratory study was to provide values to help harmonize lipids, lipid mediators, and precursor measurements across the community, it was also initiated to stimulate a discussion regarding areas in need of improvement.
Assuntos
Benchmarking , Ensaio de Proficiência Laboratorial/estatística & dados numéricos , Lipídeos/sangue , Humanos , Cooperação Internacional , Metabolismo dos Lipídeos/fisiologia , Lipídeos/normas , Variações Dependentes do Observador , Padrões de Referência , Reprodutibilidade dos TestesRESUMO
To test the hypothesis that VitC downregulates soluble epoxide hydrolase (sEH, responsible for converting EETs to DHETs) to stabilize tissue EETs, the heart, lung, liver, kidney, and mesenteric arteries isolated from normal rats were incubated with VitC (1000µM) for 72h, and tissue sEH expression, along with EET and DHET profiles were assessed. VitC caused significant reductions in sEH mRNA and protein content in the liver, heart and vessels, but had no effect on renal and pulmonary sEH expression, revealing a tissue-specific regulatory mechanism. The functional consequence of reduced sEH expression was validated by LC/MS/MS-based analysis, indicating that in VitC-treated tissues that displayed downregulation of sEH mRNA and protein expression, total DHETs were significantly lower, accompanied with a greater ratio of EETs/DHETs than those in VitC-untreated groups. Thus, VitC elicits a transcriptional downregulation of sEH in normal liver, heart, and vessels to reduce EET degradation and increase EET bioavailability.
Assuntos
Ácido Ascórbico/farmacologia , Epóxido Hidrolases/química , Epóxido Hidrolases/metabolismo , Animais , Epóxido Hidrolases/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Masculino , Especificidade de Órgãos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , SolubilidadeRESUMO
We have previously reported that epoxyeicosatrienoic acid (EET) has multiple beneficial effects on vascular function; in addition to its antiapoptotic action, it increases insulin sensitivity and inhibits inflammation. To uncover the signaling mechanisms by which EET reduces cardiomyopathy, we hypothesized that EET infusion might ameliorate obesity-induced cardiomyopathy by improving heme oxygenase (HO)-1, Wnt1, thermogenic gene levels, and mitochondrial integrity in cardiac tissues and improved pericardial fat phenotype. EET reduced levels of fasting blood glucose and proinflammatory adipokines, including nephroblastoma overexpressed (NOV) signaling, while increasing echocardiographic fractional shortening and O2 consumption. Of interest, we also noted a marked improvement in mitochondrial integrity, thermogenic genes, and Wnt 1 and HO-1 signaling mechanisms. Knockout of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) in EET-treated mice resulted in a reversal of these beneficial effects including a decrease in myocardial Wnt1 and HO-1 expression and an increase in NOV. To further elucidate the effects of EET on pericardial adipose tissues, we observed EET treatment increases in adiponectin, PGC-1α, phospho-AMP-activated protein kinase, insulin receptor phosphorylation, and thermogenic genes, resulting in a "browning" pericardial adipose phenotype under high-fat diets. Collectively, these experiments demonstrate that an EET agonist increased Wnt1 and HO-1 signaling while decreasing NOV pathways and the progression of cardiomyopathy. Furthermore, this report presents a portal into potential therapeutic approaches for the treatment of heart failure and metabolic syndrome.NEW & NOTEWORTHY The mechanism by which EET acts on obesity-induced cardiomyopathy is unknown. Here, we describe a previously unrecognized function of EET infusion that inhibits nephroblastoma overexpressed (NOV) levels and activates Wnt1, hence identifying NOV inhibition and enhanced Wnt1 expression as novel pharmacological targets for the prevention and treatment of cardiomyopathy and heart failure.Listen to this article's corresponding podcast at http://ajpheart.physiology.org/content/early/2017/05/31/ajpheart.00093.2017.
Assuntos
Tecido Adiposo/efeitos dos fármacos , Cardiomiopatias/prevenção & controle , Eicosanoides/farmacologia , Heme Oxigenase-1/metabolismo , Proteínas de Membrana/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Proteína Sobre-Expressa em Nefroblastoma/metabolismo , Obesidade/tratamento farmacológico , Via de Sinalização Wnt/efeitos dos fármacos , Proteína Wnt1/metabolismo , Células 3T3-L1 , Adipocinas/metabolismo , Tecido Adiposo/enzimologia , Tecido Adiposo/fisiopatologia , Animais , Biomarcadores/sangue , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Pressão Sanguínea , Cardiomiopatias/enzimologia , Cardiomiopatias/etiologia , Cardiomiopatias/fisiopatologia , Modelos Animais de Doenças , Mediadores da Inflamação/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/enzimologia , Miócitos Cardíacos/enzimologia , Obesidade/complicações , Obesidade/enzimologia , Obesidade/fisiopatologia , Consumo de Oxigênio , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/deficiência , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Remodelação Ventricular , Aumento de Peso/efeitos dos fármacos , Proteínas Wnt/metabolismo , beta CateninaRESUMO
We have recently demonstrated that disruption of the murine cytochrome P-450 2c44 gene (Cyp2c44) exacerbates chronic hypoxia-induced pulmonary artery remodeling and hypertension in mice. Subsequently, we serendipitously found that Cyp2c44 gene disruption also increases hematopoietic stem cell (HSC) numbers in bone marrow and blood. Therefore, the objective of the present study was to investigate whether CYP2C44-derived eicosanoids regulate HSC proliferation/cell growth and whether increased HSCs contribute to chronic hypoxia-induced remodeling of pulmonary arteries in Cyp2c44 knockout mice. Our findings demonstrated that lack of CYP2C44 epoxygenase, which catalyzed the oxidation of arachidonic acid to epoxyeicosatrienoic (EETs) and hydroxyeicosatetraenoic (HETE) acids, increases the numbers of 1) HSCs (CD34+, CD117+, and CD133+), 2) proangiogenic (CD34+CD133+ and CD34+CD117+CD133+) cells, and 3) immunogenic/inflammatory (CD34+CD11b+, CD133+CD11b+, F4/80+, CD11b+, and F4/80+CD11b+) macrophages in bone marrow and blood compared with wild-type mice. Among the various CYP2C44-derived arachidonic acids, only 15-HETE decreased CD117+ cell numbers when applied to bone marrow cell cultures. Interestingly, CD133+ and von Willebrand factor-positive cells, which are derived from proangiogenic stem cells, are increased in the bone marrow, blood, and lungs of mice exposed to chronic hypoxia and in remodeled and occluded pulmonary arteries of CYP2C44-deficient mice. In conclusion, our results demonstrate that CYP2C44-derived 15-HETE plays a critical role in downregulating HSC proliferation and growth, because disruption of the Cyp2c44 gene increased HSCs that potentially contribute to chronic hypoxia-induced pulmonary arterial remodeling and occlusion.NEW & NOTEWORTHY This study demonstrates that cytochrome P-450 2C44 plays a critical role in controlling the phenotype of hematopoietic stem cells and that when this enzyme is knocked out, stem cells are differentiated. These stem cells give rise to increased circulating monocytes and macrophages and contribute to the pathogenesis of chronic hypoxia-induced pulmonary artery remodeling and hypertension.
Assuntos
Proliferação de Células , Família 2 do Citocromo P450/deficiência , Células-Tronco Hematopoéticas/enzimologia , Ácidos Hidroxieicosatetraenoicos/metabolismo , Hipertensão Pulmonar/enzimologia , Hipóxia/complicações , Artéria Pulmonar/enzimologia , Remodelação Vascular , Antígeno AC133/metabolismo , Animais , Antígenos CD34/metabolismo , Antígenos de Diferenciação/metabolismo , Antígeno CD11b/metabolismo , Diferenciação Celular , Células Cultivadas , Doença Crônica , Família 2 do Citocromo P450/genética , Modelos Animais de Doenças , Feminino , Predisposição Genética para Doença , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/fisiopatologia , Macrófagos/enzimologia , Masculino , Camundongos da Linhagem 129 , Camundongos Knockout , Monócitos/enzimologia , Fenótipo , Proteínas Proto-Oncogênicas c-kit/metabolismo , Artéria Pulmonar/patologia , Artéria Pulmonar/fisiopatologia , Transdução de SinaisRESUMO
Hyperdynamic circulation contributes to the progress of portal hypertension in liver cirrhosis. We investigated the effects of soluble epoxide hydrolase (sEH) inhibition on portal pressure and the myogenic response of mesenteric arteries isolated from cirrhotic rats using the sEH inhibitor t-TUCB (trans-4-{4-[3-(4-trifluoromethoxyphenyl)-ureido]cyclohexyloxy}benzoic acid). Cirrhotic tissues had a higher ratio of epoxyeicosatrienoic acids (EETs) to dihydroxyeicosatrienoic acids (DHETs) following increased CYP2C11 expression, which may be a protective response. In comparison with controls, myogenic responses of mesenteric arteries from cirrhotic rats were attenuated at 80-140mmHg, while inhibition of sEH partly reversed the impaired myogenic constriction at 100-140mmHg and exhibited better feedback of vascular smooth muscle to pressure variation. Inhibition of sEH reduced portal pressure by decreasing endothelial synthesis of nitric oxide. An imbalance between EETs and nitric oxide may account for hyperdynamic circulation. sEH inhibitors may provide a novel approach for treating cirrhosis of the liver.
Assuntos
Inibidores Enzimáticos/farmacologia , Epóxido Hidrolases/antagonistas & inibidores , Epóxido Hidrolases/química , Cirrose Hepática/fisiopatologia , Artérias Mesentéricas/efeitos dos fármacos , Artérias Mesentéricas/fisiopatologia , Pressão na Veia Porta/efeitos dos fármacos , Animais , Benzoatos/farmacologia , Ácidos Graxos Monoinsaturados/metabolismo , Cirrose Hepática/metabolismo , Masculino , Óxido Nítrico/metabolismo , Compostos de Fenilureia/farmacologia , Ratos , Ratos Sprague-Dawley , Solubilidade , Vasoconstrição/efeitos dos fármacosRESUMO
Coronary collateral growth (CCG) is impaired in metabolic syndrome (MetS). microRNA-145 (miR-145-Adv) delivery to our rat model of MetS (JCR) completely restored and neutrophil depletion significantly improved CCG. We determined whether low endogenous levels of miR-145 in MetS allowed for elevated production of 20-hydroxyeicosatetraenoic acid (20-HETE), which, in turn, resulted in excessive neutrophil accumulation and endothelial dysfunction leading to impaired CCG. Rats underwent 0-9 days of repetitive ischemia (RI). RI-induced cardiac CYP4F (neutrophil-specific 20-HETE synthase) expression and 20-HETE levels were increased (4-fold) in JCR vs. normal rats. miR-145-Adv and 20-HETE antagonists abolished and neutrophil depletion (blocking antibodies) reduced (~60%) RI-induced increases in CYP4F expression and 20-HETE production in JCR rats. Impaired CCG in JCR rats (collateral-dependent blood flow using microspheres) was completely restored by 20-HETE antagonists [collateral-dependent zone (CZ)/normal zone (NZ) flow ratio was 0.76 ± 0.07 in JCR + 20-SOLA, 0.84 ± 0.05 in JCR + 20-HEDGE vs. 0.11 ± 0.02 in JCR vs. 0.84 ± 0.03 in normal rats]. In JCR rats, elevated 20-HETE was associated with excessive expression of endothelial adhesion molecules and neutrophil infiltration, which were reversed by miR-145-Adv. Endothelium-dependent vasodilation of coronary arteries, endothelial nitric oxide synthase (eNOS) Ser1179 phosphorylation, eNOS-dependent NO·- production and endothelial cell survival were compromised in JCR rats. These parameters of endothelial dysfunction were completely reversed by 20-HETE antagonism or miR-145-Adv delivery, whereas neutrophil depletion resulted in partial reversal (~70%). We conclude that low miR-145 in MetS allows for increased 20-HETE, mainly from neutrophils, which compromises endothelial cell survival and function leading to impaired CCG. 20-HETE antagonists could provide viable therapy for restoration of CCG in MetS.NEW & NOTEWORTHY Elevated 20-hydroxyeicosatetraenoic acid (20-HETE) impairs coronary collateral growth (CCG) in metabolic syndrome by eliciting endothelial dysfunction and apoptosis via excessive neutrophil infiltration. 20-HETE antagonists completely restore coronary collateral growth in metabolic syndrome. microRNA-145 (miR-145) is an upstream regulator of 20-HETE production in metabolic syndrome; low expression of miR-145 in metabolic syndrome promotes elevated production of 20-HETE.
Assuntos
Circulação Colateral/efeitos dos fármacos , Vasos Coronários/efeitos dos fármacos , Vasos Coronários/crescimento & desenvolvimento , Endotélio Vascular/patologia , Ácidos Hidroxieicosatetraenoicos/metabolismo , Síndrome Metabólica/patologia , Animais , Anticorpos Bloqueadores/farmacologia , Arteríolas/efeitos dos fármacos , Capilares/efeitos dos fármacos , Moléculas de Adesão Celular/biossíntese , Vasos Coronários/patologia , Endotélio Vascular/metabolismo , Ácidos Hidroxieicosatetraenoicos/antagonistas & inibidores , Masculino , Síndrome Metabólica/metabolismo , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patologia , Neutrófilos/efeitos dos fármacos , Óxido Nítrico Sintase Tipo III/metabolismo , Ratos , Ratos Sprague-DawleyRESUMO
Epoxyeicosatrienoicacids (EETs), synthesized from arachidonic acid by epoxygenases of the CYP2C and CYP2J gene subfamilies, contribute to hypoxic pulmonary vasoconstriction (HPV) in mice. Despite their roles in HPV, it is controversial whether EETs mediate or ameliorate pulmonary hypertension (PH). A recent study showed that deficiency of Cyp2j did not protect male and female mice from hypoxia-induced PH. Since CYP2C44 is a functionally important epoxygenase, we hypothesized that knockout of the Cyp2c44 gene would protect both sexes of mice from hypoxia-induced PH. We tested this hypothesis in wild-type (WT) and Cyp2c44 knockout (Cyp2c44 (-/-)) mice exposed to normoxia (room air) and hypoxia (10% O2) for 5 weeks. Exposure of WT and Cyp2c44 (-/-) mice to hypoxia resulted in pulmonary vascular remodeling, increased pulmonary artery resistance, and decreased cardiac function in both sexes. However, in female Cyp2c44 (-/-) mice, compared with WT mice, (1) pulmonary artery resistance and right ventricular hypertrophy were greater, (2) cardiac index was lower, (3) left ventricular and arterial stiffness were higher, and (4) plasma aldosterone levels were higher, but (5) there was no difference in levels of EET in lungs and heart. Paradoxically and unexpectedly, we found that Cyp2c44 disruption exacerbated hypoxia-induced PH in female but not male mice. We attribute exacerbated PH in female Cyp2c44 (-/-) mice to elevated aldosterone and as-yet-unknown systemic factors. Therefore, we suggest a role for the human CYP2C genes in protecting women from severe PH and that this could be one of the underlying causes for a better 5-year survival rate in women than in men.
RESUMO
The mechanisms by which prostanoids contribute to the maintenance of whole body water homeostasis are complex and not fully understood. The present study demonstrates that an EP3-dependent feedback mechanism contributes to the regulation of water homeostasis under high-salt conditions. Rats on a normal diet and tap water were placed in metabolic cages and given either sulprostone (20 µg·kg-1·day-1) or vehicle for 3 days to activate EP3 receptors in the thick ascending limb (TAL). Treatment was continued for another 3 days in rats given either 1% NaCl in the drinking water or tap water. Sulprostone decreased expression of cyclooxygenase 2 (COX-2) expression by â¼75% in TAL tubules from rats given 1% NaCl concomitant with a â¼60% inhibition of COX-2-dependent PGE2 levels in the kidney. Urine volume increased after ingestion of 1% NaCl but was reduced â¼40% by sulprostone. In contrast, the highly selective EP3 receptor antagonist L-798106 (100 µg·kg-1·day-1), which increased COX-2 expression and renal PGE2 production, increased urine volume in rats given 1% NaCl. Sulprostone increased expression of aquaporin-2 (AQP2) in the inner medullary collecting duct plasma membrane in association with an increase in phosphorylation at Ser269 and decrease in Ser261 phosphorylation; antagonism of EP3 with L-798106 reduced AQP2 expression. Thus, although acute activation of EP3 by PGE2 in the TAL and collecting duct inhibits the Na-K-2Cl cotransporter and AQP2 activity, respectively, chronic activation of EP3 in vivo limits the extent of COX-2-derived PGE2 synthesis, thereby mitigating the inhibitory effects of PGE2 on these transporters and decreasing urine volume.
Assuntos
Ciclo-Oxigenase 2/metabolismo , Dinoprostona/metabolismo , Retroalimentação Fisiológica/fisiologia , Rim/metabolismo , Receptores de Prostaglandina E Subtipo EP3/metabolismo , Sódio na Dieta/administração & dosagem , Água/metabolismo , Animais , Aquaporina 2/genética , Aquaporina 2/metabolismo , Ciclo-Oxigenase 2/genética , Retroalimentação Fisiológica/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Homeostase/fisiologia , Masculino , Ratos , Receptores de Prostaglandina E Subtipo EP3/genética , Equilíbrio Hidroeletrolítico/efeitos dos fármacosRESUMO
Epoxyeicosatrienoic acids (EETs) are cardioprotective mediators metabolized by soluble epoxide hydrolase (sEH) to form corresponding diols (DHETs). As a sex-susceptible target, sEH is involved in the sexually dimorphic regulation of cardiovascular function. Thus, we hypothesized that the female sex favors EET-mediated potentiation of cardiac function via downregulation of sEH expression, followed by upregulation of peroxisome proliferator-activated receptors (PPARs). Hearts were isolated from male (M) and female (F) wild-type (WT) and sEH-KO mice, and perfused with constant flow at different preloads. Basal coronary flow required to maintain the perfusion pressure at 100 mmHg was significantly greater in females than males, and sEH-KO than WT mice. All hearts displayed a dose-dependent decrease in coronary resistance and increase in cardiac contractility, represented as developed tension in response to increases in preload. These responses were also significantly greater in females than males, and sEH-KO than WT 14,15-EEZE abolished the sex-induced (F vs. M) and transgenic model-dependent (KO vs. WT) differences in the cardiac contractility, confirming an EET-driven response. Compared with M-WT controls, F-WT hearts expressed downregulation of sEH, associated with increased EETs and reduced DHETs, a pattern comparable to that observed in sEH-KO hearts. Coincidentally, F-WT and sEH-KO hearts exhibited increased PPARα expression, but comparable expression of eNOS, PPARß, and EET synthases. In conclusion, female-specific downregulation of sEH initiates an EET-dependent adaptation of cardiac function, characterized by increased coronary flow via reduction in vascular resistance, and promotion of cardiac contractility, a response that could be further intensified by PPARα.
Assuntos
Ácido 8,11,14-Eicosatrienoico/metabolismo , Adaptação Fisiológica , Epóxido Hidrolases/metabolismo , Coração/fisiologia , Contração Miocárdica , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Animais , Circulação Coronária , Epóxido Hidrolases/genética , Feminino , Masculino , Camundongos , Miocárdio/metabolismo , Fatores SexuaisRESUMO
BACKGROUND: Oxidized-HDL (OX-HDL) has been reported to increase coronary events in obese patients; however, OX-HDL has not been studied in subjects with the metabolic syndrome. A high body mass index (BMI) correlates positively with higher levels of metabolic syndrome biomarkers including vasoconstrictors and adipokines. We hypothesize that a subject with a high BMI would present with higher levels of OX-HDL, 20-HETE and Angiotensin II (Ang II) with a reciprocal reduction in serum adiponectin. METHODS: Female subjects with a BMI of 17-25 and a BMI of 30-40, without overt cardiovascular disease, were enrolled in the study. All patients had a history and physical exam documenting the absence of signs and symptoms of cardiovascular disease. Appropriate screening was done and documented. Blood pressure was taken at two discrete points. The BP data are presented as the average. Changes in the relationship between BMI, OX-HDL, 20-HETE, Ang II, TNFα, isoprostane and adiponectin were examined. In addition, the effects of OX-HDL, 20-HETE and Ang II on adipogenesis were examined in human MSC derived adipocytes. RESULTS: Subjects with a high BMI>30 displayed an increase in OX-HDL and isoprostane (P<0.05) compared to those with the lower BMI<25 which was associated with an increase in Ang II and 20-HETE (p<0.05). Serum TNFα levels increased in subjects with a high BMI, compared to subjects with the lower BMI (p<0.05). In contrast, adiponectin levels were increased in subjects with a low BMI compared to obese subjects (p<0.05). In MSC derived adipocytes OX-HDL increased adipogenesis 6 fold at a concentration of 50ng compared to untreated adipocytes. Adipocytes treated with Ang II and 20-HETE also displayed increased adipogenesis (p<0.05), which was attenuated by endogenous increases of the anti-oxidant heme oxygenase-1. Our study demonstrates that OX-HDL presents a unique inflammatory biomarker profile in obese females with the metabolic syndrome at risk for developing cardiovascular disease. CONCLUSIONS: Females with increased BMI (30-40) exhibit a marked increase in OX-HDL and isoprostane levels, which was associated with an increase in 20-HETE, TNF α and Ang II and decreased levels of adiponectin when compared to a group with a low BMI. OX-HDL had a more powerful adipogenic effect when compared to 20-HETE and Ang II. Our study demonstrates that OX-HDL presents a unique inflammatory biomarker profile in obese females with the metabolic syndrome at risk for developing cardiovascular disease. This represents a novel mechanism by which females with a high BMI and controlled blood pressure remain "at risk" for the development of the metabolic syndrome as a result of increased adipogenesis by OX-HDL and activation of the 20-HETE and Ang II systems.
Assuntos
Adipócitos/metabolismo , Angiotensina II/metabolismo , Ácidos Hidroxieicosatetraenoicos/metabolismo , Lipoproteínas LDL/metabolismo , Síndrome Metabólica/metabolismo , Obesidade/metabolismo , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Adipogenia/genética , Adiponectina/genética , Adiponectina/metabolismo , Adulto , Angiotensina II/agonistas , Angiotensina II/farmacologia , Pressão Sanguínea , Índice de Massa Corporal , Estudos de Casos e Controles , F2-Isoprostanos/metabolismo , Feminino , Regulação da Expressão Gênica , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Humanos , Ácidos Hidroxieicosatetraenoicos/agonistas , Ácidos Hidroxieicosatetraenoicos/farmacologia , Lipoproteínas LDL/farmacologia , Síndrome Metabólica/complicações , Síndrome Metabólica/genética , Síndrome Metabólica/patologia , Pessoa de Meia-Idade , Obesidade/complicações , Obesidade/genética , Obesidade/patologia , Cultura Primária de Células , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismoRESUMO
BACKGROUND: Epoxyeicosatrienoic acids (EETs) derived from cytochrome P450 (CYP)-dependent metabolism of arachidonic acid are increased in the plasma of women with preeclampsia as compared with normal pregnancy and are significantly higher in fetal than in maternal plasma and erythrocytes. We hypothesized that differences in EET synthesis or metabolism in the feto-placental unit contributed to the observed differences in circulating EETs. METHOD: To evaluate EETs, formation as well as the expression of relevant CYP isoforms and the metabolizing enzyme, soluble epoxide hydrolase (sEH), biopsies of placenta were collected from 19 normal pregnancy and 10 preeclampsia at the time of cesarean section delivery. EETs were extracted from tissue homogenates and analyzed by liquid chromatography coupled with tandem mass spectrometry. RESULTS: Both cis-EETs and trans-EETs were detected in the placenta. Concentration of total EETs was higher in the placenta from preeclampsia compared with normal pregnancy (2.37â±â1.42âng/mg vs. 1.20â±â0.72âng/mg, meanâ±âSD, Pâ<â0.01), especially the 5,6-, 8,9- and 11,12-EETs, measured in a subgroup of tissue samples (normal pregnancyâ=â10, preeclampsiaâ=â5). By immunohistochemistry, sEH, CYP2J2, CYP4A11 were present in placental villi with different pattern distribution, whereas CYP2C8 was not detectable. Neither were CYP2J2, CYP4A11, and CYP2C8 detected in the umbilical cord. Western blot analysis of placenta homogenates showed reduced expression of sEH in preeclampsia as compared with normal pregnancy. CONCLUSION: Increased EETs in the placenta and umbilical cord are associated with the presence of CYP2J2, whereas reduced expression of sEH in preeclampsia may be the key factor of increased EETs in the placenta.
Assuntos
Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Eicosanoides/metabolismo , Epóxido Hidrolases/metabolismo , Compostos de Epóxi/metabolismo , Placenta/metabolismo , Pré-Eclâmpsia/metabolismo , Ácido 8,11,14-Eicosatrienoico/metabolismo , Adulto , Animais , Estudos de Casos e Controles , Citocromo P-450 CYP2C8/análise , Citocromo P-450 CYP2J2 , Citocromo P-450 CYP4A/análise , Sistema Enzimático do Citocromo P-450/análise , Sistema Enzimático do Citocromo P-450/metabolismo , Eicosanoides/biossíntese , Epóxido Hidrolases/análise , Eritrócitos/metabolismo , Feminino , Feto/metabolismo , Humanos , Imuno-Histoquímica , Placenta/química , Placenta/enzimologia , Pré-Eclâmpsia/enzimologia , Gravidez , Cordão Umbilical/químicaRESUMO
Angiogenesis is an important adaptation for recovery from peripheral ischemia. Here, we determined whether 20-hydroxyeicosatetraenoic acid (20-HETE) contributes to ischemia-induced angiogenesis and assessed its underlying molecular and cellular mechanisms using a mouse hindlimb-ischemia angiogenesis model. Hindlimb blood flow was measured by Laser Doppler Perfusion Imaging and microvessel density was determined by CD31 and tomato lectin staining. We found that systemic and local administration of a 20-HETE synthesis inhibitor, DDMS, or a 20-HETE antagonist, 6,15-20-HEDGE significantly reduced blood flow recovery and microvessel formation in response to ischemia. 20-HETE production, measured by LC/MS/MS, was markedly increased in ischemic muscles (91±11 vs. 8±2pg/mg in controls), which was associated with prominent upregulation of the 20-HETE synthase, CYP4A12. Immunofluorescence co-localized increased CYP4A12 expression in response to ischemia to CD31-positive EC in the ischemic hindlimb microvessels. We further showed that ischemia increased HIF-1α, VEGF, and VEGFR2 expression in gracilis muscles and that these increases were negated by DDMS and 6,15-20-HEDGE. Lastly, we showed that ERK1/2 of MAPK is a component of 20-HETE regulated ischemic angiogenesis. Taken together, these data indicate that 20-HETE is a critical contributor of ischemia-induced angiogenesis in vivo.
Assuntos
Ácidos Hidroxieicosatetraenoicos/metabolismo , Isquemia/metabolismo , Músculo Esquelético/irrigação sanguínea , Neovascularização Fisiológica , Transdução de Sinais , Indutores da Angiogênese/farmacologia , Inibidores da Angiogênese/farmacologia , Animais , Velocidade do Fluxo Sanguíneo , Hipóxia Celular , Células Cultivadas , Família 4 do Citocromo P450/metabolismo , Células Endoteliais/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Membro Posterior , Humanos , Ácidos Hidroxieicosatetraenoicos/antagonistas & inibidores , Ácidos Hidroxieicosatetraenoicos/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Isquemia/tratamento farmacológico , Isquemia/fisiopatologia , Camundongos Endogâmicos BALB C , Neovascularização Fisiológica/efeitos dos fármacos , Fluxo Sanguíneo Regional , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismoRESUMO
Epoxyeicosatrienoic acids (EETs) are metabolites of arachidonic acid via CYP/epoxygenases, which are catabolized by soluble epoxide hydrolase (sEH) and known to possess cardioprotective properties. To date, the role of sEH in the modulation of pressure-induced myogenic response/constriction in coronary arteries, an important regulatory mechanism in the coronary circulation, and the issue as to whether the disruption of the sEH gene affects the myogenic response sex differentially have never been addressed. To this end, experiments were conducted on male (M) and female (F) wild-type (WT) and sEH-knockout (KO) mice. Pressure-diameter relationships were assessed in isolated and cannulated coronary arteries. All vessels constricted in response to increases in intraluminal pressure from 60 to 120 mmHg. Myogenic vasoconstriction was significantly attenuated, expressed as an upward shift in the pressure-diameter curve of vessels, associated with higher cardiac EETs in M-KO, F-WT, and F-KO mice compared with M-WT controls. Blockade of EETs via exposure of vessels to 14,15-epoxyeicosa-5(Z)-enoic acid (14,15-EEZE) prevented the attenuated myogenic constriction in sEH-KO mice. In the presence of 14,15-EEZE, pressure-diameter curves of females presented an upward shift from those of males, exhibiting a sex-different phenotype. Additional administration of N(ω)-nitro-l-arginine methyl ester eliminated the sex difference in myogenic responses, leading to four overlapped pressure-diameter curves. Cardiac sEH was downregulated in F-WT compared with M-WT mice, whereas expression of endothelial nitric oxide synthase and CYP4A (20-HETE synthase) was comparable among all groups. In summary, in combination with NO, the increased EET bioavailability as a function of genetic deletion and/or downregulation of sEH accounts for the female-favorable attenuation of pressure-induced vasoconstriction.
Assuntos
Ácidos Araquidônicos/metabolismo , Vasos Coronários/metabolismo , Óxido Nítrico/metabolismo , Vasoconstrição , Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Ácido 8,11,14-Eicosatrienoico/farmacologia , Animais , Ácidos Araquidônicos/antagonistas & inibidores , Pressão Arterial , Vasos Coronários/efeitos dos fármacos , Citocromo P-450 CYP4A/metabolismo , Inibidores Enzimáticos/farmacologia , Epóxido Hidrolases/deficiência , Epóxido Hidrolases/genética , Feminino , Genótipo , Ácidos Hidroxieicosatetraenoicos/metabolismo , Técnicas In Vitro , Masculino , Mecanotransdução Celular , Camundongos Knockout , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Óxido Nítrico Sintase Tipo III/metabolismo , Fenótipo , Fatores Sexuais , Vasoconstrição/efeitos dos fármacosRESUMO
In response to hypoxia, the pulmonary artery normally constricts to maintain optimal ventilation-perfusion matching in the lung, but chronic hypoxia leads to the development of pulmonary hypertension. The mechanisms of sustained hypoxic pulmonary vasoconstriction (HPV) remain unclear. The aim of this study was to determine the role of gap junctions (GJs) between smooth muscle cells (SMCs) in the sustained HPV development and involvement of arachidonic acid (AA) metabolites in GJ-mediated signaling. Vascular tone was measured in bovine intrapulmonary arteries (BIPAs) using isometric force measurement technique. Expression of contractile proteins was determined by Western blot. AA metabolites in the bath fluid were analyzed by mass spectrometry. Prolonged hypoxia elicited endothelium-independent sustained HPV in BIPAs. Inhibition of GJs by 18ß-glycyrrhetinic acid (18ß-GA) and heptanol, nonspecific blockers, and Gap-27, a specific blocker, decreased HPV in deendothelized BIPAs. The sustained HPV was not dependent on Ca(2+) entry but decreased by removal of Ca(2+) and by Rho-kinase inhibition with Y-27632. Furthermore, inhibition of GJs decreased smooth muscle myosin heavy chain (SM-MHC) expression and myosin light chain phosphorylation in BIPAs. Interestingly, inhibition of 15- and 20-hydroxyeicosatetraenoic acid (HETE) synthesis decreased HPV in deendothelized BIPAs. 15-HETE- and 20-HETE-stimulated constriction of BIPAs was inhibited by 18ß-GA and Gap-27. Application of 15-HETE and 20-HETE to BIPAs increased SM-MHC expression, which was also suppressed by 18ß-GA and by inhibitors of lipoxygenase and cytochrome P450 monooxygenases. More interestingly, 15,20-dihydroxyeicosatetraenoic acid and 20-OH-prostaglandin E2, novel derivatives of 20-HETE, were detected in tissue bath fluid and synthesis of these derivatives was almost completely abolished by 18ß-GA. Taken together, our novel findings show that GJs between SMCs are involved in the sustained HPV in BIPAs, and 15-HETE and 20-HETE, through GJs, appear to mediate SM-MHC expression and contribute to the sustained HPV development.
Assuntos
Junções Comunicantes/fisiologia , Ácidos Hidroxieicosatetraenoicos/farmacologia , Miócitos de Músculo Liso/fisiologia , Vasoconstrição , Animais , Bovinos , Hipóxia Celular , Células Cultivadas , Células Endoteliais , Junções Comunicantes/efeitos dos fármacos , Músculo Liso Vascular/fisiologia , Miócitos de Músculo Liso/efeitos dos fármacos , Cadeias Pesadas de Miosina/metabolismo , Artéria Pulmonar/citologiaRESUMO
We tested the hypothesis that suppression of epoxyeicosatrienoic acid (EET) metabolism via genetic knockout of the gene for soluble epoxide hydrolase (sEH-KO), or female-specific downregulation of sEH expression, plays a role in the potentiation of pulmonary hypertension. We used male (M) and female (F) wild-type (WT) and sEH-KO mice; the latter have high pulmonary EETs. Right ventricular systolic pressure (RVSP) and mean arterial blood pressure (MABP) in control and in response to in vivo administration of U46619 (thromboxane analog), 14,15-EET, and 14,15-EEZE [14,15-epoxyeicosa-5(z)-enoic acid; antagonist of EETs] were recorded. Basal RVSP was comparable among all groups of mice, whereas MABP was significantly lower in F-WT than M-WT mice and further reduced predominantly in F-KO compared with M-KO mice. U46619 dose dependently increased RVSP and MABP in all groups of mice. The increase in RVSP was significantly greater and coincided with smaller increases in MABP in M-KO and F-WT mice compared with M-WT mice. In F-KO mice, the elevation of RVSP by U46619 was even higher than in M-KO and F-WT mice, associated with the least increase in MABP. 14,15-EEZE prevented the augmentation of U46619-induced elevation of RVSP in sEH-KO mice, whereas 14,15-EET-induced pulmonary vasoconstriction was comparable in all groups of mice. sEH expression in the lungs was reduced, paralleled with higher levels of EETs in F-WT compared with M-WT mice. In summary, EETs initiate pulmonary vasoconstriction but act as vasodilators systemically. High pulmonary EETs, as a function of downregulation or deletion of sEH, potentiate U46619-induced increases in RVSP in a female-susceptible manner.