Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Cancer Biomark ; 40(2): 205-223, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38905034

RESUMO

BACKGROUND: Kidney Renal Clear Cell Carcinoma (KIRC) is a malignant tumor that seriously threatens human health. Rho GTPase-activating protein 4 (ARHGAP4) plays an important role in the occurrence and development of tumors. OBJECTIVE: The purpose of this study was to explore the role of ARHGAP4 in the progression of KIRC and its diagnostic and prognostic value. METHODS: Multiple analytical methods and in vitro cell assays were used to explore the expression of ARHGAP4 and its value in the progression, diagnosis and prognosis of KIRC. The biological function of ARHGAP4 was studied by GO analysis and KEGG pathway analysis, and then the relationship between ARHGAP4 and immune infiltration was analyzed. RESULTS: The expression of ARHGAP4 was significantly up-regulated in KIRC. We found that the high expression of ARHGAP4 was related to the progression of KIRC and suggested a poor prognosis. Compared with normal tissues, ARHGAP4 had a better diagnostic value in KIRC. The biological function of ARHGAP4 was related to immunity, and its expression was also closely related to tumor immune infiltration and immune checkpoints. CONCLUSIONS: Our study demonstrated that ARHGAP4 may be a biomarker, which is related to the progression, diagnosis and prognosis of KIRC. Its biological functions are related to tumor immune infiltration.


Assuntos
Biomarcadores Tumorais , Carcinoma de Células Renais , Proteínas Ativadoras de GTPase , Neoplasias Renais , Humanos , Prognóstico , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/imunologia , Carcinoma de Células Renais/genética , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Ativadoras de GTPase/genética , Neoplasias Renais/patologia , Neoplasias Renais/metabolismo , Neoplasias Renais/imunologia , Neoplasias Renais/genética , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Masculino , Feminino , Regulação para Cima , Regulação Neoplásica da Expressão Gênica , Pessoa de Meia-Idade , Linhagem Celular Tumoral
2.
Drug Dev Res ; 84(7): 1537-1552, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37571819

RESUMO

FAM64A is a mitogen-induced regulator of the metaphase and anaphase transition. Here, we found that FAM64A messenger RNA (mRNA) and protein expression levels were higher in gastric cancer tissue than in normal mucosa (p < .05). FAM64A methylation was negatively correlated with FAM64A mRNA expression (p < .05). The differentially expressed genes of FAM64A were mainly involved in digestion, potassium transporting or exchanging ATPase, contractile fibers, endopeptidase, and pancreatic secretion (p < .05). The FAM64A-related genes were principally categorized into ubiquitin-mediated proteolysis, cell cycle, chromosome segregation and mitosis, microtubule binding and organization, metabolism of amino acids, cytokine receptors, lipid droplet, central nervous system, and collagen trimer (p < .05). FAM64A protein expression was lower in normal gastric mucosa than intestinal metaplasia, adenoma, and primary cancer (p < .05), negatively correlated with older age, T stage, lymphatic and venous invasion, tumor, node, metastasis stage, and dedifferentiation (p < .05), and associated with a favorable overall survival of gastric cancer patients. FAM64A overexpression promoted proliferation, antiapoptosis, migration, invasion, and epithelial-mesenchymal transition via the EGFR/Akt/mTOR/NF-κB, while the opposite effect was observed for FAM64A knockdown. FAM64A also induced chemoresistance directly or indirectly through lipid droplet formation via ING5. These results suggested that upregulation of FAM64A expression might induce aggressive phenotypes, leading to gastric carcinogenesis and its subsequent progression. Thus, FAM64A could be regarded as a prognosis biomarker and a target for gene therapy.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Resistencia a Medicamentos Antineoplásicos/genética , Gotículas Lipídicas/metabolismo , Gotículas Lipídicas/patologia , Regulação Neoplásica da Expressão Gênica , Biomarcadores , Proliferação de Células/genética , RNA Mensageiro , Terapia Genética , Linhagem Celular Tumoral , Movimento Celular , Prognóstico
3.
Front Cell Dev Biol ; 10: 1012179, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36425530

RESUMO

As a Class II tumor suppressor, ING5 contains nuclear localization signal, plant homeodomain, novel conserved region, and leucine zipper-like domains. ING5 proteins form homodimer into a coil-coil structure, and heterodimers with ING4, histone H3K4me3, histone acetyltransferase (HAT) complex, Tip60, Cyclin A1/CDK2, INCA1 and EBNA3C for the transcription of target genes. The acetylated proteins up-regulated by ING5 are preferentially located in nucleus and act as transcription cofactors, chromatin and DNA binding functions, while those down-regulated by ING5 mostly in cytoplasm and contribute to metabolism. ING5 promotes the autoacetylation of HAT p300, p53, histone H3 and H4 for the transcription of downstream genes (Bax, GADD45, p21, p27 and so forth). Transcriptionally, YY1 and SRF up-regulate ING5 mRNA expression by the interaction of YY1-SRF-p53-ING5 complex with ING5 promoter. Translationally, ING5 is targeted by miR-196, miR-196a, miR-196b-5p, miR-193a-3p, miR-27-3p, miR-200b/200a/429, miR-1307, miR-193, miR-222, miR-331-3p, miR-181b, miR-543 and miR-196-b. ING5 suppresses proliferation, migration, invasion and tumor growth of various cancer cells via the suppression of EGFR/PI3K/Akt, IL-6/STAT3, Akt/NF-κB/NF-κB/MMP-9 or IL-6/CXCL12 pathway. ING5-mediated chemoresistance is closely linked to anti-apoptosis, overexpression of chemoresistant genes, the activation of PI3K/Akt/NF-κB and Wnt/ß-catenin signal pathways. Histologically, ING5 abrogation in gastric stem-like and pdx1-positive cells causes gastric dysplasia and cancer, and conditional ING5 knockout in pdx1-positive and gastric chief cells increases MNU-induced gastric carcinogenesis. Intestinal ING5 deletion increases AOM/DSS- induced colorectal carcinogenesis and decreases high-fat-diet weight. The overexpression and nucleocytoplasmic translocation of ING5 are seen during carcinogenesis, and ING5 expression was inversely associated with aggressive behaviors and poor prognosis in a variety of cancers. These findings indicated that ING5 might be used for a molecular marker for carcinogenesis and following progression, and as a target for gene therapy if its chemoresistant function might be ameliorated.

4.
Crit Rev Eukaryot Gene Expr ; 32(8): 81-94, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36017918

RESUMO

Bladder cancer is a common urological tumor, and its development process is complicated. Many long non-coding RNAs (lncRNAs), including PCAT19, have a regulatory role in cell development and gene expression, and is widely involved in the occurrence and development of a variety of cancers. We studied the changes in cell function through MTT assay, flow cytometer, transwell assay, etc. Several molecular assays are employed to explore these molecular mechanistic aspects, such as luciferase reporter, reverse transcription quantitative polymerase chain reaction, and Western blot. In addition, we also constructed a mouse bladder cancer xenograft model to verify the function of the PCAT19/miR-335-5p/IER2 signal axis in vivo. PCAT19 is upregulated in bladder cancer tissues, while miR-335-5p is downregulated, and the expression of PCAT19 and miR-335-5p is negatively correlated. The survival rate of bladder cancer patients in the PCAT19 upregulated group or miR-335-5p downregulated group was lower. After overexpression of PCAT19, the amount of miR-335-5p in cell is decreased, and the IER2 expression is increased. It can significantly promote the vitality, proliferation, migration and invasion capabilities of bladder cancer cells, and significantly inhibit cell apoptosis. Studies on molecular mechanisms show that PCAT19 can regulate the miR-335-5p/IER2 signal axis both in vivo and in vitro. PCAT19, which is upregulated in bladder cancer tissue, interacts with miR-335-5p to regulate the expression of downstream target gene IER2, forming a complete PCAT19/miR-335-5p/IER2 signal regulation axis, and ultimately affect the malignant progression of bladder cancer both in vivo and in vitro.


Assuntos
Proteínas Imediatamente Precoces , MicroRNAs , RNA Longo não Codificante , Neoplasias da Bexiga Urinária , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia
5.
Tissue Cell ; 77: 101817, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35679685

RESUMO

AIM: In digestive system, colorectal cancer (CRC) is a common malignant tumor. The phosphatidylinositol 3-kinase/protein kinase-B/mammalian target of the rapamycin (PI3K/AKT/mTOR) signaling pathway plays a central role in CRC, and the aberrant activation of this pathway is associated with tumorigenesis. We aimed to explore the role of Rho GTPase activating protein 9 (ARHGAP9) in the progression of CRC as well as its regulatory effects on the PI3K/AKT/mTOR pathway. METHODS: The expression of ARHGAP9 in CRC tumor tissues and cell lines were detected using reverse transcription-quantitative PCR (qRT-PCR). 5-ethynyl-2'-deoxyuridine (EdU) assay was applied to test the cell proliferation. Cell migration and invasion were both assessed through transwell assay. Xenograft mouse models were constructed to explore the effects of ARHGAP9 on CRC in vivo. The expressions of PI3K/AKT/mTOR-activating factors and epithelial-mesenchymal transition (EMT)-related factors were all determined using western blot. LY294002 was employed to block PI3K/AKT/mTOR pathway in CRC cells. RESULTS: The expression of ARHGAP9 was down-regulated in CRC tumor tissues and cell lines when compared to normal tissues and cells. The over-expression of ARHGAP9 inhibited cell proliferation, invasion, migration and EMT in CRC cell lines while the knockdown of ARHGAP9 promoted them. In addition, ARHGAP9 up-regulation inhibited the activation of PI3K/AKT/mTOR signaling pathway in CRC cell lines while ARHGAP9 down-regulation led to an opposite effect. The over-expression of ARHGAP9 suppressed CRC tumor growth in vivo. When the PI3K/AKT/mTOR pathway was blocked in CRC cells, the effects of ARHGAP9 knockdown on cell proliferation, migration, invasion and EMT were all overturned. CONCLUSION: ARHGAP9 inhibited the malignant phenotypes of CRC cells via interdicting PI3K/AKT/mTOR signaling pathway.


Assuntos
Neoplasias Colorretais , Proteínas Proto-Oncogênicas c-akt , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Transição Epitelial-Mesenquimal/genética , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Ativadoras de GTPase/farmacologia , Regulação Neoplásica da Expressão Gênica , Humanos , Mamíferos/metabolismo , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo
6.
Front Oncol ; 12: 744886, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35350574

RESUMO

JC polyoma virus (JCPyV) is a ubiquitous polyoma virus that infects the individual to cause progressive multifocal leukoencephalopathy and malignancies. Here, we found that T-antigen knockdown suppressed proliferation, glycolysis, mitochondrial respiration, migration, and invasion, and induced apoptosis and G2 arrest. The reverse was true for T-antigen overexpression, with overexpression of Akt, survivin, retinoblastoma protein, ß-catenin, ß-transducin repeat-containing protein (TRCP), and inhibitor of growth (ING)1, and the underexpression of mammalian target of rapamycin (mTOR), phosphorylated (p)-mTOR, p-p38, Cyclin D1, p21, vascular endothelial growth factor (VEGF), ING2, and ING4 in hepatocellular and pancreatic cancer cells and tissues. In lens tumor cells, T antigen transcriptionally targeted viral carcinogenesis, microRNAs in cancer, focal adhesion, p53, VEGF, phosphoinositide 3 kinase-Akt, and Forkhead box O signaling pathways, fructose and mannose metabolism, ribosome biosynthesis, and choline and pyrimidine metabolism. At a metabolomics level, it targeted protein digestion and absorption, aminoacryl-tRNA biosynthesis, biosynthesis of amino acids, and the AMPK signal pathway. At a proteomic level, it targeted ribosome biogenesis in eukaryotes, citrate cycle, carbon metabolism, protein digestion and absorption, aminoacryl-tRNA biosynthesis, extracellular-matrix-receptor interaction, and biosynthesis of amino acids. In lens tumor cells, T antigen might interact with various keratins, ribosomal proteins, apolipoproteins, G proteins, ubiquitin-related proteins, RPL19, ß-catenin, ß-TRCP, p53, and CCAAT-enhancer-binding proteins in lens tumor cells. T antigen induced a more aggressive phenotype in mouse and human cancer cells due to oncogene activation, inactivation of tumor suppressors, and disruption of metabolism, cell adhesion, and long noncoding RNA-microRNA-target axes.

7.
Mol Med Rep ; 25(1)2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34779504

RESUMO

Recently accumulated evidence has indicated that the nucleomembrane shuttling of cellular proteins is common, which provides new insight into the subcellular translocation and biological functions of proteins synthesized in the cytoplasm. The present study aimed to clarify the trafficking of proteins between the plasma membrane and nucleus. These proteins primarily consist of transmembrane receptors, membrane adaptor proteins, adhesive proteins, signal proteins and nuclear proteins, which contribute to proliferation, apoptosis, chemoresistance, adhesion, migration and gene expression. The proteins frequently undergo cross­talk, such as the interaction of transmembrane proteins with signal proteins. The transmembrane proteins undergo endocytosis, infusion into organelles or proteolysis into soluble forms for import into the nucleus, while nuclear proteins interact with membrane proteins or act as receptors. The nucleocytosolic translocation involves export or import through nuclear membrane pores by importin or exportin. Nuclear proteins generally interact with other transcription factors, and then binding to the promoter for gene expression, while membrane proteins are responsible for signal initiation by binding to other membrane and/or adaptor proteins. Protein translocation occurs in a cell­specific manner and is closely linked to cellular biological events. The present review aimed to improve understanding of cytosolic protein shuttling between the plasma membrane and nucleus and the associated signaling pathways.


Assuntos
Membrana Celular/metabolismo , Membrana Nuclear/metabolismo , Transporte Proteico/fisiologia , Transporte Ativo do Núcleo Celular/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Transporte Biológico/fisiologia , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Citosol/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Transdução de Sinais/fisiologia
8.
Bioengineered ; 12(1): 2469-2479, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34232111

RESUMO

The function of lncRNA CRNDE and its role in prostate cancer (PC) remains unclear. The aim of this study was to determine the expression level of lncRNA CRNDE in PC tissues and to elucidate its role in PC. The expression levels of lncRNA CRNDE were measured by quantitative reverse transcription polymerase chain reaction. The role of lncRNA CRNDE in PC cells was studied using loss-of-function assays in vitro. Cell proliferation, migration, invasion, and apoptosis were assessed via Cell Counting Kit-8, colony formation, flow cytometry, wound healing, and transwell chamber assays. A luciferase reporter assay was used to characterize the interaction between lncRNA CRNDE and miR-146a-5p. In PC tissues, the expression level of lncRNA CRNDE was upregulated. Moreover, knockdown of lncRNA CRNDE suppressed PC cell proliferation and migration and induced apoptosis in vitro. miR-146a-5p was verified as a direct target of lncRNA CRNDE. Moreover, the inhibition of miR-146a-5p partially counteracted the effects of lncRNA CRNDE on PC cell proliferation, migration, and invasion. In conclusion, lncRNA CRNDE may serve as a cancer promoter in PC by targeting miR-146a-5p. Therefore, lncRNA CRNDE could be a promising target for the clinical treatment of PC.


Assuntos
Movimento Celular/genética , MicroRNAs/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , RNA Longo não Codificante/metabolismo , Apoptose/genética , Sequência de Bases , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação para Baixo/genética , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , MicroRNAs/genética , Invasividade Neoplásica , RNA Longo não Codificante/genética , RNA Interferente Pequeno/metabolismo
9.
Genomics ; 113(3): 1338-1348, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33722655

RESUMO

BACKGROUND: Exosomes are involved in intercellular communication via specialized molecular cargo, such as microRNAs (miRNAs). However, the mechanisms underlying exosomal miR-19b-1-5p in bladder cancer remain largely unknown, thus, we aim to investigate the effect of exosomal miR-19b-1-5p on bladder cancer with the involvement of non-receptor protein tyrosine kinase Arg (ABL2). METHODS: miR-19b-1-5p and ABL2 expression were tested in bladder cancer. miR-19b-1-5p inhibition/elevation assays were conducted to determine its role in bladder cancer. Exosomes were extracted from bone marrow mesenchymal stem cells (BMSCs). Exosomes and T24 cells were co-cultured to verify their function in biological characteristics of bladder cancer cells. RESULTS: miR-19b-1-5p was down-regulated while ABL2 was upregulated in bladder cancer. Exosomal miR-19b-1-5p suppressed malignant behaviors of bladder cancer cells, and also inhibited tumor growth in vivo. Up-regulated ABL2 mitigated the effects of miR-19b-1-5p up-regulation on bladder cancer cells. CONCLUSION: BMSCs-derived exosomal miR-19b-1-5p suppresses bladder cancer growth via decreasing ABL2.


Assuntos
Células-Tronco Mesenquimais , MicroRNAs , Neoplasias da Bexiga Urinária , Apoptose , Proliferação de Células , Humanos , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Tirosina Quinases , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/metabolismo
10.
Mol Cell Biochem ; 476(4): 1741-1749, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33428060

RESUMO

Acute kidney injury (AKI) occurs in 30%-70% of critically ill patients. Multiple organ failure (MOF), which is most often secondary to hypotension and septicemia, is a global public health problem. The prognosis of patients is poor. Currently, there is no specific therapeutic method. Finding new therapeutic targets is significant to improve the prognosis of AKI patients. This study explores expressions and related mechanisms of miR-212 and Kruppel-like factor 4 (KLF4) in rats with AKI. Sixty Wistar rats were randomly divided into 6 groups: Control group, sham operation group, model group, miR-212-agomir group, miR-212-antagomir group, miR-212-agomir+APTO-253 (joint group), n = 10. The expressions of miR-212, KLF4, inflammatory factors [tumor necrosis factor α (TNF-α), interleukin 6 (IL-6)], oxidative stress factors [superoxide dismutase (SOD), malondialdehyde (MDA)], and apoptosis-related proteins (bax, bcl-2) in renal tissue of rats were detected, and the relationship between miR-212 and KLF4 and the severity of AKI in rats were analyzed. The expression level of miR-212 increased (P < 0.05) and the expression level of KLF4 decreased (P < 0.05) in renal tissue of rats with AKI. miR-212 was negatively correlated with KLF4 expression (P < 0.05). MiR-212 was positively correlated with expressions of TNF-α, IL-6, MDA, and bax (P < 0.05), negatively correlated with expressions of SOD and bcl-2 (P < 0.05), KLF4 was negatively correlated with expressions of TNF-α, IL-6, MDA and bax (P < 0.05), and positively correlated with expressions of SOD and bcl-2 (P < 0.05). MiR-212 mimics can inhibit the luciferase activity of Wt-KLF4 (P < 0.05), and miR-212 inhibitor can promote the luciferase activity of Wt-KLF4 (P < 0.05). Down-regulation of miR-212 plays a protective role by targeting up-regulation of KLF4 to inhibit renal tissue inflammation, oxidative stress, and apoptosis in rats with AKI, which may be a potential target for clinical treatment of AKI in the future.


Assuntos
Injúria Renal Aguda/metabolismo , Regulação da Expressão Gênica , Fatores de Transcrição Kruppel-Like/biossíntese , MicroRNAs/biossíntese , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/tratamento farmacológico , Animais , Modelos Animais de Doenças , Fator 4 Semelhante a Kruppel , Ratos , Ratos Wistar
11.
Front Oncol ; 10: 598192, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33330092

RESUMO

BTG (B-cell translocation gene) could inhibit cell proliferation, metastasis, and angiogenesis and regulate cell cycle progression and differentiation in a variety of cancer cell types. To clarify the role of BTG1 in invasion and metastasis, its expression was compared with the clinicopathological parameters of colorectal cancer by bioinformatics and immunohistochemical analyses. We also overexpressed BTG1 in HCT-15 cells and examined its effects on adhesion, migration, and metastasis with their related molecules screened. BTG1 mRNA expression was negatively correlated with its promoter methylation in colorectal cancer (P < 0.05). Among them, cg08832851 and cg05819371 hypermethylation and mRNA expression of BTG1 were positively related with poor prognosis of the colorectal cancer patients (P < 0.05). BTG1 expression was found to positively correlate with depth of invasion, venous invasion, lymph node metastasis, distant metastasis, and TNM staging of colorectal cancer (P < 0.05) but negatively with serum levels of CEA and CA19-9 (P < 0.05). According to the TCGA database, BTG1 mRNA expression was lower in well-, moderately, and poorly differentiated than mucinous adenocarcinomas and positively correlated with ras or BRAF mutation (P < 0.05). Kaplan-Meier analysis showed the negative correlation between BTG1 mRNA expression and overall survival rate of all cancer patients (P < 0.05). BTG1 overexpression weakened adhesion and strengthened migration and invasion of HCT-15 cells (P < 0.05). There was E-cadherin hypoexpression, N-cadherin and MMP-9 hyperexpression, Zeb1 and Vimentin mRNA overexpression, a high expression of CEA mRNA and protein, and a strong secretion of CEA in BTG1 transfectants, compared with the control or mock. It was suggested that BTG1 expression might promote invasion and metastasis by decreasing adhesion, and inducing epithelial-mesenchymal transition.

12.
Front Oncol ; 10: 600322, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33425757

RESUMO

Dkk3 has been discovered during comparison of immortalized and parental cells. Its expression has been shown to reduce colony formation and induce apoptosis of cancer cells, acting as a tumor suppressor. Herein, we demonstrate that Dkk3 overexpression or protein treatment may inhibit colorectal cancer cell proliferation, migration, and invasion and that they may promote apoptosis and G2 phase arrest with hypoexpression of Bcl-2, cdc25B, cdc25c, N-cadherin, slug, and twist and hyperexpression of Bax and E-cadherin. This effect is consistent with that of recombinant Dkk3 exposure and blocked with anti-Dkk3 antibody. Dkk3 deletion in intestinal cells was not associated with the emergence of epithelial lesions; however, adenoma emerged after sodium desoxycholate treatment. At both mRNA and protein levels, Dkk3 expression was higher in normal than in cancer tissues (p<0.05). Dkk3 mRNA expression was negatively associated with its promoter methylation, growth pattern, differentiation, and favorable prognosis in the patients with colorectal cancer (p<0.05). Dkk3-related signal pathways in colorectal cancer included those of cellular adhesion and migration, melanogenesis, chemokine, Hedgehog, JAK-STAT, TOLL-like receptor, TGF-ß, MAPK, and calcium signaling (p<0.05). These findings indicate that Dkk3 expression levels can help assess cancer aggressiveness and patient prognosis. It might also suppress aggressive phenotypes and tumorigenesis as a molecular target in gene therapy.

13.
Front Oncol ; 10: 613679, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33425768

RESUMO

Beclin 1 is encoded by Becn1, and plays a role in tumorigenesis, neurodegeneration, apoptosis and autophagy. Here, the aggressive phenotypes and relevant proteins were examined after Beclin 1 expression was altered in gastric cancer cells. We also observed the effects of Beclin 1 on gastric carcinogenesis using Becn1 knockout mice. Finally, clinicopathological significances of Beclin 1 expression were analyzed using meta- and bioinformatics analyses. Becn1 overexpression was found to inhibit proliferation, glucose metabolism, migration and invasion of gastric cancer cells, whereas its knockdown caused the opposite effects. Beclin 1 suppressed the tumor growth by decreasing proliferation and increasing apoptosis. The heterozygous abrogation of Becn1 in gastric pit, parietal and chief cells could not cause any epithelial lesion. Beclin 1-mediated chemoresistance was closely linked to the autophagy, Bax underexpression, and the overexpression of Bcl-2, LRP1, MDR1, and ING5. Bioinformatics analysis showed higher Becn1 mRNA expression in intestinal- than diffuse-type carcinomas (P<0.05), and in male than female gastric cancer patients (P<0.05). Becn1 hyperexpression was positively associated with both overall and progression-free survival rates of the cancer patients (P<0.05). Meta-analysis showed that down-regulated Beclin 1 expression in gastric cancer was positively with lymph node metastasis, TNM staging, dedifferentiation and poor prognosis (P<0.05). Becn1-related signal pathways in gastric cancer included prostate, lung, renal, colorectal, endometrial and thyroid cancers, glioma, and leukemia, the metabolism of amino acid, lipid and sugar, and some signal pathways of insulin, MAPK, TRL, VEGF, JAK-STAT, chemokine, p53, lysosome, peroxidome and ubiquitin-mediated protein degradation (P<0.05). These suggested that Beclin 1 might be considered as a potential marker of gastric carcinogenesis, aggressiveness and prognostic prediction, and as a target of gene therapy in gastric cancer.

14.
Oncol Lett ; 17(5): 4607-4613, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30988819

RESUMO

The aim of the present study was to investigate whether interleukin-8 (IL-8) enhances the ability of prostate cancer bone metastasis by influencing the coding level of bone sialoprotein (BSP). Cultured prostate cancer cell lines LNCaP (androgen dependent) and DU145 (androgen independent) were divided into three groups: IL-8 treatment group; IL-8 receptor inhibitor (SB225002) treatment group; and control group. Western blotting and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) were used to detect BSP protein and mRNA expression levels. Matrigel and bone adhesion experiments were used to detect the invasiveness of cancer cells and bone adhesion changes. Compared with the control group, western blotting and RT-qPCR results indicated that BSP protein and mRNA levels in LNCaP and DU145 were significantly upregulated following IL-8 treatment. Matrigel experiments indicated that following IL-8 treatment, the invasiveness of LNCaP and DU145 cells was significantly increased. The results of bone adhesion experiments indicated that following IL-8 treatment, the number of DU145 cells adhered to the surface of the bone was increased, compared with the control group. Following treatment of both cell lines with SB225002, western blotting and RT-qPCR results indicated that the expression levels of BSP protein and mRNA were significantly downregulated. Matrigel experiments indicated that following SB225002 treatment, the invasiveness of LNCaP and DU145 cells was significantly reduced. The number of DU145 cells adhered to the surface of the bone was reduced, compared with the untreated group. Therefore, IL-8 may promote prostate cancer bone metastasis by enhancing BSP regulation.

15.
Cancer Med ; 7(9): 4554-4569, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30091530

RESUMO

Neuroblastoma is the most common extracranial solid neuroendocrine cancer and is one of the leading causes of death in children. To improve clinical outcomes and prognosis, discovering new promising drugs and targeted medicine is essential. We found that applying Suberoylanilide hydroxamic acid (SAHA; Vorinostat, a histone deacetylase inhibitor) and MG132 (a proteasome inhibitor) to SH-SY5Y cells synergistically suppressed proliferation, glucose metabolism, migration, and invasion and induced apoptosis and cell cycle arrest. These effects occurred both concentration and time dependently and were associated with the effects observed with inhibitor of growth 5 (ING5) overexpression. SAHA and MG132 treatment increased the expression levels of ING5, PTEN, p53, Caspase-3, Bax, p21, and p27 but decreased the expression levels of 14-3-3, MMP-2, MMP-9, ADFP, Nanog, c-myc, CyclinD1, CyclinB1, and Cdc25c concentration dependently, similar to ING5. SAHA may downregulate miR-543 and miR-196-b expression to enhance the translation of ING5 protein, which promotes acetylation of histones H3 and H4. All three proteins (ING5 and acetylated histones H3 and H4) were recruited to the promoters of c-myc, Nanog, CyclinD1, p21, and p27 for complex formation, thereby regulating the mRNA expression of downstream genes. ING5 overexpression and SAHA and/or MG132 administration inhibited tumor growth in SH-SY5Y cells by suppressing proliferation and inducing apoptosis. The expression of acetylated histones H3 and ING5 may be closely linked to the tumor size of neuroblastomas. In summary, SAHA and/or MG132 can synergistically suppress the malignant phenotypes of neuroblastoma cells through the miRNA-ING5-histone acetylation axis and via proteasomal degradation, respectively. Therefore, the two drugs may serve as potential treatments for neuroblastoma.


Assuntos
Antineoplásicos/farmacologia , Neuroblastoma/genética , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Vorinostat/farmacologia , Acetilação , Animais , Apoptose/efeitos dos fármacos , Apoptose/genética , Biomarcadores , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Modelos Animais de Doenças , Metabolismo Energético/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Histonas/metabolismo , Humanos , Imuno-Histoquímica , Leupeptinas/farmacologia , Camundongos , MicroRNAs/genética , Modelos Biológicos , Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Oncol Rep ; 40(2): 726-736, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29917166

RESUMO

The mechanisms of malignant cell metastasis to secondary sites are complex and multifactorial. Studies have demonstrated that small integrin­binding ligand N­linked glycoproteins (SIBLINGs), particularly bone sialoprotein (BSP) and osteopontin (OPN), are involved in neoplastic growth and metastasis. SIBLINGs promote malignant cell invasion and metastasis by enhancing matrix metalloproteinase 2 (MMP­2) and MMP­9 expression. Moreover, BSP and OPN can combine with integrin, which is located on the tumor cell surface, to further promote the malignant behavior of tumor cells. In the present study, we investigated whether SB225002, a specific CXCR2 receptor antagonist, can inhibit prostate cancer cell expression of BSP and OPN and reduce cancer cell invasion ability. A series of experiments showed that after SB225002 treatment, the proliferation, invasion and migration of two androgen­independent prostate cancer cell lines were inhibited, but this inhibitory effect was not observed on androgen­dependent prostate cancer cells. Western blotting showed that the PI3K signaling pathway could regulate the expression of SIBLING and MMP family proteins, and SB22055 could reduce the expression of BSP, OPN and MMP­2 in prostate cancer cells by inhibiting AKT/mTOR phosphorylation. Finally, in vivo experiments confirmed that SB225002 inhibited the proliferation of prostate cancer cells in vivo, and the expression levels of BSP, OPN and MMP­2 were also inhibited.


Assuntos
Sialoproteína de Ligação à Integrina/metabolismo , Metaloproteinase 2 da Matriz/metabolismo , Invasividade Neoplásica/patologia , Osteopontina/metabolismo , Compostos de Fenilureia/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Humanos , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Receptores de Interleucina-8B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo
17.
Int J Clin Exp Pathol ; 11(4): 2053-2063, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31938312

RESUMO

LATS1 is a serine/threonine kinase of the Hippo signaling pathway that phosphorylates and inactivates transcriptional co-activators YAP1 and WWTR1. To investigate roles of LATS1 expression in head and neck squamous cell carcinomas (HNSCCs), we transfected LATS1-expressing plasmid into B88 cells and examined the phenotypes and their relevant molecules. LATS1 expression was analyzed using immunohistochemistry on tissue microarray, Oncomine, and TCGA databases. LATS1 overexpression was found to suppress growth, migration and invasion, and induce apoptosis, G2 arrest, and mesenchymal to epithelial transition (MET) (P < 0.05). Both increased expression of P21, Bax, and E-cadherin and decreased expression of Cyclin B1, D1, Bcl-2, and MMPs. Twist and N-cadherin were detected in B88 transfectants, in comparison to mock and control by Western blot. Nuclear LATS1 expression was weaker in primary cancers than in normal squamous tissue and dysplasia (P < 0.05) but versa for cytoplasmic counterpart (P < 0.05). Cytoplasmic LATS1 expression was positively correlated with lymph node metastasis (P < 0.05). Survival analysis showed that differentiation degree was an independent factor of long overall and relapse-free survival of HNSCC patients (P < 0.05). According to bioinformatics analysis, we found upregulated LATS1 mRNA expression in HNSCCs (P < 0.05). Cox proportional hazards model indicated that perineural invasion and distant metastasis were independent prognostic factors for overall survival of HNSCC (P < 0.05). These findings suggest nucleocytoplasmic translocation of LATS1 protein and upregulated expression of LATS1 mRNA during tumorigenesis of HNSCC. LATS1 mRNA overexpression may reverse aggressive phenotypes of HNSCC cells, as a gene therapy target.

18.
Oncotarget ; 8(11): 18322-18336, 2017 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-28407690

RESUMO

Here, we found that down-regulated expression of BTG3 might be positively correlated with colorectal carcinogenesis and its overexpression suppressed proliferation, glycolysis, mitochondrial respiration, cell cycle progression, migration, and invasion, and induced apoptosis, senescence and differentiation in SW480 and SW620 cells. After treated with cisplatin, MG132, paclitaxel and SAHA, BTG3 transfectants exhibited lower viability and higher apoptosis than the control in both time- and dose-dependent manners. BTG3 overexpression up- regulated the protein expression of Cyclin E, p16, p27, NF-κB, p38α/ß, XIAP, Bcl-2, ATG14 and p53, but down-regulated the mRNA expression of MRP1, BCRP, and mTOR in SW480 and SW620 cells. BTG3 overexpression inhibited tumor growth of SW620 cells by suppressing proliferation and inducing apoptosis. It was suggested that down-regulated BTG3 expression might be considered as a marker for colorectal carcinogenesis. BTG3 overexpression might reverse the aggressive phenotypes and be employed as a potential target for gene therapy of colorectal cancer.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Proteínas de Ligação a DNA/metabolismo , Terapia Genética/métodos , Proteínas Nucleares/metabolismo , Proteínas de Ciclo Celular/biossíntese , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Neoplasias Colorretais/genética , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Humanos , Proteínas Nucleares/biossíntese , Proteínas Nucleares/genética , Fenótipo , Transdução de Sinais , Transfecção
19.
Oncotarget ; 8(14): 23603-23612, 2017 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-28223542

RESUMO

Down-regulated parafibromin is positively linked to the pathogenesis of parathyroid, lung, breast, ovarian, gastric and colorectal cancers. Here, we found that wild-type (WT) parafibromin overexpression suppressed proliferation, tumor growth, induced cell cycle arrest and apoptosis in colorectal cancer cells (p<0.05), but it was the converse for mutant-type (MT, mutation in nucleus localization sequence) parafibromin (p<0.05). Both WT and MT transfectants inhibited migration and invasion, and caused better differentiation (p<0.05) of cancer cells. WT parafibromin transfectants showed the overexpression of Cyclin B1, Cyclin D1, Cyclin E, p38, p53, and AIF in HCT-15 and HCT-116 cells, while MT parafibromin only up-regulated p38 expression. There was lower mRNA expression of bcl-2 in parafibromin transfectants than the control and mock, while higher expression of c-myc, Cyclin D1, mTOR, and Raptor. According to transcriptomic analysis, WT parafibromin suppressed PI3K-Akt and FoxO signaling pathways, while MT one promoted PI3K-Akt pathway, focal adhesion, and regulation of actin cytoskeleton. Parafibromin was less expressed in colorectal cancer than paired mucosa (p<0.05), and inversely correlated with its differentiation at both mRNA and protein levels (p<0.05). These findings indicated that WT parafibromin might reverse the aggressive phenotypes of colorectal cancer cells and be employed as a target for gene therapy. Down-regulated parafibromin expression might be closely linked to colorectal carcinogenesis and cancer differentiation.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Supressoras de Tumor/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Apoptose/genética , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proliferação de Células/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/terapia , Citoplasma/genética , Citoplasma/metabolismo , Feminino , Perfilação da Expressão Gênica/métodos , Terapia Genética , Células HCT116 , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Mutação , Transplante Heterólogo , Proteínas Supressoras de Tumor/metabolismo
20.
Oncotarget ; 7(51): 84155-84164, 2016 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-27677078

RESUMO

Here, we collected the information of 17304 and 2014 inpatients with colorectal cancer (CRC) from general hospitals of China and Japan respectively, and analyzed microscopic and macroscopic aspects, even stratified by the age and gender. It was found that Chinese CRC patients showed younger prone, more rectal and ascending cancers, less sigmoid and transverse cancers, larger size, less invasion into lymphatic system or metastasis into lymph node, and poorer differentiation than Japanese ones (p < 0.05). TNM staging was employed as an independent factor for the prognosis of the CRC patients regardless of the country (p < 0.05). Female patients showed larger tumor size, easier invasion and metastasis into lymphatic system, and worse differentiation than males (p < 0.05). The younger patients displayed frequent invasion and metastasis into lymphatic system, and poor differentiation in comparison to elder ones (p < 0.05). These findings demonstrated that Japanese patients seemed to have more invasion and metastasis due to standard and precise operation and pathological diagnosis accuracy. Actually, Chinese patients had more aggressive pathological characteristics and a poorer prognosis. Therefore, it is essential to establish a routine screening methodology, a standard treatment system and postoperative diagnosis protocol for the prevention and therapeutics of Chinese CRC patients, especially for female and young patients.


Assuntos
Neoplasias Colorretais/patologia , Neoplasias Colorretais/cirurgia , Hospitais Gerais/estatística & dados numéricos , Pacientes Internados/estatística & dados numéricos , Idoso , Povo Asiático/estatística & dados numéricos , China , Neoplasias Colorretais/etnologia , Feminino , Humanos , Japão , Estimativa de Kaplan-Meier , Metástase Linfática , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Estadiamento de Neoplasias , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA