Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Water Res ; 256: 121624, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38669903

RESUMO

The algal-bacterial wastewater treatment process has been proven to be highly efficient in removing nutrients and recovering nitrogen (N). However, the recovery of the valuable N-rich biopolymer, cyanophycin, remains limited. This research explored the synthesis mechanism and recovery potential of cyanophycin within two algal-bacterial symbiotic reactors. The findings reveal that the synergy between algae and bacteria enhances the removal of N and phosphorus. The crude contents of cyanophycin in the algal-bacterial consortia reached 115 and 124 mg/g of mixed liquor suspended solids (MLSS), respectively, showing an increase of 11.7 %-20.4 % (p < 0.001) compared with conventional activated sludge. Among the 170 metagenome-assembled genomes (MAGs) analyzed, 50 were capable of synthesizing cyanophycin, indicating that cyanophycin producers are common in algal-bacterial systems. The compositions of cyanophycin producers in the two algal-bacterial reactors were affected by different lighting initiation time. The study identified two intracellular synthesis pathways for cyanophycin. Approximately 36 MAGs can synthesize cyanophycin de novo using ammonium and glucose, while the remaining 14 MAGs require exogenous arginine for production. Notably, several MAGs with high abundance are capable of assimilating both nitrate and ammonium into cyanophycin, demonstrating a robust N utilization capability. This research also marks the first identification of potential horizontal gene transfer of the cyanophycin synthase encoding gene (cphA) within the wastewater microbial community. This suggests that the spread of cphA could expand the population of cyanophycin producers. The study offers new insights into recycling the high-value N-rich biopolymer cyanophycin, contributing to the advancement of wastewater resource utilization.


Assuntos
Microalgas , Nitrogênio , Nitrogênio/metabolismo , Microalgas/metabolismo , Bactérias/metabolismo , Reatores Biológicos , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias , Proteínas de Bactérias
2.
Toxics ; 12(3)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38535917

RESUMO

In order to investigate the impact of environmental temperature and atmospheric humidity on the leakage and diffusion of hydrogen fluoride (HF) gas, this study focused on the real scenario of an HF chemical industrial park. Based on the actual dispersion scenario of HF gas, a proportionally scaled-down experimental platform for HF gas leakage was established to validate the accuracy and feasibility of numerical simulations under complex conditions. Using the validated model, the study calculated the complex scenarios of HF leakage and diffusion within the temperature range of 293 K to 313 K and the humidity range of 0% to 100%. The simulation results indicated that different environmental temperatures had a relatively small impact on the hazardous areas (the lethal area, severe injury area, light injury area, and maximum allowable concentration (MAC) area) formed by HF gas leakage. At 600 s of dispersion, the fluctuation range of hazardous area sizes under different temperature conditions was between 3.11% and 13.07%. In contrast to environmental temperature, atmospheric relative humidity had a more significant impact on the dispersion trend of HF leakage. Different relative humidity levels mainly affected the areas of the lethal zone, light injury zone, and MAC zone. When HF continued to leak and disperse for 600 s, compared to 0% relative humidity, 100% relative humidity reduced the lethal area by 35.7%, while increasing the light injury area and MAC area by 27.26% and 111.6%, respectively. The impact on the severe injury area was relatively small, decreasing by 1.68%. The results of this study are crucial for understanding the dispersion patterns of HF gas under different temperature and humidity conditions.

3.
Nanomaterials (Basel) ; 14(3)2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38334539

RESUMO

The reactivity of Al nanoparticles is significantly higher than that of micron Al particles, and the thermal reaction properties exhibit notable distinctions. Following the previous studies on micron Al particles, the shell-breaking response of Al nanoparticles under vacuum conditions was analyzed using COMSOL simulation. Relationships between thermal stabilization time, shell-breaking cause, shell-breaking response time, and particle size were obtained, and a systematic analysis of the differences between micrometer and nanometer-sized particles was conducted. The results indicate that the thermal stabilization time of both micrometer and nanometer particles increases with the enlargement of particle size. The stress generated by heating Al nanoparticles with sizes ranging from 25-100 nm is insufficient to rupture the outer shell. For particles within the size range of 200 nm to 70 µm, the primary cause of shell-breaking is compressive stress overload, while particles in the range of 80-100 µm experience shell rupture primarily due to tensile stress overload. These results provide an important basis for understanding the shell-breaking mechanism of microns and nanoparticles of Al and studying the oxidation mechanism.

4.
J Cell Physiol ; 239(2): e31169, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38193350

RESUMO

Alveolar epithelial cell (AEC) necroptosis is critical to disrupt the alveolar barrier and provoke acute lung injury (ALI). Here, we define calcitonin gene-related peptide (CGRP), the most abundant endogenous neuropeptide in the lung, as a novel modulator of AEC necroptosis in lipopolysaccharide (LPS)-induced ALI. Upon LPS-induced ALI, overexpression of Cgrp significantly mitigates the inflammatory response, alleviates lung tissue damage, and decreases AEC necroptosis. Similarly, CGRP alleviated AEC necroptosis under the LPS challenge in vitro. Previously, we identified that long optic atrophy 1 (L-OPA1) deficiency mediates mitochondrial fragmentation, leading to AEC necroptosis. In this study, we discovered that CGRP positively regulated mitochondrial fusion through stabilizing L-OPA1. Mechanistically, we elucidate that CGRP activates AMP-activated protein kinase (AMPK). Furthermore, the blockade of AMPK compromised the protective effect of CGRP against AEC necroptosis following the LPS challenge. Our study suggests that CRGP-mediated activation of the AMPK/L-OPA1 axis may have potent therapeutic benefits for patients with ALI or other diseases with necroptosis.


Assuntos
Lesão Pulmonar Aguda , Animais , Masculino , Camundongos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/tratamento farmacológico , Células Epiteliais Alveolares/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/genética , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Linhagem Celular , GTP Fosfo-Hidrolases/metabolismo , Lipopolissacarídeos/farmacologia , Lipopolissacarídeos/metabolismo , Pulmão/metabolismo , Camundongos Endogâmicos C57BL , Necroptose , Transdução de Sinais
5.
Environ Pollut ; 345: 123440, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38290654

RESUMO

In this study, we aimed to evaluate the effect of dietary supplementation with edible mushroom (Pleurotus ostreatus)-derived polysaccharides on microcystin leucine-arginine (MC-LR)-induced skin damage in Pelophylax nigromaculatus tadpoles. Tadpoles were exposed to 1 µg/L daily MC-LR, with or without 5.0 g/kg of dietary P. ostreatus polysaccharides, for 30 days. P. ostreatus polysaccharide supplementation significantly increased the dermal collagen fibrils, increased tight junction protein gene expression, decreased the amount of MC-LR accumulation in skin tissues, attenuated oxidative stress, downregulated apoptosis-associated gene transcription, decreased eosinophil numbers, and downregulated transcription of inflammation-related genes (e.g. TLR4, NF-κB, and TNF-α). The composition of the skin commensal microbiota of MC-LR-exposed tadpoles supplemented with P. ostreatus polysaccharides was similar to that of the no-treatment control group. Lipopolysaccharide (LPS) content was positively correlated with the abundance of Gram-negative bacteria, including Chryseobacterium and Thauera. Therefore, P. ostreatus polysaccharides may alleviate MC-LR-induced skin barrier damage in tadpoles in two ways: 1) attenuation of oxidative stress-mediated apoptosis mediated by increased glutathione (GSH) content and total superoxide dismutase activity; and 2) alteration of the skin commensal microbiota composition to attenuate the LPS/Toll-like receptor 4 inflammatory pathway response. Furthermore, P. ostreatus polysaccharides may increase skin GSH synthesis by promoting glycine production via the gut microbiota and may restore the MC-LR-damaged skin resistance to pathogenic bacteria by increasing antimicrobial peptide transcripts and lysozyme activity. This study highlights for the first time the potential application of P. ostreatus polysaccharides, an ecologically active substance, in mitigating the skin damage induced by MC-LR exposure, and may provide new insights for its further development in aquaculture.


Assuntos
Toxinas Marinhas , Microcistinas , Pleurotus , Microcistinas/toxicidade , Microcistinas/metabolismo , Pleurotus/metabolismo , Lipopolissacarídeos , Estresse Oxidativo , Glutationa/metabolismo
6.
MedComm (2020) ; 4(6): e462, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38156294

RESUMO

Mitochondria are multifaceted and dynamic organelles regulating various important cellular processes from signal transduction to determining cell fate. As dynamic properties of mitochondria, fusion and fission accompanied with mitophagy, undergo constant changes in number and morphology to sustain mitochondrial homeostasis in response to cell context changes. Thus, the dysregulation of mitochondrial dynamics and mitophagy is unsurprisingly related with various diseases, but the unclear underlying mechanism hinders their clinical application. In this review, we summarize the recent developments in the molecular mechanism of mitochondrial dynamics and mitophagy, particularly the different roles of key components in mitochondrial dynamics in different context. We also summarize the roles of mitochondrial dynamics and target treatment in diseases related to the cardiovascular system, nervous system, respiratory system, and tumor cell metabolism demanding high-energy. In these diseases, it is common that excessive mitochondrial fission is dominant and accompanied by impaired fusion and mitophagy. But there have been many conflicting findings about them recently, which are specifically highlighted in this view. We look forward that these findings will help broaden our understanding of the roles of the mitochondrial dynamics in diseases and will be beneficial to the discovery of novel selective therapeutic targets.

7.
Carcinogenesis ; 44(7): 576-586, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37452741

RESUMO

Alternative polyadenylation (APA) is an important post-transcriptional regulatory mechanism in cancer development and progression. Poly(A) binding protein nuclear 1 (PABPN1) is a gene that encodes abundant nuclear protein, binds with high affinity to nascent poly(A) tails, and is crucial for 3'-UTR (3'-untranslated region) APA. Although PABPN1 has been recently reported as a dominant master APA regulator in clear cell renal cell carcinoma (ccRCC), the underlying functional mechanism remain unclear and the genes subject to PABPN1 regulation that contribute to ccRCC progression have not been identified. Here, we found that PABPN1 is upregulated in ccRCC, and its expression is highly associated with the clinical prognosis of ccRCC patients. PABPN1 promotes ccRCC cell proliferation, migration, invasion, and exerts an influence on sphingolipid metabolism and cell cycle. Moreover, PABPN1 depletion significantly suppressed cancer cell growth via induction of cell cycle arrest and apoptosis. In particular, we characterized PABPN1-regulated 3'-UTR APA of sphingosine-1-phosphate lyase 1 (SGPL1) and cellular repressor of E1A stimulated genes 1 (CREG1), which contribute to ccRCC progression. Collectively, our data revealed that PABPN1 promotes ccRCC progression at least in part, by suppressing SGPL1 and CREG1. Thus, PABPN1 may be a potential therapeutic target in ccRCC.

8.
Nature ; 621(7978): 396-403, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37130545

RESUMO

Messenger RNA (mRNA) vaccines are being used to combat the spread of COVID-19 (refs. 1-3), but they still exhibit critical limitations caused by mRNA instability and degradation, which are major obstacles for the storage, distribution and efficacy of the vaccine products4. Increasing secondary structure lengthens mRNA half-life, which, together with optimal codons, improves protein expression5. Therefore, a principled mRNA design algorithm must optimize both structural stability and codon usage. However, owing to synonymous codons, the mRNA design space is prohibitively large-for example, there are around 2.4 × 10632 candidate mRNA sequences for the SARS-CoV-2 spike protein. This poses insurmountable computational challenges. Here we provide a simple and unexpected solution using the classical concept of lattice parsing in computational linguistics, where finding the optimal mRNA sequence is analogous to identifying the most likely sentence among similar-sounding alternatives6. Our algorithm LinearDesign finds an optimal mRNA design for the spike protein in just 11 minutes, and can concurrently optimize stability and codon usage. LinearDesign substantially improves mRNA half-life and protein expression, and profoundly increases antibody titre by up to 128 times in mice compared to the codon-optimization benchmark on mRNA vaccines for COVID-19 and varicella-zoster virus. This result reveals the great potential of principled mRNA design and enables the exploration of previously unreachable but highly stable and efficient designs. Our work is a timely tool for vaccines and other mRNA-based medicines encoding therapeutic proteins such as monoclonal antibodies and anti-cancer drugs7,8.


Assuntos
Algoritmos , Vacinas contra COVID-19 , COVID-19 , Estabilidade de RNA , RNA Mensageiro , SARS-CoV-2 , Vacinas de mRNA , Animais , Humanos , Camundongos , Códon/genética , COVID-19/genética , COVID-19/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/química , Vacinas contra COVID-19/genética , Vacinas contra COVID-19/imunologia , Meia-Vida , Herpesvirus Humano 3/genética , Herpesvirus Humano 3/imunologia , Vacinas de mRNA/química , Vacinas de mRNA/genética , Vacinas de mRNA/imunologia , Estabilidade de RNA/genética , Estabilidade de RNA/imunologia , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/imunologia , RNA Mensageiro/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/imunologia
9.
Ecol Evol ; 13(5): e10094, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37214611

RESUMO

The gut microbiota of amphibians plays a crucial role in maintaining health and adapting to various developmental stages. The composition of gut microbial community is influenced by the phylogeny, habitat, diet, and developmental stage of the host. The present study analyzed the microbiota in the intestine of O. tormota at 11 developmental stages (from the tadpole at Gosner stage 24 to the 3-year-old adult) using high-throughput 16S rRNA sequencing. Alpha diversity index analysis of the microbiota revealed that the index decreased from tadpole at Gosner stage 24 to adult frog stage, remained stable during the adult frog stages, but increased significantly at the early metamorphosis and hibernation preparation stages. The gut microbiota structure is similar in adult frogs but differs significantly in other developmental stages. Furthermore, the dominant phyla of gut microbiota in tadpoles were Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes, whereas those in adult frogs were Proteobacteria, Firmicutes, Bacteroidetes, and Verrucomicrobia. Host and environmental factors jointly affected the gut microbial diversity and community composition of O. tormota, but developmental stage, feeding habit, and habitat type had a more significant influence. The microbial community in the gut varies with the developmental stage of the host and constantly adapts to the survival requirements of the host. These findings advance our understanding of the evolutionary mechanism of amphibian gut microbiota in maintaining health homeostasis and adaptation.

10.
Aquat Toxicol ; 258: 106509, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36989925

RESUMO

Microcystin-leucine arginine (MC-LR) is a toxin commonly found in eutrophic waters worldwide, but its potential effects on amphibian brain toxicity and exposure mechanisms are unclear. In this study, Lithobates catesbeianus tadpoles were exposed to MC-LR for 30 days at realistic ambient concentrations (0, 0.5, and 2 µg/L) to reveal its effects on brain health. The MC-LR bioaccumulation in the brain increased in dependence on the concentration of MC-LR exposure. Exposure to 0.5 and 2 µg/L MC-LR resulted in a significant down-regulation of the expression of structural components of the blood-brain barrier (CLDN1), while the expression of genes associated with inflammation (NLRP3, TNF, IL-1ß, and CXCL12) was significantly up-regulated with increased number of eosinophils. In the hippocampal and hypothalamic regions, the number of vacuolated neuropils increased with increasing MC-LR exposure concentration, while the expression of genes associated with neuronal development (LGALS1, CACNA2D2, and NLGN4X) and neurotransmitter transmission (SLC6A13 and AChE) was significantly down-regulated. Moreover, the levels of neurotransmitters (5-HT, glutamate, GABA, and ACh) were significantly reduced. These results provide strong evidence that MC-LR exposure at realistic ambient concentrations of 0.5 and 2 µg/L can break the blood-brain barrier and raise the accumulation of MC-LR in the brain tissue, causing structural damage and functional disorder to brain neurons. Further, based on transcriptomic and biochemical analysis, it was revealed that MC-LR exposure induces DNA damage through oxidative stress and may be an important pathway causing brain structural damage and functional disorder. Overall, this study demonstrates the significant effects of MC-LR on the brain tissue of amphibians, highlighting the sensitivity of amphibians to MC-LR.


Assuntos
Lesões Encefálicas , Poluentes Químicos da Água , Animais , Arginina/farmacologia , Rana catesbeiana , Leucina/farmacologia , Larva , Poluentes Químicos da Água/toxicidade , Estresse Oxidativo , Inflamação
11.
Zhen Ci Yan Jiu ; 48(3): 281-6, 2023 Mar 25.
Artigo em Chinês | MEDLINE | ID: mdl-36951081

RESUMO

OBJECTIVE: To observe the effect of electroacupuncture (EA) on mast cell activation-related substances and intestinal barrier function in diarrhea-predominant irritable bowel syndrome (IBS-D) model rats, so as to explore its underlying mechanisms. METHODS: Thirty female SD rats were randomly divided into control group, model group and EA group, with 10 rats in each group. IBS-D model was established by chronic unpredictable mild stress combined with senna solution gavage. Rats in the EA group received EA treatment (2 Hz/15 Hz,0.1-1.0 mA) at "Zusanli" (ST36), "Taichong"(LR3) and "Tianshu"(ST25), 20 min per day, for a total of 14 days, with sides alternated daily. Visceral pain threshold was used to evaluate visceral hypersensitivity, diarrhea index was used to evaluate diarrhea degree. After all treatments, the pathological scores of colon were recorded after HE staining, the contents of cholecystokinin (CCK), substance P (SP), tryptase (TPS) and adenosine triphosphate (ATP) in colon were detected by ELISA, and the expressions of colonic tight junction protein ZO-1 and occludin were detected by Western blot. RESULTS: Compared with the control group, the visceral pain threshold, the expression levels of colonic ZO-1 and occludin proteins decreased (P<0.01), while the diarrhea index, the contents of colonic CCK, SP, TPS and ATP were significantly increased (P<0.01) in the model group. After intervention, in comparison with the model group, the visceral pain thre-shold, the protein expression levels of colonic ZO-1 and occludin protein increased (P<0.01), while the diarrhea index, the contents of colonic CCK, SP, TPS and ATP were significantly decreased (P<0.01) in the EA group. CONCLUSION: EA can significantly alleviate the symptoms of visceral hypersensitivity and diarrhea in IBS-D rats. Its mechanism may be related to down-regulating colonic CCK, SP, TPS and ATP, inhibiting mast cell activation and degranulation, and up-regulating colonic barrier tight junction proteins.


Assuntos
Eletroacupuntura , Síndrome do Intestino Irritável , Dor Visceral , Ratos , Feminino , Animais , Síndrome do Intestino Irritável/genética , Síndrome do Intestino Irritável/terapia , Ratos Sprague-Dawley , Mastócitos , Ocludina/genética , Pontos de Acupuntura , Diarreia/genética , Diarreia/terapia , Triptases , Substância P , Dor Visceral/genética , Dor Visceral/terapia
12.
Risk Anal ; 43(10): 1946-1961, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-36617495

RESUMO

COVID-19 has caused a critical health concern and severe economic crisis worldwide. With multiple variants, the epidemic has triggered waves of mass transmission for nearly 3 years. In order to coordinate epidemic control and economic development, it is important to support decision-making on precautions or prevention measures based on the risk analysis for different countries. This study proposes a national risk analysis model (NRAM) combining Bayesian network (BN) with other methods. The model is built and applied through three steps. (1) The key factors affecting the epidemic spreading are identified to form the nodes of BN. Then, each node can be assigned state values after data collection and analysis. (2) The model (NRAM) will be built through the determination of the structure and parameters of the network based on some integrated methods. (3) The model will be applied to scenario deduction and sensitivity analysis to support decision-making in the context of COVID-19. Through the comparison with other models, NRAM shows better performance in the assessment of spreading risk at different countries. Moreover, the model reveals that the higher education level and stricter government measures can achieve better epidemic prevention and control effects. This study provides a new insight into the prevention and control of COVID-19 at the national level.


Assuntos
COVID-19 , Epidemias , Humanos , COVID-19/epidemiologia , SARS-CoV-2 , Teorema de Bayes , Medição de Risco
13.
Exp Mol Med ; 54(11): 2077-2091, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36443565

RESUMO

Necroptosis is the major cause of death in alveolar epithelial cells (AECs) during acute lung injury (ALI). Here, we report a previously unrecognized mechanism for necroptosis. We found an accumulation of mitochondrial citrate (citratemt) in lipopolysaccharide (LPS)-treated AECs because of the downregulation of Idh3α and citrate carrier (CIC, also known as Slc25a1). shRNA- or inhibitor-mediated inhibition of Idh3α and Slc25a1 induced citratemt accumulation and necroptosis in vitro. Mice with AEC-specific Idh3α and Slc25a1 deficiency exhibited exacerbated lung injury and AEC necroptosis. Interestingly, the overexpression of Idh3α and Slc25a1 decreased citratemt levels and rescued AECs from necroptosis. Mechanistically, citratemt accumulation induced mitochondrial fission and excessive mitophagy in AECs. Furthermore, citratemt directly interacted with FUN14 domain-containing protein 1 (FUNDC1) and promoted the interaction of FUNDC1 with dynamin-related protein 1 (DRP1), leading to excessive mitophagy-mediated necroptosis and thereby initiating and promoting ALI. Importantly, necroptosis induced by citratemt accumulation was inhibited in FUNDC1-knockout AECs. We show that citratemt accumulation is a novel target for protection against ALI involving necroptosis.


Assuntos
Lesão Pulmonar Aguda , Células Epiteliais Alveolares , Camundongos , Animais , Células Epiteliais Alveolares/metabolismo , Lipopolissacarídeos/efeitos adversos , Necroptose , Ácido Cítrico/efeitos adversos , Ácido Cítrico/metabolismo , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/genética , Proteínas Mitocondriais/metabolismo , Proteínas de Membrana/metabolismo
14.
Front Physiol ; 13: 917579, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36105292

RESUMO

Objective: To determine whether electroacupuncture (EA) maintains intestinal homeostasis in diarrhea-predominant irritable bowel syndrome (IBS-D) rats by repairing intestinal barrier function through enteric glial cell (EGC)-derived S-nitrosoglutathione (GSNO). Methods: Sprague-Dawley rats were randomly divided into a control group (n = 10) and an IBS-D group (n = 20). These rats received senna solution by gavage and chronic unpredictable mild stress for 14 days and were further divided into a model group (n = 10) and an EA group (n = 10). Rats in the EA group were electroacupunctured at ST25 (Tianshu), ST36 (Zusanli), and LR3 (Taichong) for 20 min every day for 14 days. The abdominal withdrawal reflex (AWR), the percentage of time spent in open arms (OT%) in the elevated plus maze test, and the diarrhea index (DI) were measured. Histopathological examination was performed to evaluate the pathological features of the colon after sacrificing the rats. Transmission electron microscopy was used to observe the EGC in the muscle and submucosal layers. Enzyme-linked immunosorbent assay was performed to detect GSNO expression in the colon. Double immunofluorescence labeling was used to detect the colocalized GFAP and GSNO expressions in the muscle and submucosal layers. Plasma FITC-dextran was used to measure intestinal permeability, whereas western blot was used to detect ZO-1 and occludin expressions in the colon. Results: OT% and ZO-1 and occludin expressions were significantly lower than those of the control group, whereas AWR scores, DI, GSNO expression in the colon, colocalized GFAP and GSNO expressions in the submucosal layer, and intestinal permeability were significantly higher than those of the control group. Structural EGC abnormalities were observed in the model group. After EA treatment, OT% and ZO-1 and occludin expressions increased significantly, whereas AWR scores, DI, GSNO expression, colocalized GFAP and GSNO expressions in the submucosal layer, and intestinal permeability decreased significantly. The EGC structure was then restored to its normal state. Conclusion: EA treatment downregulates the submucosal EGC-derived GSNO expressions, repairs the intestinal barrier by upregulating the ZO-1 and occludin expression, and improves IBS-D symptoms, including visceral hypersensitivity, anxiety, and diarrhea, suggesting a potential role for EGC-derived GSNO in the regulation of intestinal homeostasis in IBS-D rats.

15.
Mol Med ; 28(1): 85, 2022 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-35907805

RESUMO

BACKGROUND: Uncontrolled inflammation is an important factor in the occurrence and development of acute lung injury (ALI). Fibroblast growth factor-inducible 14 (Fn14), a plasma membrane-anchored receptor, takes part in the pathological process of a variety of acute and chronic inflammatory diseases. However, the role of Fn14 in ALI has not yet been elucidated. This study aimed to investigate whether the activation of Fn14 exacerbated lipopolysaccharide (LPS)-induced ALI in mice. METHODS: In vivo, ALI was induced by intratracheal LPS-challenge combined with/without Fn14 receptor blocker aurintricarboxylic acid (ATA) treatment in C57BL/6J mice. Following LPS administration, the survival rate, lung tissue injury, inflammatory cell infiltration, inflammatory factor secretion, oxidative stress, and NLRP3 inflammasome activation were assessed. In vitro, primary murine macrophages were used to evaluate the underlying mechanism by which Fn14 activated the NLRP3 inflammasome. Lentivirus was used to silence Fn14 to observe its effect on the activation of NLRP3 inflammasome in macrophages. RESULTS: In this study, we found that Fn14 expression was significantly increased in the lungs of LPS-induced ALI mice. The inhibition of Fn14 with ATA downregulated the protein expression of Fn14 in the lungs and improved the survival rate of mice receiving a lethal dose of LPS. ATA also attenuated lung tissue damage by decreasing the infiltration of macrophages and neutrophils, reducing inflammation, and suppressing oxidative stress. Importantly, we found that ATA strongly inhibited the activation of NLRP3 inflammasome in the lungs of ALI mice. Furthermore, in vitro, TWEAK, a natural ligand of Fn14, amplified the activation of NLRP3 inflammasome in the primary murine macrophage. By contrast, inhibition of Fn14 with shRNA decreased the expression of Fn14, NLRP3, Caspase-1 p10, and Caspase-1 p20, and the production of IL-1ß and IL-18. Furthermore, the activation of Fn14 promoted the production of reactive oxygen species and inhibited the activation of Nrf2-HO-1 in activated macrophages. CONCLUSIONS: Our study first reports that the activation of Fn14 aggravates ALI by amplifying the activation of NLRP3 inflammasome. Therefore, blocking Fn14 may be a potential way to treat ALI.


Assuntos
Lesão Pulmonar Aguda , Inflamassomos , Receptor de TWEAK/metabolismo , Lesão Pulmonar Aguda/patologia , Animais , Caspase 1/metabolismo , Inflamassomos/metabolismo , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Pulmão , Camundongos , Camundongos Endogâmicos C57BL , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
16.
Toxins (Basel) ; 14(7)2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35878217

RESUMO

Microcystin-LR (MC-LR) is widely present in waters around the world, but its potential toxic effects and mechanisms on amphibian gills remain unknown. In the present study, tadpoles (Lithobates catesbeianus) were exposed to environmentally realistic concentrations of 0.5, 2 µg/L MC-LR, and 0 µg/L MC-LR (Control) for 30 days with the objective to unveil the impairment of gill health. The lysozyme was downregulated, while pattern recognition receptors and complement and adaptive immune processes were upregulated and the ability of gill supernatant to inhibit pathogenic bacteria decreased in the 0.5 and 2 µg/L MC-LR groups. The transcriptions of epithelial barrier components (e.g., CLDN1) were significantly decreased in MC-LR-exposed gills, while the gill content of lipopolysaccharide (LPS) endotoxins and the transcriptions of downstream responsive genes (e.g., TLR4 and NF-κB) were concurrently increased. In addition, the number of eosinophils and the expression of pro-inflammatory cytokines (e.g., IL-1ß and TNF-α) were increased. These results imply that exposure of tadpoles to low environmentally concentrations of MC-LR leads to inflammation, increased permeability, and a reduced ability to inhibit pathogenic bacteria. The epithelial cells of inner gill filaments increased and transcriptions of hypoxic stress genes (e.g., HIF-1α, FLT1, and SERPINE1) were upregulated within the exposed group. As a consequence, exposure to MC-LR may lead to hypoxic stress. MC-LR exposure also drove gill microbiota to a dysbiosis. The relative abundance of Elizabethkingia was positively correlated with content of LPS and transcriptions of NF-κB and TNF-α. Overall, this study presents the first evidence about the pronounced impacts of MC-LR exposure on gills of amphibians, highlighting the susceptibility of early developing tadpoles to the environmental risks of MC-LR.


Assuntos
Brânquias , Microcistinas , Animais , Arginina/metabolismo , Larva , Leucina/metabolismo , Lipopolissacarídeos/farmacologia , Microcistinas/metabolismo , NF-kappa B/metabolismo , Rana catesbeiana , Fator de Necrose Tumoral alfa/metabolismo
17.
Environ Sci Pollut Res Int ; 29(53): 81063-81075, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35729392

RESUMO

In this study, a strontium-doped hydroxyapatite (Sr-HAP) was synthesized by the solgel method, which was used as adsorbent to remove lead ions (Pb2+) from water. The results showed that the adsorption capacities of the Sr-HAP were obviously higher than those of the HAP, the adsorption capacities of which for Pb2+ reached 651.175 mg/g. The proper increasement in the dosage of adsorbent was beneficial to the removal of Pb2+ by Sr-HAP. Meanwhile Sr-HAP had a wide applicable pH range for Pb2+. And the increasement in temperature could increase the adsorption capacity of Sr-HAP for Pb2+ to a certain extent. The Langmuir model was used to fit the isotherm adsorption process of Sr-HAP to Pb2+ in water. Compared with HAP, the specific surface area of Sr-HAP has increased by 11.1%, and the pore size distribution of Sr-HAP tended to be smaller and more uniform. Hence, Sr-HAP could be used as an ideal adsorbent to remove Pb2+ in wastewater.


Assuntos
Poluentes Químicos da Água , Água , Chumbo , Águas Residuárias , Durapatita , Estrôncio , Adsorção , Íons , Hidroxiapatitas , Concentração de Íons de Hidrogênio , Cinética
18.
Oxid Med Cell Longev ; 2022: 5759626, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35509835

RESUMO

Background: Arachidonic acid (ARA) metabolites are involved in the pathogenesis of epithelial-mesenchymal transformation (EMT). However, the role of ARA metabolism in the progression of EMT during pulmonary fibrosis (PF) has not been fully elucidated. The purpose of this study was to investigate the role of cytochrome P450 oxidase (CYP)/soluble epoxide hydrolase (sEH) and cyclooxygenase-2 (COX-2) metabolic disorders of ARA in EMT during PF. Methods: A signal intratracheal injection of bleomycin (BLM) was given to induce PF in C57BL/6 J mice. A COX-2/sEH dual inhibitor PTUPB was used to establish the function of CYPs/COX-2 dysregulation to EMT in PF mice. In vitro experiments, murine alveolar epithelial cells (MLE12) and human alveolar epithelial cells (A549) were used to explore the roles and mechanisms of PTUPB on transforming growth factor (TGF)-ß1-induced EMT. Results: PTUPB treatment reversed the increase of mesenchymal marker molecule α-smooth muscle actin (α-SMA) and the loss of epithelial marker molecule E-cadherin in lung tissue of PF mice. In vitro, COX-2 and sEH protein levels were increased in TGF-ß1-treated alveolar epithelial cells (AECs). PTUPB decreased the expression of α-SMA and restored the expression of E-cadherin in TGF-ß1-treated AECs, accompanied by reduced migration and collagen synthesis. Moreover, PTUPB attenuated TGF-ß1-Smad2/3 pathway activation in AECs via Nrf2 antioxidant cascade. Conclusion: PTUPB inhibits EMT in AECs via Nrf2-mediated inhibition of the TGF-ß1-Smad2/3 pathway, which holds great promise for the clinical treatment of PF.


Assuntos
Fibrose Pulmonar , Fator de Crescimento Transformador beta1 , Animais , Camundongos , Células Epiteliais Alveolares/metabolismo , Caderinas/metabolismo , Ciclo-Oxigenase 2/metabolismo , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , Fibrose Pulmonar/patologia , Pirazóis , Sulfonamidas , Fator de Crescimento Transformador beta1/metabolismo
19.
Ecotoxicol Environ Saf ; 238: 113584, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35512477

RESUMO

Despite the importance of the skin mucosal barrier and commensal microbiota for the health of amphibians, the potential of environmental contaminants to disrupt the skin mucosal barrier and microbiota have rarely been studied in toxicology. In this study, tadpoles (Lithobates catesbeianus) were exposed to 0, 0.5, and 2 µg/L of microcystin-leucine arginine (MC-LR) for 30 days to explore the impacts of environmentally realistic MC-LR concentrations on the physical skin barrier, immune barrier, commensal microbiota, and skin resistance to pathogenic bacterial invasion. MC-LR exposure significantly reduced the collagen fibrils in the dermis of skin tissues and down-regulated tight junction and stratum corneum-related gene transcriptions, suggesting the damage caused by MC-LR to the physical barrier of the skin. Increased skin eosinophils and upregulated transcriptions of inflammation-related genes in the exposed tadpoles underline the development of skin inflammation resulting from MC-LR exposure even at environmentally realistic concentrations. Comparative transcriptome and immunobiochemical analyses found that antimicrobial peptides (Brevinin-1PLc, Brevinin-2GHc, and Ranatuerin-2PLa) and lysozyme were down-regulated in the exposed groups, while complement, pattern recognition receptor, and specific immune processes were up-regulated. However, the content of endotoxin lipopolysaccharide produced by bacteria increased in a dose-dependent pattern. The disc diffusion test showed a reduced ability of skin supernatant to inhibit pathogenic bacteria in the exposed groups. Analysis of microbial 16 S rRNA gene by high-throughput sequencing revealed that MC-LR interfered with the abundance, composition, and diversity of the skin commensal microbiota, which favored the growth of pathogen-containing genera Rhodococcus, Acinetobacter, and Gordonibacter. In summary, the current study provides the first clues about the impact of MC-LR on the integrity and function of skin barrier of amphibians. These new toxicological evidences can facilitate a more comprehensive evaluation of the ecological risk of MC-LR to amphibians.


Assuntos
Arginina , Microcistinas , Animais , Bactérias , Inflamação , Larva , Leucina , Microcistinas/toxicidade , RNA , Rana catesbeiana
20.
Gynecol Endocrinol ; 38(6): 503-507, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35536048

RESUMO

Gestational diabetes mellitus is a frequently diagnosed glucose metabolic disorder during pregnancy. Diabetes mellitus has been found to pose important health risks to the developing fetus, mother, and offspring. Here, we investigated the protective effects of S14G-humanin, a potent humanin analogue, against maternal and neonatal adverse outcomes in mice with diabetes mellitus. The results show that S14G-humanin administration reduced the blood glucose levels and elevated the serum insulin levels in diabetes mellitus mice. The parameters of serum lipid metabolism including low-density lipoprotein, total cholesterol, and high-density lipoprotein in diabetes mellitus mice were also decreased after S14G-humanin administration. Intervention with S14G-humanin also increased the fetus alive ratio and fetal length, as well as decreased fetal and placenta weights. In addition, we demonstrate that S14G-humanin elevated the activity of the anti-oxidative enzymes catalase, glutathione peroxidase, and superoxide dismutase and reduced the inflammatory cytokines levels in the placentas of diabetes mellitus mice. The significantly increased endoplasmic reticulum stress in the placentas of diabetes mellitus mice was also attenuated by S14G-humanin administration. Taken together, S14G-humanin exerted protective roles in improving maternal and neonatal outcomes. Our findings indicate that S14G-humanin might be an effective intervention approach for women with diabetes mellitus.


Assuntos
Diabetes Gestacional , Animais , Citocinas , Diabetes Gestacional/tratamento farmacológico , Feminino , Humanos , Camundongos , Peptídeos , Placenta , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA