Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Mater Chem B ; 11(48): 11552-11561, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-37982207

RESUMO

Low efficiency of nerve growth and unstable release of loaded drugs have become a major problem in repairing peripheral nerve injury. Many intervention strategies were focused on simple drug loading, but have still been less effective. The key challenge is to establish a controlled release microenvironment to enable adequate nerve regeneration. In this study, we fabricate a multilayered compound nerve scaffold by electrospinning: with an anti-adhesive outer layer of polycaprolactone and an ECM-like inner layer consisting of a melatonin-loaded alginate hydrogel. We characterized the scaffold, and the loaded melatonin can be found to undergo controlled release. We applied them to a 15 mm rat model of sciatic nerve injury. After 16 weeks, the animals in each group were evaluated and compared for recovery of motor function, electrophysiology, target organ atrophy status, regenerative nerve morphology and relative protein expression levels of neural markers, inflammatory oxidative stress, and angiogenesis. We identify that the scaffold can improve functional ability evidenced by an increased sciatic functional index and nerve electrical conduction level. The antioxidant melatonin loaded in the scaffold reduces inflammation and oxidative stress in the reinnervated nerves, confirmed by increased HO-1 and decreased TNF-α levels in regenerating nerves. The relative expression of fast-type myosin was elevated in the target gastrocnemius muscle. An improvement in angiogenesis facilitates neurite extension and axonal sprouting. This scaffold can effectively restore the ECM-like microenvironment and improve the quality of nerve regeneration by controlled melatonin release, thus enlightening the design criteria on nerve scaffolds for peripheral nerve injury in the future.


Assuntos
Melatonina , Traumatismos dos Nervos Periféricos , Ratos , Animais , Melatonina/farmacologia , Hidrogéis/farmacologia , Nervo Isquiático/fisiologia , Preparações de Ação Retardada/farmacologia , Alicerces Teciduais , Regeneração Nervosa , Matriz Extracelular
2.
BMC Musculoskelet Disord ; 24(1): 452, 2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37270561

RESUMO

BACKGROUND: The lower limb mechanical axis was used to assess the severity of knee osteoarthritis (KOA) with varus/valgus deformity and the accuracy of targeted lower limb alignment correction after operation by conventional X-rays. There are lots of parameters to assess the gait in elder patients such as velocity, stride length, step width and swing/stance ratio by knee joint movement analysis system. However, the correlation between the lower limb mechanical axis and gait parameters is not clear. This study is aimed at obtaining the accuracy of the lower limb mechanical axis by the knee joint movement analysis system and the correlation between the lower limb mechanical axis and gait parameters. METHODS: We analysed 3D knee kinematics during ground gait of 99 patients with KOA and 80 patients 6 months after the operations with the vivo infrared navigation 3D portable knee joint movement analysis system (Opti-Knee®, Innomotion Inc, Shanghai, China). The HKA (Hip-Knee-Ankle) value was calculated and compared to X-ray findings. RESULTS: HKA absolute variation after the operation was 0.83 ± 3.76°, which is lower than that before the operation (5.41 ± 6.20°, p = 0.001) and also lower than the entire cohort (3.36 ± 5.72). Throughout the cohort, a significant correlation with low coefficients (r = -0.19, p = 0.01) between HKA value and anterior-posterior displacement was found. In comparing the HKA values measured on the full-length alignment radiographs and 3D knee joint movement analysis system (Opti-Knee), there was a significant correlation with moderate to high coefficients (r = 0.784 to 0.976). The linear correlation analysis showed that there was a significant correlation between the values of HKA measured by X-ray and movement analysis system (R2 = 0.90, p < 0.01). CONCLUSIONS: Data with equivalent results as HKA, the 6DOF of the knee and ground gait data could be provided by infrared navigation based 3D portable knee joint movement analysis system comparing with the conventional X-rays. There is no significant effect of HKA on the kinematics of the partial knee joint.


Assuntos
Tornozelo , Osteoartrite do Joelho , Humanos , Idoso , Raios X , China , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/cirurgia , Extremidade Inferior , Osteoartrite do Joelho/diagnóstico por imagem , Osteoartrite do Joelho/cirurgia , Marcha , Postura , Estudos Retrospectivos
3.
Bioact Mater ; 20: 319-338, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36380746

RESUMO

The slow regenerating rate and misdirected axonal growth are primary concerns that disturb the curative outcome of peripheral nerve repair. Biophysical intervention through nerve scaffolds can provide efficient, tunable and sustainable guidance for nerve regrowth. Herein, we fabricate the reduced graphene oxide (rGO)/polycaprolactone (PCL) scaffold characterized with anisotropic microfibers and oriented nanogrooves by electrospinning technique. Adipose-derived stem cells (ADSCs) are seeded on the scaffolds in vitro and the viability, neural differentiation efficiency and neurotrophic potential are investigated. RGO/PCL conduits reprogram the phenotype of seeded cells and efficiently repair 15 mm sciatic nerve defect in rats. In summary, biophysical cues on nerve scaffolds are key determinants to stem cell phenotype, and ADSC-seeded rGO/PCL oriented scaffolds are promising, controllable and sustainable approaches to enable peripheral nerve regeneration.

4.
Cyborg Bionic Syst ; 2022: 9892526, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36285317

RESUMO

Graphdiyne (GDY) is a new member of the family of carbon-based nanomaterials with hybridized carbon atoms of sp and sp2, including α, ß, γ, and (6,6,12)-GDY, which differ in their percentage of acetylene bonds. The unique structure of GDY provides many attractive features, such as uniformly distributed pores, highly π-conjugated structure, high thermal stability, low toxicity, biodegradability, large specific surface area, tunable electrical conductivity, and remarkable thermal conductivity. Therefore, GDY is widely used in energy storage, catalysis, and energy fields, in addition to biomedical fields, such as biosensing, cancer therapy, drug delivery, radiation protection, and tissue engineering. In this review, we first discuss the synthesis of GDY with different shapes, including nanotubes, nanowires, nanowalls, and nanosheets. Second, we present the research progress in the biomedical field in recent years, along with the biodegradability and biocompatibility of GDY based on the existing literature. Subsequently, we present recent research results on the use of nanomaterials in peripheral nerve regeneration (PNR). Based on the wide application of nanomaterials in PNR and the remarkable properties of GDY, we predict the prospects and current challenges of GDY-based materials for PNR.

5.
Mater Today Bio ; 13: 100211, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35198959

RESUMO

Peripheral nerve injury usually impairs neurological functions. The excessive oxidative stress and disrupted bioelectrical conduction gives rise to a hostile microenvironment and impedes nerve regeneration. Therefore, it is of urgent need to develop tissue engineering products which help alleviate the oxidative insults and restore bioelectrical signals. Melatonin (MLT) is an important endogenous hormone that diminishes the accumulation of reactive oxygen species. Reduced graphene oxide (RGO) possesses the excellent electrical conductivity and biocompatibility. In this study, a multilayered MLT/RGO/Polycaprolactone (PCL) composite scaffold was fabricated with beaded nanostructures to improve cell attachment and proliferation. It also exhibited stable mechanical properties by high elastic modulus and guaranteed structural integrity for nerve regeneration. The live/dead cell staining and cell counting kit assay were performed to evaluate the toxicity of the scaffold. JC-1 staining was carried out to assess the mitochondrial potential. The composite scaffold provided a biocompatible interface for cell viability and improved ATP production for energy supply. The scaffold improved the sensory and locomotor function recovery by walking track analysis and electrophysiological evaluation, reduced Schwann cell apoptosis and increased its proliferation. It further stimulated myelination and axonal outgrowth by enhancing S100ß, myelin basic protein, ß3-tubulin, and GAP43 levels. The findings demonstrated functional and morphological recovery by this biomimetic scaffold and indicated its potential for translational application.

6.
Front Vet Sci ; 8: 737160, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34552978

RESUMO

Gout is a disease involving abnormal purine metabolism that is widespread in mammals and birds. Goose is especially susceptible for gout in early stage. However, a few studies investigated the ontogenetic pattern of goslings with purine metabolic abnormality. Our studies were conducted to investigate whether persistent purine metabolic abnormality would lead to aggravation of visceral inflammation and intestinal microbiota dysbiosis in goose. A total of 132 1-day-old Magang geese were randomly divided into six replicates and fed a high-calcium and protein meal-based diet from 1 to 28 days. The experiment lasted for 28 days. Liver and kidney damages were observed in 14- and 28-day-old Magang geese, and liver inflammation increased with increasing age. In 28-day-old Magang geese, serum CAT and liver GSH-Px activity were significantly reduced. Furthermore, jejunum intestinal barrier was impaired and the abundance of Bacteroides was significantly reduced at the genus level. Collectively, the high-calcium and high-protein (HCP) meal-based diet caused liver and kidney damage in 28-day-old Magang geese, leading to hyperuricemia and gout symptoms, and the intestinal barrier is impaired and the intestinal flora is disrupted.

7.
Regen Biomater ; 8(4): rbab032, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34188955

RESUMO

Graphene and its derivatives are fascinating materials for their extraordinary electrochemical and mechanical properties. In recent decades, many researchers explored their applications in tissue engineering and regenerative medicine. Reduced graphene oxide (rGO) possesses remarkable structural and functional resemblance to graphene, although some residual oxygen-containing groups and defects exist in the structure. Such structure holds great potential since the remnant-oxygenated groups can further be functionalized or modified. Moreover, oxygen-containing groups can improve the dispersion of rGO in organic or aqueous media. Therefore, it is preferable to utilize rGO in the production of composite materials. The rGO composite scaffolds provide favorable extracellular microenvironment and affect the cellular behavior of cultured cells in the peripheral nerve regeneration. On the one hand, rGO impacts on Schwann cells and neurons which are major components of peripheral nerves. On the other hand, rGO-incorporated composite scaffolds promote the neurogenic differentiation of several stem cells, including embryonic stem cells, mesenchymal stem cells, adipose-derived stem cells and neural stem cells. This review will briefly introduce the production and major properties of rGO, and its potential in modulating the cellular behaviors of specific stem cells. Finally, we present its emerging roles in the production of composite scaffolds for nerve tissue engineering.

8.
Front Bioeng Biotechnol ; 8: 582646, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33102465

RESUMO

Peripheral nerve injuries (PNIs) are usually caused by trauma, immune diseases, and genetic factors. Peripheral nerve injury (PNI) may lead to limb numbness, muscle atrophy, and loss of neurological function. Although an abundance of theories have been proposed, very few treatments can effectively lead to complete recovery of neurological function. Autologous nerve transplantation is currently the gold standard. Nevertheless, only 50% of all patients were successfully cured using this method. In addition, it causes inevitable damage to the donor site, and available donor sites in humans are very limited. Tissue engineering has become a research hotspot aimed at achieving a better therapeutic effect from peripheral nerve regeneration. Nerve guide conduits (NGCs) show great potential in the treatment of PNI. An increasing number of scaffold materials, including natural and synthetic polymers, have been applied to fabricate NGCs for peripheral nerve regeneration. This review focuses on recent nerve guide conduit (NGC) composite scaffold materials that are applied for nerve tissue engineering. Furthermore, the development tendency of NGCs and future areas of interest are comprehensively discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA