Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
1.
Stem Cell Res Ther ; 15(1): 167, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38872206

RESUMO

BACKGROUND: Stem cell therapy is a promising alternative for inflammatory diseases and tissue injury treatment. Exogenous delivery of mesenchymal stem cells is associated with instant blood-mediated inflammatory reactions, mechanical stress during administration, and replicative senescence or change in phenotype during long-term culture in vitro. In this study, we aimed to mobilize endogenous hematopoietic stem cells (HSCs) using AMD-3100 and provide local immune suppression using FK506, an immunosuppressive drug, for the treatment of inflammatory bowel diseases. METHODS: Reactive oxygen species (ROS)-responsive FK506-loaded thioketal microspheres were prepared by emulsification solvent-evaporation method. Thioketal vehicle based FK506 microspheres and AMD3100 were co-administered into male C57BL6/J mice with dextran sulfate sodium (DSS) induced colitis. The effect of FK506-loaded thioketal microspheres in colitis mice were evaluated using disease severity index, myeloperoxidase activity, histology, flow cytometry, and gene expression by qRT-PCR. RESULTS: The delivery of AMD-3100 enhanced mobilization of HSCs from the bone marrow into the inflamed colon of mice. Furthermore, targeted oral delivery of FK506 in an inflamed colon inhibited the immune activation in the colon. In the DSS-induced colitis mouse model, the combination of AMD-3100 and FK506-loaded thioketal microspheres ameliorated the disease, decreased immune cell infiltration and activation, and improved body weight, colon length, and epithelial healing process. CONCLUSION: This study shows that the significant increase in the percentage of mobilized hematopoietic stem cells in the combination therapy of AMD and oral FK506 microspheres may contribute to a synergistic therapeutic effect. Thus, low-dose local delivery of FK506 combined with AMD3100 could be a promising alternative treatment for inflammatory bowel diseases.


Assuntos
Benzilaminas , Colite , Ciclamos , Sulfato de Dextrana , Camundongos Endogâmicos C57BL , Tacrolimo , Animais , Colite/induzido quimicamente , Colite/terapia , Colite/tratamento farmacológico , Colite/patologia , Camundongos , Masculino , Ciclamos/farmacologia , Ciclamos/uso terapêutico , Tacrolimo/farmacologia , Tacrolimo/uso terapêutico , Mobilização de Células-Tronco Hematopoéticas/métodos , Compostos Heterocíclicos/farmacologia , Compostos Heterocíclicos/uso terapêutico , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Modelos Animais de Doenças , Terapia de Imunossupressão , Imunossupressores/farmacologia , Imunossupressores/uso terapêutico , Microesferas , Espécies Reativas de Oxigênio/metabolismo
2.
Adv Drug Deliv Rev ; 211: 115355, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38849004

RESUMO

Mitochondrial genome (mtDNA) independent of nuclear gene is a set of double-stranded circular DNA that encodes 13 proteins, 2 ribosomal RNAs and 22 mitochondrial transfer RNAs, all of which play vital roles in functions as well as behaviors of mitochondria. Mutations in mtDNA result in various mitochondrial disorders without available cures. However, the manipulation of mtDNA via the mitochondria-targeted gene delivery faces formidable barriers, particularly owing to the mitochondrial double membrane. Given the fact that there are various transport channels on the mitochondrial membrane used to transfer a variety of endogenous substances to maintain the normal functions of mitochondria, mitochondrial endogenous substance transport-inspired nanomaterials have been proposed for mitochondria-targeted gene delivery. In this review, we summarize mitochondria-targeted gene delivery systems based on different mitochondrial endogenous substance transport pathways. These are categorized into mitochondrial steroid hormones import pathways-inspired nanomaterials, protein import pathways-inspired nanomaterials and other mitochondria-targeted gene delivery nanomaterials. We also review the applications and challenges involved in current mitochondrial gene editing systems. This review delves into the approaches of mitochondria-targeted gene delivery, providing details on the design of mitochondria-targeted delivery systems and the limitations regarding the various technologies. Despite the progress in this field is currently slow, the ongoing exploration of mitochondrial endogenous substance transport and mitochondrial biological phenomena may act as a crucial breakthrough in the targeted delivery of gene into mitochondria and even the manipulation of mtDNA.

3.
Nat Commun ; 15(1): 2759, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553451

RESUMO

Non-small cell lung cancer (NSCLC) shows high drug resistance and leads to low survival due to the high level of mutated Tumor Protein p53 (TP53). Cisplatin is a first-line treatment option for NSCLC, and the p53 mutation is a major factor in chemoresistance. We demonstrate that cisplatin chemotherapy increases the risk of TP53 mutations, further contributing to cisplatin resistance. Encouragingly, we find that the combination of cisplatin and fluvastatin can alleviate this problem. Therefore, we synthesize Fluplatin, a prodrug consisting of cisplatin and fluvastatin. Then, Fluplatin self-assembles and is further encapsulated with poly-(ethylene glycol)-phosphoethanolamine (PEG-PE), we obtain Fluplatin@PEG-PE nanoparticles (FP NPs). FP NPs can degrade mutant p53 (mutp53) and efficiently trigger endoplasmic reticulum stress (ERS). In this study, we show that FP NPs relieve the inhibition of cisplatin chemotherapy caused by mutp53, exhibiting highly effective tumor suppression and improving the poor NSCLC prognosis.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Nanopartículas , Fosfatidiletanolaminas , Polietilenoglicóis , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Fluvastatina/uso terapêutico , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/genética , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Mutação
4.
Adv Sci (Weinh) ; 11(19): e2401254, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38483920

RESUMO

Pancreatic fibrosis (PF) is primarily characterized by aberrant production and degradation modes of extracellular matrix (ECM) components, resulting from the activation of pancreatic stellate cells (PSCs) and the pathological cross-linking of ECM mediated by lysyl oxidase (LOX) family members. The excessively deposited ECM increases matrix stiffness, and the over-accumulated reactive oxygen species (ROS) induces oxidative stress, which further stimulates the continuous activation of PSCs and advancing PF; challenging the strategy toward normalizing ECM homeostasis for the regression of PF. Herein, ROS-responsive and Vitamin A (VA) decorated micelles (named LR-SSVA) to reverse the imbalanced ECM homeostasis for ameliorating PF are designed and synthesized. Specifically, LR-SSVA selectively targets PSCs via VA, thereby effectively delivering siLOXL1 and resveratrol (RES) into the pancreas. The ROS-responsive released RES inhibits the overproduction of ECM by eliminating ROS and inactivating PSCs, meanwhile, the decreased expression of LOXL1 ameliorates the cross-linked collagen for easier degradation by collagenase which jointly normalizes ECM homeostasis and alleviates PF. This research shows that LR-SSVA is a safe and efficient ROS-response and PSC-targeted drug-delivery system for ECM normalization, which will propose an innovative and ideal platform for the reversal of PF.


Assuntos
Matriz Extracelular , Fibrose , Nanopartículas , Espécies Reativas de Oxigênio , Espécies Reativas de Oxigênio/metabolismo , Matriz Extracelular/metabolismo , Animais , Fibrose/metabolismo , Resveratrol/farmacologia , Humanos , Células Estreladas do Pâncreas/metabolismo , Células Estreladas do Pâncreas/efeitos dos fármacos , Pâncreas/metabolismo , Pâncreas/patologia , Pancreatopatias/metabolismo , Modelos Animais de Doenças , Estresse Oxidativo/efeitos dos fármacos , Vitamina A/metabolismo , Camundongos , Ratos , Sistemas de Liberação de Medicamentos/métodos
5.
Int J Biol Macromol ; 263(Pt 2): 130356, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38395283

RESUMO

Mesenchymal stem cell (MSC)-based therapies show great potential in treating various diseases. However, control of the fate of injected cells needs to be improved. In this work, we developed an efficient methodology for modulating chondrogenic differentiation of MSCs. We fabricated heterospheroids with two sustained-release depots, a quaternized chitosan microsphere (QCS-MP) and a poly (lactic-co-glycolic acid) microsphere (PLGA-MP). The results show that heterospheroids composed of 1 × 104 to 5 × 104 MSCs formed rapidly during incubation in methylcellulose medium and maintained high cell viability in long-term culture. The MPs were uniformly distributed in the heterospheroids, as shown by confocal laser scanning microscopy. Incorporation of transforming growth factor beta 3 into QCS-MPs and of dexamethasone into PLGA-MPs significantly promoted the expression of chondrogenic genes and high accumulation of glycosaminoglycan in heterospheroids. Changes in crucial metabolites in the dual drug depot-engineered heterospheroids were also evaluated using 1H NMR-based metabolomics analysis to verify their successful chondrogenic differentiation. Our heterospheroid fabrication platform could be used in tissue engineering to study the effects of various therapeutic agents on stem cell fate.


Assuntos
Quitosana , Células-Tronco Mesenquimais , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/farmacologia , Microesferas , Quitosana/farmacologia , Ácido Poliglicólico/farmacologia , Ácido Láctico/farmacologia , Glicóis , Preparações de Ação Retardada/farmacologia , Células Cultivadas , Diferenciação Celular , Condrogênese
6.
Adv Mater ; 36(16): e2311474, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38194906

RESUMO

During liver fibrogenesis, the reciprocal crosstalk among capillarized liver sinusoidal endothelial cells (LSECs), activated hepatic stellate cells (HSCs), and dysfunctional hepatocytes constructs a self-amplifying vicious cycle, greatly exacerbating the disease condition and weakening therapeutic effect. Limited by the malignant cellular interactions, the previous single-cell centric treatment approaches show unsatisfactory efficacy and fail to meet clinical demand. Herein, a vicious cycle-breaking strategy is proposed to target and repair pathological cells separately to terminate the malignant progression of liver fibrosis. Chondroitin sulfate-modified and vismodegib-loaded nanoparticles (CS-NPs/VDG) are designed to efficiently normalize the fenestrae phenotype of LSECs and restore HSCs to quiescent state by inhibiting Hedgehog signaling pathway. In addition, glycyrrhetinic acid-modified and silybin-loaded nanoparticles (GA-NPs/SIB) are prepared to restore hepatocytes function by relieving oxidative stress. The results show successful interruption of vicious cycle as well as distinct fibrosis resolution in two animal models through multiregulation of the pathological cells. This work not only highlights the significance of modulating cellular crosstalk but also provides a promising avenue for developing antifibrotic regimens.


Assuntos
Células Endoteliais , Lipossomos , Nanopartículas , Animais , Células Endoteliais/metabolismo , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/uso terapêutico , Cirrose Hepática , Fígado/metabolismo
7.
J Control Release ; 366: 732-745, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38242209

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with high mortality. The Food and Drug Administration-approved drugs, nintedanib and pirfenidone, could delay progressive fibrosis by inhibiting the overactivation of fibroblast, however, there was no significant improvement in patient survival due to low levels of drug accumulation and remodeling of honeycomb cyst and interstitium surrounding the alveoli. Herein, we constructed a dual drug (verteporfin and pirfenidone)-loaded nanoparticle (Lip@VP) with the function of inhibiting airway epithelium fluidization and fibroblast overactivation to prevent honeycomb cyst and interstitium remodeling. Specifically, Lip@VP extensively accumulated in lung tissues via atomized inhalation. Released verteporfin inhibited the fluidization of airway epithelium and the formation of honeycomb cyst, and pirfenidone inhibited fibroblast overactivation and reduced cytokine secretion that promoted the fluidization of airway epithelium. Our results indicated that Lip@VP successfully rescued lung function through inhibiting honeycomb cyst and interstitium remodeling. This study provided a promising strategy to improve the therapeutic efficacy for IPF.


Assuntos
Cistos , Fibrose Pulmonar Idiopática , Nanopartículas , Humanos , Verteporfina , Fibrose Pulmonar Idiopática/tratamento farmacológico , Pulmão
9.
Adv Sci (Weinh) ; 11(7): e2306899, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38064164

RESUMO

In advanced liver fibrosis (LF), macrophages maintain the inflammatory environment in the liver and accelerate LF deterioration by secreting proinflammatory cytokines. However, there is still no effective strategy to regulate macrophages because of the difficulty and complexity of macrophage inflammatory phenotypic modulation and the insufficient therapeutic efficacy caused by the extracellular matrix (ECM) barrier. Here, AC73 and siUSP1 dual drug-loaded lipid nanoparticle is designed to carry milk fat globule epidermal growth factor 8 (MFG-E8) (named MUA/Y) to effectively inhibit macrophage proinflammatory signals and degrade the ECM barrier. MFG-E8 is released in response to the high reactive oxygen species (ROS) environment in LF, transforming macrophages from a proinflammatory (M1) to an anti-inflammatory (M2) phenotype and inducing macrophages to phagocytose collagen. Collagen ablation increases AC73 and siUSP1 accumulation in hepatic stellate cells (HSCs) and inhibits HSCs overactivation. Interestingly, complete resolution of liver inflammation, significant collagen degradation, and HSCs deactivation are observed in methionine choline deficiency (MCD) and CCl4 models after tail vein injection of MUA/Y. Overall, this work reveals a macrophage-focused regulatory treatment strategy to eliminate LF progression at the source, providing a new perspective for the clinical treatment of advanced LF.


Assuntos
Cirrose Hepática , Macrófagos , Humanos , Cirrose Hepática/terapia , Macrófagos/metabolismo , Colágeno , Fenótipo
10.
J Control Release ; 365: 981-1003, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38123072

RESUMO

Stem cells have garnered significant attention in regenerative medicine owing to their abilities of multi-directional differentiation and self-renewal. Despite these encouraging results, the market for stem cell products yields limited, which is largely due to the challenges faced to the safety and viability of stem cells in vivo. Besides, the fate of cells re-infusion into the body unknown is also a major obstacle to stem cell therapy. Actually, both the functional protection and the fate tracking of stem cells are essential in tissue homeostasis, repair, and regeneration. Recent studies have utilized cell engineering techniques to modify stem cells for enhancing their treatment efficiency or imparting them with novel biological capabilities, in which advances demonstrate the immense potential of engineered cell therapy. In this review, we proposed that the "engineered stem cells" are expected to represent the next generation of stem cell therapies and reviewed recent progress in this area. We also discussed potential applications of engineered stem cells and highlighted the most common challenges that must be addressed. Overall, this review has important guiding significance for the future design of new paradigms of stem cell products to improve their therapeutic efficacy.


Assuntos
Engenharia Celular , Medicina Regenerativa , Medicina Regenerativa/métodos , Transplante de Células-Tronco , Diferenciação Celular
11.
Biomaterials ; 305: 122447, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38154441

RESUMO

Ferroptosis is a promising therapeutic approach for combating malignant cancers, but its effectiveness is limited in clinical due to the adaptability and self-repair abilities of cancer cells. Mitochondria, as the pivotal player in ferroptosis, exhibit tremendous therapeutic potential by targeting the intramitochondrial anti-ferroptotic pathway mediated by dihydroorotate dehydrogenase (DHODH). In this study, an albumin-based nanomedicine was developed to induce augmented ferroptosis in triple-negative breast cancer (TNBC) by depleting glutathione (GSH) and inhibiting DHODH activity. The nanomedicine (ATO/SRF@BSA) was developed by loading sorafenib (SRF) and atovaquone (ATO) into bovine serum albumin (BSA). SRF is an FDA-approved ferroptosis inducer and ATO is the only drug used in clinical that targets mitochondria. By combining the effects of SRF and ATO, ATO/SRF@BSA promoted the accumulation of lipid peroxides within mitochondria by inhibiting the glutathione peroxidase 4 (GPX4)-GSH pathway and downregulating the DHODH-coenzyme Q (CoQH2) defense mechanism, triggers a burst of lipid peroxides. Simultaneously, ATO/SRF@BSA suppressed cancer cell self-repair and enhanced cell death by inhibiting the synthesis of adenosine triphosphate (ATP) and pyrimidine nucleotides. Furthermore, the anti-cancer results showed that ATO/SRF@BSA exhibited tumor-specific killing efficacy, significantly improved the tumor hypoxic microenvironment, and lessened the toxic side effects of SRF. This work presents an efficient and easily achievable strategy for TNBC treatment, which may hold promise for clinical applications.


Assuntos
Ferroptose , Neoplasias de Mama Triplo Negativas , Humanos , Di-Hidro-Orotato Desidrogenase , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Peróxidos Lipídicos , Soroalbumina Bovina , Atovaquona , Glutationa , Linhagem Celular Tumoral , Microambiente Tumoral
12.
Adv Sci (Weinh) ; 10(34): e2304287, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37867235

RESUMO

Circulating tumor cells (CTCs) and tumor-derived exosomes (TDEs) play an irreplaceable role in the metastatic cascade and preventing them from reaching distant organs via blood circulation helps to reduce the probability of cancer recurrence and metastasis. However, technologies that can simultaneously prevent CTCs and TDEs from reaching distant organs have not been thoroughly developed until now. Here, inspired by hemoperfusion, a pro-metastatic derivative eliminator (PMDE) is developed for the removal of both CTCs and TDEs from the peripheral blood, which also inhibits their biodistribution in distant organs. This device is designed with a dual antibody-modified immunosorbent filled into a capture column that draws peripheral blood out of the body to flow through the column to specifically capture CTCs and TDEs, followed by retransfusing the purified blood into the body. The PMDE can efficiently remove CTCs and TDEs from the peripheral blood and has excellent biocompatibility. Interestingly, the PMDE device can significantly inhibit the biodistribution of CTCs and TDEs in the lung and liver by scavenging them. This work provides a new perspective on anti-metastatic therapy and has broad prospects in clinical applications to prevent metastasis and recurrence.


Assuntos
Exossomos , Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patologia , Distribuição Tecidual , Exossomos/metabolismo , Recidiva Local de Neoplasia/metabolismo , Pulmão/patologia
13.
J Photochem Photobiol B ; 248: 112798, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37820499

RESUMO

BACKGROUND: Photodynamic therapy (PDT) has a promising application prospect in Echinococcus granulosus (Egs), however, the hypoxic environment of Egs and the hypoxia associated with PDT will greatly limit its effects. As a hypoxic-activated pre-chemotherapeutic drug, tirapazamine (TPZ) can be only activated and produce cytotoxicity under hypoxia environment. Albendazole sulfoxide (ABZSO) is the first choice for the treatment of Egs. This study aimed to explore the effects of ABZSO nanoparticles (ABZSO NPs), TPZ combined with PDT on the activity of Egs in vitro and in vivo. METHODS: The Egs were divided into control, ABZSO NPs, ABZSO NPs + PDT, and ABZSO NPs + TPZ + PDT groups, and the viability of Egs was determined using methylene blue staining. Then, the ROS, LDH and ATP levels were measured using their corresponding assay kit, and H2AX and TopoI protein expression was detected by western blot. The morphology of Egs with different treatments was observed using hematoxylin eosin (HE) staining and scanning electron microscopy (SEM). After that, the in vivo efficacy of ABZSO NPs, TPZ and PDT on Egs was determined in a Egs infected mouse model. RESULTS: In vitro experiments showed that the combined treatment of TPZ, ABZSO NPs and PDT significantly inhibited Egs viability; and significantly increased ROS levels and LDH contents, while decreased ATP contents in Egs; as well as up-regulated H2AX and down-regulated TopoI protein expression. HE staining and SEM results showed that breaking-then-curing treatment seriously damaged the Egs wall. Additionally, in vivo experiments found that the combination of ABZSO NPs, PDT and TPZ had more serious calcification and damage of the wall structure of cysts. CONCLUSIONS: ABZSO NPs combined with TPZ and PDT has a better inhibitory effect on the growth of Egs in vitro and in vivo based on the strategy of "breaking-then-curing".


Assuntos
Equinococose , Echinococcus granulosus , Nanopartículas , Fotoquimioterapia , Animais , Camundongos , Tirapazamina/farmacologia , Tirapazamina/química , Tirapazamina/uso terapêutico , Echinococcus granulosus/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Hipóxia , Fotoquimioterapia/métodos , Equinococose/tratamento farmacológico , Nanopartículas/química , Trifosfato de Adenosina
14.
J Control Release ; 364: 37-45, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37813125

RESUMO

Post-transplantation tracking of pancreatic islets is a prerequisite for advancing cell therapy to treat type 1 diabetes. Magnetic resonance imaging (MRI) has emerged as a safe and non-invasive technique for visualizing cells in clinical applications. In this study, we proposed a novel MRI contrast agent formulation by encapsulating iron oxide nanoparticles (IONPs) in poly(lactic-co-glycolic acid) (PLGA) particles functionalized with a tissue adhesive polydopamine (PD) layer (IONP-PLGA-PD MS). Intriguingly, our particles facilitated efficient and robust labeling through a one-step process, allowing for the incorporation of a substantial amount of IONPs without detrimental impacts on the viability and functionality of pancreatic islets. The MRI signals emanating from islets labeled using our particles were found to be stable over 30 days in vitro and 60 days when transplanted under kidney capsules of diabetic mice. These results suggest that our approach provides a potential platform for monitoring the fate of pancreatic islets after transplantation.


Assuntos
Diabetes Mellitus Experimental , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Nanopartículas de Magnetita , Adesivos Teciduais , Camundongos , Animais , Transplante das Ilhotas Pancreáticas/métodos , Diabetes Mellitus Experimental/diagnóstico por imagem , Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Experimental/metabolismo , Ilhotas Pancreáticas/diagnóstico por imagem , Ilhotas Pancreáticas/metabolismo , Imageamento por Ressonância Magnética/métodos
15.
Adv Drug Deliv Rev ; 200: 115051, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37549848

RESUMO

Imbalance in the tissue microenvironment is the main obstacle to drug delivery and distribution in the human body. Before penetrating the pathological tissue microenvironment to the target site, therapeutic agents are usually accompanied by three consumption steps: the first step is tissue physical barriers for prevention of their penetration, the second step is inactivation of them by biological molecules, and the third step is a cytoprotective mechanism for preventing them from functioning on specific subcellular organelles. However, recent studies in drug-hindering mainly focus on normal physiological rather than pathological microenvironment, and the repair of damaged physiological barriers is also rarely discussed. Actually, both the modulation of pathological barriers and the repair of damaged physiological barriers are essential in the disease treatment and the homeostasis maintenance. In this review, we present an overview describing the latest advances in the generality of these pathological barriers and barrier-modulated nanomedicine. Overall, this review holds considerable significance for guiding the design of nanomedicine to increase drug efficacy in the future.


Assuntos
Nanopartículas , Neoplasias , Humanos , Nanomedicina , Nanopartículas/uso terapêutico , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Microambiente Tumoral
16.
Sci Adv ; 9(29): eadg5358, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37467328

RESUMO

Pulmonary fibrosis (PF) is an age-related interstitial lung disease that results in notable morbidity and mortality. The Food and Drug Administration-approved drugs can decelerate the progression of PF; however, curing aged patients with severe fibrosis is ineffective because of insufficient accumulation of these drugs and wide necrocytosis of type II alveolar epithelial cells (AEC IIs). Here, we constructed a mesenchymal stem cell (MSC)-based nanoengineered platform via the bioconjugation of MSCs and type I collagenase-modified liposomes loaded with nintedanib (MSCs-Lip@NCAF) for treating severe fibrosis. Specifically, MSCs-Lip@NCAF migrated to fibrotic lungs because of the homing characteristic of MSCs and then Lip@NCAF was sensitively released. Subsequently, Lip@NCAF ablated collagen fibers, delivered nintedanib into fibroblasts, and inhibited fibroblast overactivation. MSCs differentiated into AEC IIs to repair alveolar structure and ultimately promote the regeneration of damaged lungs in aged mice. Our findings indicated that MSCs-Lip@NCAF could be used as a promising therapeutic candidate for PF therapy, especially in aged patients.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Fibrose Pulmonar , Estados Unidos , Animais , Camundongos , Fibrose Pulmonar/terapia , Fibrose Pulmonar/metabolismo , Pulmão/metabolismo , Células Epiteliais Alveolares , Células-Tronco Mesenquimais/metabolismo
17.
Adv Healthc Mater ; 12(28): e2301292, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37458333

RESUMO

As a distinctly different way from apoptosis, ferroptosis can cause cell death through excessive accumulation of lipid peroxide (LPO) and show great potential for cancer therapy. However, efficient strategies for ferroptosis therapy are still facing great challenges, mainly due to insufficient endogenous H2 O2 or relatively high pH value for Fenton reaction-dependent ferroptosis, and the high redox level of tumor cells attenuates the oxidation therapy. Herein, an efficient lipid-based delivery system to load oxidation catalyst and glutathione peroxidase 4 (Gpx4) inhibitor is orchestrated, intending to amplify Fenton reaction-independent ferroptosis by bidirectional regulation of LPO accumulation. Ferric ammonium citrate (FAC), Gpx4 inhibitor sorafenib (SF), and unsaturated lipids are constructed into mPEG2K -DSPE-modified liposomes (Lip@SF&FAC). Influenced by the high level of intratumoral glutathione, FAC can be converted into Fe2+ , and subsequently the formed iron redox pair (Fe2+ /Fe3+ ) catalyzes unsaturated phospholipids of liposomes into LPO via a Fenton reaction-independent manner. Meanwhile, SF can downregulate LPO reduction by inhibiting Gpx4 activation. In vitro and in vivo antitumor experiments show that Lip@SF&FAC induces massive LPO accumulation in tumor cells and ultimately exhibits strong tumor-killing ability with negligible side effect. Consequently, this two-pronged approach provides a new ferroptosis strategy for predominant LPO accumulation and enhanced cancer therapy.


Assuntos
Ferroptose , Neoplasias , Humanos , Lipossomos/farmacologia , Oxirredução , Apoptose , Peróxidos Lipídicos , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Neoplasias/tratamento farmacológico , Linhagem Celular Tumoral
18.
Biomaterials ; 300: 122205, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37348324

RESUMO

The use of overwhelming reactive oxygen species (ROS) attack has shown great potential for treating aggressive malignancies; however, targeting this process for further applications is greatly hindered by inefficiency and low selectivity. Here, a novel strategy for ROS explosion induced by tumor microenvironment-initiated lipid redox cycling was proposed, which was developed by using soybean phosphatidylcholine (SPC) to encapsulate lactate oxidase (LOX) and sorafenib (SRF) self-assembled nanoparticles (NPs), named LOX/SRF@Lip. SPC is not only the delivery carrier but an unsaturated lipid supplement for ROS explosion. And LOX catalyzes excessive intratumoral lactate to promote the accumulation of large amounts of H2O2. Then, H2O2 reacts with excessive endogenous iron ions to generate amounts of hydroxyl radical for the initiation of SPC peroxidation. Once started, the reaction will proceed via propagation to form new lipid peroxides (LPO), resulting to devastating LPO explosion and widespread oxidative damage in tumor cells. Furthermore, SRF makes contribution to mass LPO accumulation by inhibiting LPO elimination. Compared to normal tissue, tumor tissue has higher levels of lactate and iron ions. Therefore, LOX/SRF@Lip shows low toxicity in normal tissues, but generates efficient inhibition on tumor proliferation and metastasis, enabling excellent and safe tumor-specific therapy. This work offers new ideas on how to magnify anticancer effect of ROS through rational nanosystem design and tumor-specific microenvironment utilization.


Assuntos
Nanopartículas , Neoplasias de Mama Triplo Negativas , Humanos , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Microambiente Tumoral , Oxirredução , Peróxidos Lipídicos , Sorafenibe , Ferro , Linhagem Celular Tumoral
19.
ACS Appl Mater Interfaces ; 15(22): 26373-26384, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37219569

RESUMO

Potentiation of stem cell potency is critical for successful tissue engineering, especially for bone regeneration. Three-dimensional cell culture and bioactive molecule co-delivery with cells have been proposed to achieve this effect. Here, we provide a uniform and scalable fabrication of osteogenic microtissue constructs of mesenchymal stem cell (MSC) spheroids surface-engineered with dexamethasone-releasing polydopamine-coated microparticles (PD-DEXA/MPs) to target bone regeneration. The microparticle conjugation process was rapid and cell-friendly and did not affect the cell viability or key functionalities. The incorporation of DEXA in the conjugated system significantly enhanced the osteogenic differentiation of MSC spheroids, as evidenced by upregulating osteogenic gene expression and intense alkaline phosphatase and alizarin red S staining. In addition, the migration of MSCs from spheroids was tested on a biocompatible macroporous fibrin scaffold (MFS). The result showed that PD-DEXA/MPs were stably anchored on MSCs during cell migration over time. Finally, the implantation of PD-DEXA/MP-conjugated spheroid-loaded MFS into a calvarial defect in a mouse model showed substantial bone regeneration. In conclusion, the uniform fabrication of microtissue constructs containing MSC spheroids with drug depots shows a potential to improve the performance of MSCs in tissue engineering.


Assuntos
Células-Tronco Mesenquimais , Esferoides Celulares , Camundongos , Animais , Osteogênese , Regeneração Óssea , Diferenciação Celular , Engenharia Tecidual/métodos , Dexametasona/farmacologia , Dexametasona/metabolismo
20.
Mol Ther Nucleic Acids ; 32: 415-431, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37159604

RESUMO

Pulmonary fibrosis (PF) is an interstitial lung disease with complex pathological mechanism, and there is currently a lack of therapeutics that can heal it completely. Using gene therapy with drugs provides promising therapeutic strategies for synergistically reversing PF. However, improving the intracellular accumulation and transfection efficiency of therapeutic nucleic acids is still a critical issue that urgently needs to be addressed. Herein, we developed lipid nanoparticles (PEDPs) with high transfection efficiency coloaded with pDNA of nuclear factor erythroid 2-related factor 2 (pNrf2) and pirfenidone (PFD) for PF therapy. PEDPs can penetrate biological barriers, accumulate at the target, and exert therapeutic effects, eventually alleviating the oxidative stress imbalance in type II alveolar epithelial cells (AECs II) and inhibiting myofibroblast overactivation through the synergistic effects of Nrf2 combined with PFD, thus reversing PF. In addition, we systematically engineered various liposomes (LNPs), demonstrated that reducing the polyethylene glycol (PEG) proportion could significantly improve the uptake and transfection efficiency of the LNPs, and proposed a possible mechanism for this influence. This study clearly reveals that controlling the composition ratio of PEG in PEDPs can efficiently deliver therapeutics into AECs II, improve pNrf2 transfection, and synergize with PFD in a prospective strategy to reverse PF.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA