Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell Rep ; 43(7): 114377, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38889005

RESUMO

Bone tissue represents the most frequent site of cancer metastasis. We developed a hemichannel-activating antibody, Cx43-M2. Cx43-M2, directly targeting osteocytes in situ, activates osteocytic hemichannels and elevates extracellular ATP, thereby inhibiting the growth and migration of cultured breast and osteosarcoma cancer cells. Cx43-M2 significantly decreases breast cancer metastasis, osteosarcoma growth, and osteolytic activity, while improving survival rates in mice. The antibody's inhibition of breast cancer and osteosarcoma is dose dependent in both mouse and human cancer metastatic models. Furthermore, Cx43-M2 enhances anti-tumor immunity by increasing the population and activation of tumor-infiltrating immune-promoting effector T lymphocytes, while reducing immune-suppressive regulatory T cells. Our results suggest that the Cx43-M2 antibody, by activating Cx43 hemichannels and facilitating ATP release and purinergic signaling, transforms the cancer microenvironment from a supportive to a suppressive state. Collectively, our study underscores the potential of Cx43-M2 as a therapeutic for treating breast cancer bone metastasis and osteosarcoma.


Assuntos
Trifosfato de Adenosina , Neoplasias Ósseas , Neoplasias da Mama , Conexina 43 , Osteócitos , Osteossarcoma , Osteossarcoma/patologia , Osteossarcoma/metabolismo , Animais , Osteócitos/metabolismo , Trifosfato de Adenosina/metabolismo , Humanos , Feminino , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Conexina 43/metabolismo , Camundongos , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Neoplasias Ósseas/secundário , Linhagem Celular Tumoral , Microambiente Tumoral , Anticorpos/farmacologia
2.
Cell Rep ; 43(7): 114363, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38935505

RESUMO

The maternal skeleton experiences significant bone loss during lactation, followed by rapid restoration post weaning. Parathyroid-related protein (PTHrP)-induced acidification of the perilacunar matrix by osteocytes is crucial in this process, yet its mechanism remains unclear. Here, we identify Cx43 hemichannels (HCs) as key mediators of osteocyte acidification and perilacunar-canalicular remodeling (PLR). Utilizing transgenic mouse models expressing dominant-negative Cx43 mutants, we show that mice with impaired Cx43 HCs exhibit attenuated lactation-induced responses compared to wild-type and only gap junction-impaired groups, including lacunar enlargement, upregulation of PLR genes, and bone loss with compromised mechanical properties. Furthermore, inhibition of HCs by a Cx43 antibody blunts PTHrP-induced calcium influx and protein kinase A activation, followed by impaired osteocyte acidification. Additionally, impeded HCs suppress bone recovery during the post-lactation period. Our findings highlight the pivotal role of Cx43 HCs in orchestrating dynamic bone changes during lactation and recovery by regulating acidification and remodeling enzyme expression.


Assuntos
Remodelação Óssea , Conexina 43 , Lactação , Osteócitos , Animais , Osteócitos/metabolismo , Feminino , Conexina 43/metabolismo , Conexina 43/genética , Camundongos , Camundongos Transgênicos , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Concentração de Íons de Hidrogênio , Cálcio/metabolismo , Camundongos Endogâmicos C57BL
3.
Redox Biol ; 73: 103216, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38820983

RESUMO

Long-lived lens fiber cells require a robust cellular protective function against oxidative insults to maintain their hemostasis and viability; however, the underlying mechanism is largely obscure. In this study, we unveiled a new mechanism that protects lens fiber cells against oxidative stress-induced cell death. We found that mechano-activated connexin (Cx) hemichannels (HCs) mediate the transport of glutathione (GSH) into chick embryonic fibroblasts (CEF) and primary lens fiber cells, resulting in a decrease in the accumulation of intracellular reactive oxygen species induced by both H2O2 and ultraviolet B, providing protection to lens fiber cells against cell apoptosis and necrosis. Furthermore, HCs formed by both homomeric Cx50 or Cx46 and heteromeric Cx50/Cx46 were mechanosensitive and could transport GSH into CEF cells. Notably, mechano-activated Cx50 HCs exhibited a greater capacity to transport GSH than Cx46 HCs. Consistently, the deficiency of Cx50 in single lens fiber cells led to a higher level of oxidative stress. Additionally, outer cortical short lens fiber cells expressing full length Cxs demonstrated greater resistance to oxidative injury compared to central core long lens fibers. Taken together, our results suggest that the activation of Cx HCs by interstitial fluid flow in cultured epithelial cells and isolated fiber cells shows that HCs can serve as a pathway for moving GSH across the cell membrane to offer protection against oxidative stress.


Assuntos
Conexinas , Glutationa , Cristalino , Estresse Oxidativo , Conexinas/metabolismo , Conexinas/genética , Glutationa/metabolismo , Animais , Cristalino/metabolismo , Cristalino/citologia , Espécies Reativas de Oxigênio/metabolismo , Embrião de Galinha , Transporte Biológico , Apoptose , Fibroblastos/metabolismo , Peróxido de Hidrogênio/metabolismo , Células Cultivadas
4.
iScience ; 27(4): 109469, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38577101

RESUMO

The extracellular superoxide dismutases (ecSODs) secreted by Microplitis bicoloratus reduce the reactive oxygen species (ROS) stimulated by the Microplitis bicoloratus bracovirus. Here, we demonstrate that the bacterial transferase hexapeptide (hexapep) motif and bacterial-immunoglobulin-like (BIg-like) domain of ecSODs bind to the cell membrane and transiently open hemichannels, facilitating ROS reductions. RNAi-mediated ecSOD silencing in vivo elevated ROS in host hemocytes, impairing parasitoid larva development. In vitro, the ecSOD-monopolymer needed to be membrane bound to open hemichannels. Furthermore, the hexapep motif in the beta-sandwich of ecSOD49 and ecSOD58, and BIg-like domain in the signal peptides of ecSOD67 were required for cell membrane binding. Hexapep motif and BIg-like domain deletions induced ecSODs loss of adhesion and ROS reduction failure. The hexapep motif and BIg-like domain mediated ecSOD binding via upregulating innexins and stabilizing the opened hemichannels. Our findings reveal a mechanism through which ecSOD reduces ROS, which may aid in developing anti-redox therapy.

5.
Methods Mol Biol ; 2801: 111-124, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578417

RESUMO

Connexin hemichannels (Cx HCs) are hexameric structures at the cell plasma membrane, whose function as membrane transport proteins allows for the passive flow of small hydrophilic molecules and ions (≤1 kDa) between the cytosol and the extracellular environment. Activation of Cx HCs is highly dependent on pathological conditions. HC activity provokes changes in the microenvironment, inducing the dissemination of signaling molecules in both an autocrine and paracrine manner. Given the elicitation of a variety of signaling pathways, and assortment of Cx species and dispersion throughout the body, Cx HCs have been implicated in a range of processes such as cell proliferation, differentiation, cell death, and tissue modeling and remodeling. While studying the expression and localization of Cx HCs can be done using traditional laboratory techniques, such as immunoblot analysis, measuring the functionality/activity of the HCs requires a more explicit methodology and is essential for determining Cx-mediated physiological changes. The study of Cx HC function/activity has focused mainly on in vitro measurements through electrophysiological characterization or, more commonly, using HC-permeable dye uptake studies. Here, we describe the use of dye uptake to measure Cx HC activity in vivo using mechanically stimulated osteocytic Cx43 HCs with Evans blue dye as our model.


Assuntos
Conexinas , Transdução de Sinais , Conexinas/metabolismo , Membrana Celular/metabolismo , Fenômenos Eletrofisiológicos
6.
Biomolecules ; 13(12)2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-38136665

RESUMO

Fibrosis initially appears as a normal response to damage, where activated fibroblasts produce large amounts of the extracellular matrix (ECM) during the wound healing process to assist in the repair of injured tissue. However, the excessive accumulation of the ECM, unresolved by remodeling mechanisms, leads to organ dysfunction. Connexins, a family of transmembrane channel proteins, are widely recognized for their major roles in fibrosis, the epithelial-mesenchymal transition (EMT), and wound healing. Efforts have been made in recent years to identify novel mediators and targets for this regulation. Connexins form gap junctions and hemichannels, mediating communications between neighboring cells and inside and outside of cells, respectively. Recent evidence suggests that connexins, beyond forming channels, possess channel-independent functions in fibrosis, the EMT, and wound healing. One crucial channel-independent function is their role as the primary functional component for cell adhesion. Other channel-independent functions of connexins involve their roles in mitochondria and exosomes. This review summarizes the latest advances in the channel-dependent and independent roles of connexins in fibrosis, the EMT, and wound healing, with a particular focus on eye diseases, emphasizing their potential as novel, promising therapeutic targets.


Assuntos
Conexinas , Junções Comunicantes , Humanos , Conexinas/metabolismo , Junções Comunicantes/metabolismo , Transição Epitelial-Mesenquimal , Fibrose , Proteínas de Membrana/metabolismo , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA