Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
1.
Precis Chem ; 2(8): 380-397, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39474150

RESUMO

Emerging monolayer molecular crystals (MMCs) have become prosperous in recent decades due to their numerous advantages. First, downsizing the active layer thickness to monolayer in organic field-effect transistors (OFETs) is beneficial to elucidate the intrinsic charge-transport behavior. Next, the ultrathin conducting channel can reduce bulk injection resistance to extract mobility accurately. Then, direct exposure of the conducting channel can enhance the sensing performance. Finally, MMCs combine the merits of ultrathin thickness and high crystallization, which will improve the optoelectronic performance and realize complex device architectures for future advanced optoelectronic applications. In this Review, recent research progress in precise preparations and advanced applications of solution-processed MMCs are summarized. We present the current challenges related to MMCs with specific structures and desired performances, and an outlook regarding their application in next-generation integrated organic optoelectronics is provided.

2.
Nano Lett ; 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39269918

RESUMO

Solution-processable electrodes are promising for next-generation electronics due to their simplicity, cost-effectiveness, and potential for large-area fabrication. However, current solution-processable electrodes based on conductive polymers, carbon-based compounds, and metal nanowires face challenges related to stability, patterning, and production scalability. Here we introduce a novel approach using 3D tin halide perovskites (THPs) combined with a photolithography-free solution patterning technique to fabricate solution-processed electrodes. We demonstrate the preparation of highly conductive CsSnI3 films (234.9 S cm-1) and the fabrication of patterned 35 × 35 perovskite electrode arrays on a 4-in. silicon wafer. These electrodes, used as source/drain electrodes in organic transistors, resulted in devices showing high uniformity and stability. This electrode fabrication strategy is also applicable to other 3D THPs like FASnI3 and MASnI3, showcasing versatility for diverse applications. The results highlight the feasibility and advantages of using 3D THPs as solution-processable electrodes, providing a new material system for the advancement of solution-processed electronics.

3.
RSC Adv ; 14(34): 24845-24855, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39119283

RESUMO

The sudden change in the environment from a dark, low-oxygen, low-temperature, high-humidity underground stable environment to an environment with much-improved temperature and humidity, a high oxygen content, enhanced light exposure, and increased harmful organisms has greatly affected the stability of the ivory unearthed from the Sanxingdui site. Therefore, the implementation of an effective emergency protection strategy for ivory excavated at Sanxingdui is imperative and urgently needed. However, the current gauze technique used at many archaeological sites suffers from short timescales, poor transparency of the material, and susceptibility to reverse osmosis of the ivory. Therefore, in this study, a transparent poly(acrylamide-acrylic acid) (P(AM-AA)) hydrogel-poly(dimethylsiloxane) (PDMS) elastomer bilayer was designed for the effective protection of excavated ivory. In this system, a hydrophobic PDMS elastomer was constructed on the surface of the hydrogel by the introduction of a silane coupling agent to inhibit the loss of water from the hydrogel to the external environment, thus prolonging the preservation of ivory by the protective material. The covalent interface between the hydrogel and the elastomer allowed the double-layer composite to exhibit excellent interfacial bonding. In addition, the double-layer material demonstrated a high mechanical strength of 1.2 MPa and a water binding ratio of ∼31%, which allowed it to form strong hydrogen bonds with the silanol structure. When the hydrogel was placed in an air environment (temperature: 25 °C; relative humidity: 65% RH), the water-retention rate of the double-layer material was still more than 60% after 5 days, thus the double-layer material showed excellent performance. Meanwhile, the double-layer material had a transmittance of more than 90% and exhibited a high degree of transparency, which makes it possible to promptly observe the changes occurring on the surface of the ivory. The combination of the aforementioned properties makes the bilayer a promising material for moisturizing and protecting excavated ivory in situ. Based on these properties, we used the prepared P(AM-AA)/PDMS double-layer material directly for wrapping the K8 ivory with the highest water content at Sanxingdui. The weight retention rate of the ivory was around 70% after 50 days of placement (temperature: 25 °C; relative humidity: 60% RH), the macroscopic morphology did not change significantly and the mechanical properties of the wrapped ivory were basically unchanged, which indicated that the double-layer material has an excellent on-site protection effect on the ivory excavated from Sanxingdui. This work provides new ideas and methods for the temporary conservation of wet heritage.

4.
Chem Commun (Camb) ; 60(66): 8720-8723, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39069836

RESUMO

A novel vapor-solid phase chemical conversion process is reported here to synthesise high-quality films of the conductive coordination polymer (c-CP) Ag5BHT (BHT = benzenehexanothiolate), which has the potential to be applied for the synthesis and processing of c-CP electronic devices. This approach involves reacting a silver oxide precursor and an H6BHT linker in an isopropanol solvent vapor atmosphere to obtain Ag5BHT thin films with controllable thickness (100-300 nm). The as-synthesized Ag5BHT thin films exhibit conductivities as high as 10 S cm-1. Additionally, under field-effect modulation, these nanofilms demonstrate remarkably high charge mobility (38 cm2 v-1 s-1).

5.
Nano Lett ; 24(22): 6673-6682, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38779991

RESUMO

Reliably discerning real human faces from fake ones, known as antispoofing, is crucial for facial recognition systems. While neuromorphic systems offer integrated sensing-memory-processing functions, they still struggle with efficient antispoofing techniques. Here we introduce a neuromorphic facial recognition system incorporating multidimensional deep ultraviolet (DUV) optoelectronic synapses to address these challenges. To overcome the complexity and high cost of producing DUV synapses using traditional wide-bandgap semiconductors, we developed a low-temperature (≤70 °C) solution process for fabricating DUV synapses based on PEA2PbBr4/C8-BTBT heterojunction field-effect transistors. This method enables the large-scale (4-in.), uniform, and transparent production of DUV synapses. These devices respond to both DUV and visible light, showing multidimensional features. Leveraging the unique ability of the multidimensional DUV synapse (MDUVS) to discriminate real human skin from artificial materials, we have achieved robust neuromorphic facial recognition with antispoofing capability, successfully identifying genuine human faces with an accuracy exceeding 92%.

6.
Adv Mater ; 36(32): e2405030, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38808576

RESUMO

Neuromorphic visual systems can emulate biological retinal systems to perceive visual information under different levels of illumination, making them have considerable potential for future intelligent vehicles and vision automation. However, the complex circuits and high operating voltages of conventional artificial vision systems present great challenges for device integration and power consumption. Here, bioinspired synaptic transistors based on organic single crystal phototransistors are reported, which exhibit excitation and inhibition synaptic plasticity with time-varying. By manipulating the charge dynamics of the trapping centers of organic crystal-electret vertical stacks, organic transistors can operate below 1 V with record high on/off ratios close to 108 and sharp switching with a subthreshold swing of 59.8 mV dec-1. Moreover, the approach offers visual adaptation with highly localized modulation and over 98.2% recognition accuracy under different illumination levels. These bioinspired visual adaptation transistors offer great potential for simplifying the circuitry of artificial vision systems and will contribute to the development of machine vision applications.

7.
Sci Rep ; 14(1): 9178, 2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649759

RESUMO

Studies seem to show that high-intensity interval training (HIIT) is a more time-efficient protocol for weight loss, compared with moderate-intensity continuous training (MICT). Our aim was to compare the acute effects of energy expenditure (EE) matched HIIT vs. MICT on excess post-exercise oxygen consumption (EPOC) and substrate metabolism in male college students with obesity. Twenty-one untrained male college students (age, 22 ± 3 years; body fat, 28.4 ± 4.5%) completed two acute interventions (~ 300 kcal) on a treadmill in a randomized order: (1) HIIT: 3 min bouts at 90% of maximal oxygen uptake (VO2max) with 2 min of recovery at 25% of VO2max; (2) MICT: 60% of VO2max continuous training. EPOC and substrate metabolism were measured by indirect calorimetry during and 30 min after exercise. Results showed that EPOC was higher after HIIT (66.20 ± 14.36 kcal) compared to MICT (53.91 ± 12.63 kcal, p = 0.045), especially in the first 10 min after exercise (HIIT: 45.91 ± 9.64 kcal and MICT: 34.39 ± 7.22 kcal, p = 0.041). Lipid oxidation rate was higher after HIIT (1.01 ± 0.43 mg/kg/min) compared to MICT (0.76 ± 0.46 mg/kg/min, p = 0.003). Moreover, the percentage of energy from lipid was higher after HIIT (37.94 ± 14.21%) compared to MICT (30.09 ± 13.54%, p = 0.020). We conclude that HIIT results in greater total EE and EPOC, as well as higher percentage of energy from lipid during EPOC than EE matched MICT in male college students with obesity.


Assuntos
Metabolismo Energético , Treinamento Intervalado de Alta Intensidade , Metabolismo dos Lipídeos , Obesidade , Oxirredução , Consumo de Oxigênio , Corrida , Humanos , Masculino , Obesidade/metabolismo , Obesidade/fisiopatologia , Adulto Jovem , Corrida/fisiologia , Adulto , Treinamento Intervalado de Alta Intensidade/métodos , Exercício Físico/fisiologia
8.
Angew Chem Int Ed Engl ; 63(25): e202403015, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38623043

RESUMO

Ternary organic solar cells (T-OSCs) represent an efficient strategy for enhancing the performance of OSCs. Presently, the majority of high-performance T-OSCs incorporates well-established Y-acceptors or donor polymers as the third component. In this study, a novel class of conjugated small molecules has been introduced as the third component, demonstrating exceptional photovoltaic performance in T-OSCs. This innovative molecule comprises ethylenedioxythiophene (EDOT) bridge and 3-ethylrhodanine as the end group, with the EDOT unit facilitating the creation of multiple conformation locks. Consequently, the EDOT-based molecule exhibits two-dimensional charge transport, distinguishing it from the thiophene-bridged small molecule, which displays fewer conformation locks and provides one-dimensional charge transport. Furthermore, the robust electron-donating nature of EDOT imparts the small molecule with cascade energy levels relative to the electron donor and acceptor. As a result, OSCs incorporating the EDOT-based small molecule as the third component demonstrate enhanced mobilities, yielding a remarkable efficiency of 19.3 %, surpassing the efficiency of 18.7 % observed for OSCs incorporating thiophene-based small molecule as the third component. The investigations in this study underscore the excellence of EDOT as a building block for constructing conjugated materials with multiple conformation locks and high charge carrier mobilities, thereby contributing to elevated photovoltaic performance in OSCs.

9.
Cardiovasc Res ; 120(9): 1081-1096, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-38639325

RESUMO

AIMS: Aortic aneurysm and dissection (AAD) is caused by the progressive loss of aortic smooth muscle cells (SMCs) and is associated with a high mortality rate. Identifying the mechanisms underlying SMC apoptosis is crucial for preventing AAD. Neutrophil cytoplasmic factor 1 (Ncf1) is essential in reactive oxygen species production and SMC apoptosis; Ncf1 absence leads to autoimmune diseases and chronic inflammation. Here, the role of Ncf1 in angiotensin II (Ang II)-induced AAD was investigated. METHODS AND RESULTS: Ncf1 expression increased in injured SMCs. Bioinformatic analysis identified Ncf1 as a mediator of AAD-associated SMC damage. Ncf1 expression is positively correlated with DNA replication and repair in SMCs of AAD aortas. AAD incidence increased in Ang II-challenged Sm22CreNcf1fl mice. Transcriptomics showed that Ncf1 knockout activated the stimulator of interferon genes (STING) and cell death pathways. The effects of Ncf1 on SMC death and the STING pathway in vitro were examined. Ncf1 regulated the hydrogen peroxide-mediated activation of the STING pathway and inhibited SMC apoptosis. Mechanistically, Ncf1 knockout promoted the ubiquitination of nuclear factor erythroid 2-related factor 2 (NRF2), thereby inhibiting the negative regulatory effect of NRF2 on the stability of STING mRNA and ultimately promoting STING expression. Additionally, the pharmacological inhibition of STING activation prevented AAD progression. CONCLUSION: Ncf1 deficiency in SMCs exacerbated Ang II-induced AAD by promoting NRF2 ubiquitination and degradation and activating the STING pathway. These data suggest that Ncf1 may be a potential therapeutic target for AAD treatment.


Assuntos
Angiotensina II , Aneurisma Aórtico , Dissecção Aórtica , Apoptose , Modelos Animais de Doenças , Proteínas de Membrana , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular , Miócitos de Músculo Liso , Fator 2 Relacionado a NF-E2 , Transdução de Sinais , Animais , Dissecção Aórtica/metabolismo , Dissecção Aórtica/patologia , Dissecção Aórtica/genética , Dissecção Aórtica/induzido quimicamente , Dissecção Aórtica/prevenção & controle , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Músculo Liso Vascular/patologia , Músculo Liso Vascular/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Aneurisma Aórtico/metabolismo , Aneurisma Aórtico/patologia , Aneurisma Aórtico/genética , Aneurisma Aórtico/induzido quimicamente , Aneurisma Aórtico/prevenção & controle , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/deficiência , Células Cultivadas , Masculino , Ubiquitinação , NADPH Oxidases/metabolismo , NADPH Oxidases/genética , Humanos , Camundongos
10.
Nat Commun ; 15(1): 2397, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493210

RESUMO

Nanoclusters with atomically precise structures and discrete energy levels are considered as nanoscale semiconductors for artificial intelligence. However, nanocluster electronic engineering and optoelectronic behavior have remained obscure and unexplored. Hence, we create nanocluster photoreceptors inspired by mantis shrimp visual systems to satisfy the needs of compact but multi-task vision hardware and explore the photo-induced electronic transport. Wafer-scale arrayed photoreceptors are constructed by a nanocluster-conjugated molecule heterostructure. Nanoclusters perform as an in-sensor charge reservoir to tune the conductance levels of artificial photoreceptors by a light valve mechanism. A ligand-assisted charge transfer process takes place at nanocluster interface and it features an integration of spectral-dependent visual adaptation and circular polarization recognition. This approach is further employed for developing concisely structured, multi-task, and compact artificial visual systems and provides valuable guidelines for nanocluster neuromorphic devices.

11.
Adv Sci (Weinh) ; 11(22): e2400112, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38500296

RESUMO

Contact resistance has become one of the main bottlenecks that hinder further improvement of mobility and integration density of organic field-effect transistors (OFETs). Much progress has been made in reducing contact resistance by modifying the electrode/semiconductor interface and decreasing the crystal thickness, however, the development of new organic semiconductor materials with low contact resistance still faces many challenges. Here, 2,6-bis-phenylethynyl-anthracene (BPEA) is found, which is a material that combines high mobility with low contact resistance. Single-crystal BEPA OFETs with a thickness of ≈20 nm demonstrated high mobility of 4.52 cm2 V-1 s-1, contact resistance as low as 335 Ω cm, and band-like charge transport behavior. The calculated compatibility of the EHOMO of BPEA with the work function of the Au electrode, and the decreased |EHOMO-ΦAu| with the increase of external electric field intensity from source to gate both contributed to the efficient charge injection and small contact resistance. More intriguingly, p-type BPEA as a buffer layer can effectively reduce the contact resistance, improve the mobility, and meanwhile inhibit the double-slope electrical behavior of p-channel 2,6-diphenyl anthracene (DPA) single-crystal OFETs.

12.
Mol Hum Reprod ; 30(3)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38310328

RESUMO

Preterm birth (PTB) is a major problem affecting perinatal health, directly increasing the mortality risk of mother and infant that often results from the breakdown of the maternal-fetal immune balance. Increasing evidence shows the essential role of mucosal-associated invariant T (MAIT) cells to balance antibacterial function and immune tolerance function during pregnancy. However, the phenotype and function of placental MAIT cells and their specific mechanisms in PTB remain unclear. Here, we report that MAIT cells in placentas from PTBs show increased activation levels and decreased IFN-γ secretion capacity compared with those from normal pregnancies. Moreover, our data indicate gravidity is a factor affecting placental MAIT cells during pregnancies. Multi-omics analysis indicated aberrant immune activation and abnormal increase of lipids and lipid-like metabolites in the PTB placental microenvironment. Moreover, the proportion and activation of MAIT cells were positively correlated with the abnormal increase of lipids and lipid-like metabolites. Together, our work revealed that abnormal activation and impaired function of MAIT cells may be related to abnormal elevation of lipids and lipid-like metabolites in PTB.


Assuntos
Células T Invariantes Associadas à Mucosa , Nascimento Prematuro , Recém-Nascido , Gravidez , Lactente , Humanos , Feminino , Placenta , Feto , Lipídeos
13.
Nat Commun ; 15(1): 865, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38286850

RESUMO

Spintronic device is the fundamental platform for spin-related academic and practical studies. However, conventional techniques with energetic deposition or boorish transfer of ferromagnetic metal inevitably introduce uncontrollable damage and undesired contamination in various spin-transport-channel materials, leading to partially attenuated and widely distributed spintronic device performances. These issues will eventually confuse the conclusions of academic studies and limit the practical applications of spintronics. Here we propose a polymer-assistant strain-restricted transfer technique that allows perfectly transferring the pre-patterned ferromagnetic electrodes onto channel materials without any damage and change on the properties of magnetism, interface, and channel. This technique is found productive for pursuing superior-quality spintronic devices with high controllability and reproducibility. It can also apply to various-kind (organic, inorganic, organic-inorganic hybrid, or carbon-based) and diverse-morphology (smooth, rough, even discontinuous) channel materials. This technique can be very useful for reliable device construction and will facilitate the technological transition of spintronic study.

14.
Hepatol Int ; 18(2): 582-594, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37823937

RESUMO

BACKGROUND AND AIMS: T cells are master effectors of anti-tumor immunity in cancer. Recent studies suggest that altered lipid metabolism imposed by the tumor microenvironment constrains anti-tumor immunity. However, the tumor-associated lipid species changes that dampen T cell ability to control tumor progression are not fully understood. Here, we plan to clarify the influences of distinctly altered lipid components in hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) on T-cell function, aiming to seek lipid metabolic targets for improving T cell anti-tumor effects. METHODS: Tumor tissues and non-tumor liver from HCC patients were collected for RNA-sequencing, lipid profiling and T cell characterizing, followed by correlation analysis. Additionally, the effects of significantly changed lipid components on anti-tumor potential of T cells were tested by in vitro cell experiments and/or in vivo tumor inoculated model. RESULTS: Altered lipid metabolism coincides with impaired T cell response in HBV-related HCC. Characteristic lipid composition, significantly marked by accumulation of long-chain acylcarnitines (LCACs) and reduction of lysophosphatidylcholines (LPCs), are found in the tumor tissue. Notably, LCACs accumulated are associated with T cells exhaustion and deficient functionality, while LPCs correlate to anti-tumor effects of T cells. In particular, supplement of LPCs, including LPC (20:0) and LPC (22:0), directly promote the activation and IFN-γ secretion of T cells in vitro, and suppress tumor growth in vivo. CONCLUSIONS: Our study highlights the distinctly changed lipid components closely related to T cell dysregulation in HCC, and suggests a promising strategy by decreasing LCACs and increasing LPCs for anti-tumor immunotherapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Linfócitos T , Imunoterapia , Lipídeos , Microambiente Tumoral
15.
Opt Express ; 31(16): 25545-25556, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37710438

RESUMO

A high-performance towing cable hydrophone array based on an improved ultra-sensitive fiber-optic distributed acoustic sensing system (uDAS) with picostrain sensitivity is demonstrated and tested in sea trial, for the first time. A new composite transducer is designed and optimized to enhance the acoustic pressure sensitivity significantly. A sea trial is carried out to test the performances of such a hydrophone array, including flow noise, underwater acoustic signal capture capacity, beamforming processing and localization of artificial source targets. The array exhibits high sensitivity and low noise floor. An average sensitivity of -129.23 dB re rad/µPa at frequencies from 10 Hz to 1500 Hz has been achieved. The localization at distances of 5 km and 10 km is realized, respectively, validating the excellent remote detection and positioning capability of the hydrophone system. The proposed towing cable system, with high sensitivity, simple structure and remote target localization ability, may pave a way for development of the next generation of high-performance light-weighting hydrophone arrays for towing applications.

16.
Zhongguo Dang Dai Er Ke Za Zhi ; 25(7): 697-704, 2023 Jul 15.
Artigo em Chinês | MEDLINE | ID: mdl-37529951

RESUMO

OBJECTIVES: To investigate the risk factors for neonatal asphyxia in Hubei Enshi Tujia and Miao Autonomous Prefecture and establish a nomogram model for predicting the risk of neonatal asphyxia. METHODS: A retrospective study was conducted with 613 cases of neonatal asphyxia treated in 20 cooperative hospitals in Enshi Tujia and Miao Autonomous Prefecture from January to December 2019 as the asphyxia group, and 988 randomly selected non-asphyxia neonates born and admitted to the neonatology department of these hospitals during the same period as the control group. Univariate and multivariate analyses were used to identify risk factors for neonatal asphyxia. R software (4.2.2) was used to establish a nomogram model. Receiver operator characteristic curve, calibration curve, and decision curve analysis were used to assess the discrimination, calibration, and clinical usefulness of the model for predicting the risk of neonatal asphyxia, respectively. RESULTS: Multivariate logistic regression analysis showed that minority (Tujia), male sex, premature birth, congenital malformations, abnormal fetal position, intrauterine distress, maternal occupation as a farmer, education level below high school, fewer than 9 prenatal check-ups, threatened abortion, abnormal umbilical cord, abnormal amniotic fluid, placenta previa, abruptio placentae, emergency caesarean section, and assisted delivery were independent risk factors for neonatal asphyxia (P<0.05). The area under the curve of the model for predicting the risk of neonatal asphyxia based on these risk factors was 0.748 (95%CI: 0.723-0.772). The calibration curve indicated high accuracy of the model for predicting the risk of neonatal asphyxia. The decision curve analysis showed that the model could provide a higher net benefit for neonates at risk of asphyxia. CONCLUSIONS: The risk factors for neonatal asphyxia in Hubei Enshi Tujia and Miao Autonomous Prefecture are multifactorial, and the nomogram model based on these factors has good value in predicting the risk of neonatal asphyxia, which can help clinicians identify neonates at high risk of asphyxia early, and reduce the incidence of neonatal asphyxia.


Assuntos
Asfixia Neonatal , Nomogramas , Recém-Nascido , Humanos , Masculino , Gravidez , Feminino , Estudos Retrospectivos , Cesárea , Fatores de Risco , Asfixia Neonatal/epidemiologia , Asfixia Neonatal/etiologia
17.
Adv Mater ; 35(44): e2305648, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37603829

RESUMO

Solution-processed metal halide perovskites hold immense potential for the advancement of next-generation field-effect transistors (FETs). However, the instability of perovskite-based transistors has impeded their progress and practical applications. Here, ambient-stable high-performance FETs based on 2D Dion-Jacobson phase tin halide perovskite BDASnI4 , which has high film quality and excellent electrical properties, are reported. The perovskite channels are established by engineering the film crystallization process via the employment of ammonium salt interlayers and the incorporation of NH4 SCN additives within the precursor solution. The refined FETs demonstrate field-effect hole mobilities up to 1.61 cm2 V-1 s-1 and an on/off ratio surpassing 106 . Moreover, the devices show impressive operational and environmental stability and retain their functional performance even after being exposed to ambient conditions with a temperature of 45 °C and humidity of 45% for over 150 h.

18.
Sci Bull (Beijing) ; 68(14): 1474-1477, 2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37414607
19.
Angew Chem Int Ed Engl ; 62(39): e202304632, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37338996

RESUMO

Non-benzenoid polycyclic aromatic hydrocarbons (PAHs) have received a lot of attention because of their unique optical, electronic, and magnetic properties, but their synthesis remains challenging. Herein, we report a non-benzenoid isomer of peri-tetracene, diazulenorubicene (DAR), with two sets of 5/7/5 membered rings synthesized by a (3+2) annulation reaction. Compared with the precursor containing only 5/7 membered rings, the newly formed five membered rings switch the aromaticity of the original heptagon/pentagon from antiaromatic/aromatic to non-aromatic/antiaromatic respectively, modify the intermolecular packing modes, and lower the LUMO levels. Notably, compound 2 b (DAR-TMS) shows p-type semiconducting properties with a hole mobility up to 1.27 cm2  V-1 s-1 . Moreover, further extension to larger non-benzenoid PAHs with 19 rings was achieved through on-surface chemistry from the DAR derivative with one alkynyl group.

20.
iScience ; 26(6): 106808, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37250795

RESUMO

A major theme of host against invading pathogens lies in multiple regulatory nodes that ensure sufficient signals for protection while avoiding excessive signals toward over-inflammation. The TLR4/MD-2/CD14 complex receptor-mediated response to bacterial lipopolysaccharide (LPS) represents a paradigm for understanding the proper control of anti-pathogen innate immunity. In this study, we studied the mechanism by which the glycosylphosphatidylinositol (GPI)-linked LY6E protein constrains LPS response via downregulating CD14. We first showed that LY6E downregulated CD14 via ubiquitin-dependent proteasomal degradation. The subsequent profiling of LY6E protein interactome led to the revelation that the degradation of CD14 by LY6E requires PHB1, which interacts with CD14 in a LY6E-dependent manner. Finally, we identified the PHB1-interacting TRIM21 as the major ubiquitin E3 ligase for the LY6E-mediated ubiquitination of CD14. Together, our study elucidated the molecular basis of LY6E-mediated governance of LPS response, alongside providing new insights to regulatory mechanisms controlling the homeostasis of membrane proteins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA