Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Nat Commun ; 15(1): 4697, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824128

RESUMO

Differentiation of male gametocytes into flagellated fertile male gametes relies on the assembly of axoneme, a major component of male development for mosquito transmission of the malaria parasite. RNA-binding protein (RBP)-mediated post-transcriptional regulation of mRNA plays important roles in eukaryotic sexual development, including the development of female Plasmodium. However, the role of RBP in defining the Plasmodium male transcriptome and its function in male gametogenesis remains incompletely understood. Here, we performed genome-wide screening for gender-specific RBPs and identified an undescribed male-specific RBP gene Rbpm1 in the Plasmodium. RBPm1 is localized in the nucleus of male gametocytes. RBPm1-deficient parasites fail to assemble the axoneme for male gametogenesis and thus mosquito transmission. RBPm1 interacts with the spliceosome E complex and regulates the splicing initiation of certain introns in a group of 26 axonemal genes. RBPm1 deficiency results in intron retention and protein loss of these axonemal genes. Intron deletion restores axonemal protein expression and partially rectifies axonemal defects in RBPm1-null gametocytes. Further splicing assays in both reporter and endogenous genes exhibit stringent recognition of the axonemal introns by RBPm1. The splicing activator RBPm1 and its target introns constitute an axonemal intron splicing program in the post-transcriptional regulation essential for Plasmodium male development.


Assuntos
Axonema , Íntrons , Proteínas de Protozoários , Splicing de RNA , Proteínas de Ligação a RNA , Íntrons/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Animais , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Masculino , Axonema/metabolismo , Feminino , Gametogênese/genética , Spliceossomos/metabolismo , Spliceossomos/genética , Plasmodium berghei/genética , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium berghei/metabolismo , Malária/parasitologia , Plasmodium/genética , Plasmodium/metabolismo
2.
Commun Biol ; 7(1): 742, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890421

RESUMO

Aminoacyl-tRNA synthetases (aaRSs) play a central role in the translation of genetic code, serving as attractive drug targets. Within this family, the lysyl-tRNA synthetase (LysRS) constitutes a promising antimalarial target. ASP3026, an anaplastic lymphoma kinase (ALK) inhibitor was recently identified as a novel Plasmodium falciparum LysRS (PfLysRS) inhibitor. Here, based on cocrystal structures and biochemical experiments, we developed a series of ASP3026 analogues to improve the selectivity and potency of LysRS inhibition. The leading compound 36 showed a dissociation constant of 15.9 nM with PfLysRS. The inhibitory efficacy on PfLysRS and parasites has been enhanced. Covalent attachment of L-lysine to compound 36 resulted in compound 36K3, which exhibited further increased inhibitory activity against PfLysRS but significantly decreased activity against ALK. However, its inhibitory activity against parasites did not improve, suggesting potential future optimization directions. This study presents a new example of derivatization of kinase inhibitors repurposed to inhibit aaRS.


Assuntos
Quinase do Linfoma Anaplásico , Antimaláricos , Lisina-tRNA Ligase , Plasmodium falciparum , Inibidores de Proteínas Quinases , Plasmodium falciparum/enzimologia , Plasmodium falciparum/efeitos dos fármacos , Lisina-tRNA Ligase/antagonistas & inibidores , Lisina-tRNA Ligase/metabolismo , Lisina-tRNA Ligase/química , Lisina-tRNA Ligase/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Quinase do Linfoma Anaplásico/antagonistas & inibidores , Quinase do Linfoma Anaplásico/metabolismo , Quinase do Linfoma Anaplásico/genética , Antimaláricos/farmacologia , Antimaláricos/química , Relação Estrutura-Atividade , Humanos , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/genética
3.
Microbiol Spectr ; 11(1): e0389122, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36602337

RESUMO

The three-dimensional (3D) genome structure of human malaria parasite Plasmodium falciparum is highly organized and plays important roles in regulating coordinated expression patterns of specific genes such as virulence genes which are involved in antigenic variation and immune escape. However, the molecular mechanisms that control 3D genome of the parasite remain elusive. Here, by analyzing genome organization of P. falciparum, we identify high-interacting regions (HIRs) with strong chromatin interactions at telomeres and virulence genes loci. Specifically, HIRs are highly enriched with repressive histone marks (H3K36me3 and H3K9me3) and form the transcriptional repressive center. Deletion of PfSET2, which controls H3K36me3 level, results in marked reduction of both intrachromosomal and interchromosomal interactions for HIRs. Importantly, such chromatin reorganization coordinates with dynamic changes in epigenetic feature in HIRs and transcriptional activation of var genes. Additionally, different cluster of var genes based on the pattern of chromatin interactions show distinct transcriptional activation potential after deletion of PfSET2. Our results uncover a fundamental mechanism that the epigenetic factor PfSET2 controls the 3D organization of heterochromatin to regulate the transcription activities of var genes family in P. falciparum. IMPORTANCE PfSET2 has been reported to play key role in silencing var genes in Plasmodium falciparum, while the underlying molecular mechanisms remain unclear. Here, we provide evidence that PfSET2 is essential to maintain 3D genome organization of heterochromatin region to keep var genes in transcription repressive state. These findings can contribute better understanding of the regulation of high-order chromatin structure in P. falciparum.


Assuntos
Malária Falciparum , Plasmodium falciparum , Humanos , Heterocromatina/genética , Heterocromatina/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Malária Falciparum/parasitologia , Ativação Transcricional , Regulação da Expressão Gênica
4.
PLoS Pathog ; 19(1): e1011085, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36706160

RESUMO

Neutralizing antibodies (nAbs) are important assets to fight COVID-19, but most existing nAbs lose the activities against Omicron subvariants. Here, we report a human monoclonal antibody (Ab08) isolated from a convalescent patient infected with the prototype strain (Wuhan-Hu-1). Ab08 binds to the receptor-binding domain (RBD) with pico-molar affinity (230 pM), effectively neutralizes SARS-CoV-2 and variants of concern (VOCs) including Alpha, Beta, Gamma, Mu, Omicron BA.1 and BA.2, and to a lesser extent for Delta and Omicron BA.4/BA.5 which bear the L452R mutation. Of medical importance, Ab08 shows therapeutic efficacy in SARS-CoV-2-infected hACE2 mice. X-ray crystallography of the Ab08-RBD complex reveals an antibody footprint largely in the ß-strand core and away from the ACE2-binding motif. Negative staining electron-microscopy suggests a neutralizing mechanism through which Ab08 destructs the Spike trimer. Together, our work identifies a nAb with therapeutic potential for COVID-19.


Assuntos
Anticorpos Monoclonais , COVID-19 , SARS-CoV-2 , Animais , Humanos , Camundongos , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Neutralizantes/uso terapêutico , Anticorpos Antivirais/uso terapêutico , Glicoproteína da Espícula de Coronavírus/genética
5.
Microbiol Spectr ; 10(3): e0278221, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35510853

RESUMO

By fusing catalytically dead Cas9 (dCas9) to active domains of histone deacetylase (Sir2a) or acetyltransferase (GCN5), this CRISPR interference/activation (CRISPRi/a) system allows gene regulation at the transcriptional level without causing permanent changes in the parasite genome. However, the constitutive expression of dCas9 poses a challenge for studying essential genes, which may lead to adaptive changes in the parasite, masking the true phenotypes. Here, we developed a leak-free inducible CRISPRi/a system by integrating the DiCre/loxP regulon to allow the expression of dCas9-GCN5/-Sir2a upon transient induction with rapamycin, which allows convenient transcriptional regulation of a gene of interest by introducing a guide RNA targeting its transcription start region. Using eight genes that are either silent or expressed from low to high levels during asexual erythrocytic development, we evaluated the robustness and versatility of this system in the asexual parasites. For most genes analyzed, this inducible CRISPRi/a system led to 1.5- to 3-fold up-or downregulation of the target genes at the mRNA level. Alteration in the expression of PfK13 and PfMYST resulted in altered sensitivities to artemisinin. For autophagy-related protein 18, an essential gene related to artemisinin resistance, a >2-fold up- or downregulation was obtained by inducible CRISPRi/a, leading to growth retardation. For the master regulator of gametocytogenesis, PfAP2-G, a >10-fold increase of the PfAP2-G transcripts was obtained by CRISPRa, resulting in >4-fold higher gametocytemia in the induced parasites. Additionally, inducible CRISPRi/a could also regulate gene expression in gametocytes. This inducible epigenetic regulation system offers a fast way of studying gene functions in Plasmodium falciparum. IMPORTANCE Understanding the fundamental biology of malaria parasites through functional genetic/genomic studies is critical for identifying novel targets for antimalarial development. Conditional knockout/knockdown systems are required to study essential genes in the haploid blood stages of the parasite. In this study, we developed an inducible CRISPRi/a system via the integration of DiCre/loxP. We evaluated the robustness and versatility of this system by activating or repressing eight selected genes and achieved up- and downregulation of the targeted genes located in both the euchromatin and heterochromatin regions. This system offers the malaria research community another tool for functional genetic studies.


Assuntos
Antimaláricos , Artemisininas , Sistemas CRISPR-Cas , Epigênese Genética , Regulação da Expressão Gênica , Plasmodium falciparum/genética
6.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35210361

RESUMO

5-methylcytosine (m5C) is an important epitranscriptomic modification involved in messenger RNA (mRNA) stability and translation efficiency in various biological processes. However, it remains unclear if m5C modification contributes to the dynamic regulation of the transcriptome during the developmental cycles of Plasmodium parasites. Here, we characterize the landscape of m5C mRNA modifications at single nucleotide resolution in the asexual replication stages and gametocyte sexual stages of rodent (Plasmodium yoelii) and human (Plasmodium falciparum) malaria parasites. While different representations of m5C-modified mRNAs are associated with the different stages, the abundance of the m5C marker is strikingly enhanced in the transcriptomes of gametocytes. Our results show that m5C modifications confer stability to the Plasmodium transcripts and that a Plasmodium ortholog of NSUN2 is a major mRNA m5C methyltransferase in malaria parasites. Upon knockout of P. yoelii nsun2 (pynsun2), marked reductions of m5C modification were observed in a panel of gametocytogenesis-associated transcripts. These reductions correlated with impaired gametocyte production in the knockout rodent malaria parasites. Restoration of the nsun2 gene in the knockout parasites rescued the gametocyte production phenotype as well as m5C modification of the gametocytogenesis-associated transcripts. Together with the mRNA m5C profiles for two species of Plasmodium, our findings demonstrate a major role for NSUN2-mediated m5C modifications in mRNA transcript stability and sexual differentiation in malaria parasites.


Assuntos
5-Metilcitosina/química , Plasmodium falciparum/metabolismo , Plasmodium yoelii/crescimento & desenvolvimento , Plasmodium yoelii/metabolismo , Proteínas de Protozoários/metabolismo , RNA Mensageiro/metabolismo , Células Germinativas , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium yoelii/genética , Transcriptoma
7.
J Med Chem ; 65(5): 4156-4181, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35175762

RESUMO

Our previous work found that the clinical histone deacetylase (HDAC) inhibitor quisinostat exhibited a significant antimalarial effect but with severe toxicity. In this work, 35 novel derivatives were designed and synthesized based on quisinostat as the lead compound, and their in vitro antimalarial activities and cytotoxicities were systematically evaluated. Among them, JX35 showed potent inhibition against both wild-type and multidrug-resistant parasite strains and displayed a significant in vivo killing effect against all life cycles of parasites, including the blood stage, liver stage, and gametocyte stage, indicating its potential for the simultaneous treatment, chemoprevention, and blockage of malaria transmission. Compared with quisinostat, JX35 exhibited stronger antimalarial efficacy, more adequate safety, and good pharmacokinetic properties. Additionally, mechanistic studies via molecular docking studies, induced PfHDAC1/2 knockdown assays, and PfHDAC1 enzyme inhibition assays jointly indicated that the antimalarial target of JX35 was PfHDAC1. In summary, we discovered the promising candidate PfHDAC1 inhibitor JX35, which showed stronger triple-stage antimalarial effects and lower toxicity than quisinostat.


Assuntos
Antimaláricos , Antagonistas do Ácido Fólico , Antimaláricos/uso terapêutico , Reposicionamento de Medicamentos , Antagonistas do Ácido Fólico/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Ácidos Hidroxâmicos , Simulação de Acoplamento Molecular , Plasmodium falciparum
9.
Acta Pharm Sin B ; 11(9): 2900-2913, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34589403

RESUMO

Malaria still threatens global health seriously today. While the current discoveries of antimalarials are almost totally focused on single mode-of-action inhibitors, multi-targeting inhibitors are highly desired to overcome the increasingly serious drug resistance. Here, we performed a structure-based drug design on mitochondrial respiratory chain of Plasmodium falciparum and identified an extremely potent molecule, RYL-581, which binds to multiple protein binding sites of P. falciparum simultaneously (allosteric site of type II NADH dehydrogenase, Qo and Qi sites of cytochrome bc 1). Antimalarials with such multiple targeting mechanism of action have never been reported before. RYL-581 kills various drug-resistant strains in vitro and shows good solubility as well as in vivo activity. This structure-based strategy for designing RYL-581 from starting compound may be helpful for other medicinal chemistry projects in the future, especially for drug discovery on membrane-associated targets.

10.
Nucleic Acids Res ; 49(16): 9264-9279, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34365503

RESUMO

Gametocytogenesis, the process by which malaria parasites produce sexual forms that can infect mosquitoes, is essential for the transmission of malaria. A transcriptional switch of the pfap2-g gene triggers sexual commitment, but how the complex multi-step process is precisely programed remains largely unknown. Here, by systematic functional screening of a panel of ApiAP2 transcription factors, we identify six new ApiAP2 members associated with gametocytogenesis in Plasmodium falciparum. Among these, PfAP2-G5 (PF3D7_1139300) was found to be indispensable for gametocytogenesis. This factor suppresses the transcriptional activity of the pfap2-g gene via binding to both the upstream region and exonic gene body, the latter is linked to the maintenance of local heterochromatin structure, thereby preventing initiation of sexual commitment. Removal of this repressive effect through pfap2-g5 knockout disrupts the asexual replication cycle and promotes sexual commitment accompanied by upregulation of pfap2-g expression. However, the gametocytes produced fail to mature fully. Further analyses show that PfAP2-G5 is essential for gametocyte maturation, and causes the down-regulation of pfap2-g and a set of early gametocyte genes activated by PfAP2-G prior to gametocyte development. Collectively, our findings reveal a regulation cascade of gametocyte production in malaria parasites, and provide a new target for transmission blocking interventions.


Assuntos
Gametogênese/genética , Malária Falciparum/genética , Plasmodium falciparum/genética , Transcrição Gênica , Animais , Culicidae/parasitologia , Regulação da Expressão Gênica/genética , Humanos , Malária Falciparum/parasitologia , Plasmodium falciparum/crescimento & desenvolvimento , Proteínas de Protozoários/genética , Fatores de Transcrição/genética
11.
Signal Transduct Target Ther ; 6(1): 126, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33758164

RESUMO

The efficient induction and long-term persistence of pathogen-specific memory CD8 T cells are pivotal to rapidly curb the reinfection. Recent studies indicated that long-noncoding RNAs expression is highly cell- and stage-specific during T cell development and differentiation, suggesting their potential roles in T cell programs. However, the key lncRNAs playing crucial roles in memory CD8 T cell establishment remain to be clarified. Through CD8 T cell subsets profiling of lncRNAs, this study found a key lncRNA-Snhg1 with the conserved naivehi-effectorlo-memoryhi expression pattern in CD8 T cells of both mice and human, that can promote memory formation while impeding effector CD8 in acute viral infection. Further, Snhg1 was found interacting with the conserved vesicle trafficking protein Vps13D to promote IL-7Rα membrane location specifically. With the deep mechanism probing, the results show Snhg1-Vps13D regulated IL-7 signaling with its dual effects in memory CD8 generation, which not just because of the sustaining role of STAT5-BCL-2 axis for memory survival, but more through the STAT3-TCF1-Blimp1 axis for transcriptional launch program of memory differentiation. Moreover, we performed further study with finding a similar high-low-high expression pattern of human SNHG1/VPS13D/IL7R/TCF7 in CD8 T cell subsets from PBMC samples of the convalescent COVID-19 patients. The central role of Snhg1-Vps13D-IL-7R-TCF1 axis in memory CD8 establishment makes it a potential target for improving the vaccination effects to control the ongoing pandemic.


Assuntos
Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , Interleucina-7/imunologia , Proteínas/imunologia , RNA Longo não Codificante/imunologia , SARS-CoV-2/imunologia , Vesículas Secretórias/imunologia , Transdução de Sinais/imunologia , Animais , Transporte Biológico Ativo , Linfócitos T CD8-Positivos/patologia , COVID-19/patologia , Humanos , Memória Imunológica , Camundongos , Vesículas Secretórias/patologia
12.
J Med Chem ; 64(4): 2254-2271, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33541085

RESUMO

Previously, we identified the clinical anticancer drug candidate quisinostat as a novel and potent antimalarial lead compound. To further enhance the antimalarial effect and improve safety, 31 novel spirocyclic hydroxamic acid derivatives were synthesized based on the structure of quisinostat, and their antimalarial activities and cytotoxicity were evaluated. Among them, compound 11 displayed broad potency in vitro against several multiresistant malarial parasites, especially two artemisinin-resistant clinical isolates. Moreover, 11 could eliminate both liver and erythrocytic parasites in vivo, kill all morphological erythrocytic parasites with specific potency against schizonts, and show acceptable metabolic stability and pharmacokinetic properties. Western blot analysis, PfHDAC gene knockdown, and enzymatic inhibition experiments collectively confirmed that PfHDAC1 was the target of 11. In summary, 11 is a structurally novel PfHDAC1 inhibitor with the potential to prevent and cure malaria, overcome multidrug resistance, and provide a prospective prototype for antimalarial drug research.


Assuntos
Antimaláricos/uso terapêutico , Inibidores de Histona Desacetilases/uso terapêutico , Ácidos Hidroxâmicos/uso terapêutico , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Animais , Antimaláricos/síntese química , Antimaláricos/metabolismo , Antimaláricos/farmacocinética , Desenho de Fármacos , Reposicionamento de Medicamentos , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Resistência a Múltiplos Medicamentos/efeitos dos fármacos , Estabilidade de Medicamentos , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/metabolismo , Inibidores de Histona Desacetilases/farmacocinética , Ácidos Hidroxâmicos/síntese química , Ácidos Hidroxâmicos/metabolismo , Ácidos Hidroxâmicos/farmacocinética , Camundongos , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Plasmodium falciparum/enzimologia , Relação Estrutura-Atividade
13.
Cell Discov ; 6(1): 93, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-33311461

RESUMO

Although artemisinin combination therapies have succeeded in reducing the global burden of malaria, multidrug resistance of the deadliest malaria parasite, Plasmodium falciparum, is emerging worldwide. Innovative antimalarial drugs that kill all life-cycle stages of malaria parasites are urgently needed. Here, we report the discovery of the compound JX21108 with broad antiplasmodial activity against multiple life-cycle stages of malaria parasites. JX21108 was developed from chemical optimization of quisinostat, a histone deacetylase inhibitor. We identified P. falciparum histone deacetylase 1 (PfHDAC1), an epigenetic regulator essential for parasite growth and invasion, as a molecular target of JX21108. PfHDAC1 knockdown leads to the downregulation of essential parasite genes, which is highly consistent with the transcriptomic changes induced by JX21108 treatment. Collectively, our data support that PfHDAC1 is a potential drug target for overcoming multidrug resistance and that JX21108 treats malaria and blocks parasite transmission simultaneously.

14.
Parasit Vectors ; 13(1): 611, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33298142

RESUMO

BACKGROUND: Haem is a key metabolic factor in the life cycle of the malaria parasite. In the blood stage, the parasite acquires host haemoglobin to generate amino acids for protein synthesis and the by-product haem for metabolic use. The malaria parasite can also synthesize haem de novo on its own. Plasmodium falciparum-specific histidine-rich protein 2 (PfHRP2) has a haem-binding site to mediate the formation of haemozoin, a biocrystallized form of haem aggregates. Notably, the gene regulates the mechanism of haemoglobin-derived haem metabolism and the de novo haem biosynthetic pathway in the Pfhrp2-disrupted parasite line during the intraerythrocytic stages. METHODS: The CRISPR/Cas9 system was used to disrupt the gene locus of Pfhrp2. DNA was extracted from the transgenic parasite, and PCR, Southern blotting and Western blotting were used to confirm the establishment of transgenic parasites. RNA-sequencing and comparative transcriptome analysis were performed to identify differences in gene expression between 3D7 and Pfhrp2--3D7 parasites. RESULTS: Pfhrp2- transgenic parasites were successfully established by the CRISPR/Cas9 system. A total of 964, 1261, 3138, 1064, 2512 and 1778 differentially expressed genes (DEGs) were identified in the six comparison groups, respectively, with 373, 520, 1499, 353, 1253 and 742 of these DEGs upregulated and 591, 741, 1639, 711, 1259 and 1036 of them downregulated, respectively. Five DEGs related to haem metabolism and synthesis were identified in the comparison groups at six time points (0, 8, 16, 24, 32, and 40 h after merozoite invasion). The genes encoding delta-aminolevulinic acid synthetase and ferrochelatase, both related to haem biosynthesis, were found to be significantly upregulated in the comparison groups, and those encoding haem oxygenase, stromal-processing peptidase and porphobilinogen deaminase were found to be significantly downregulated. No GO terms were significantly enriched in haem-related processes (Q value = 1). CONCLUSION: Our data revealed changes in the transcriptome expression profile of the Pfhrp2--3D7 parasite during the intraerythrocytic stages. The findings provide insight at the gene transcript level that will facilitate further research on and development of anti-malaria drugs.


Assuntos
Antígenos de Protozoários/genética , Antígenos de Protozoários/metabolismo , Heme/metabolismo , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Animais , Antimaláricos/metabolismo , Sequência de Bases , Sítios de Ligação , Sistemas CRISPR-Cas , Testes Diagnósticos de Rotina , Marcação de Genes , Hemoglobinas , Humanos , Estágios do Ciclo de Vida , Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Reação em Cadeia da Polimerase , Transcriptoma
15.
Nucleic Acids Res ; 48(20): 11566-11576, 2020 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-33053158

RESUMO

Aminoacyl-tRNA synthetases are attractive targets for the development of antibacterial, antifungal, antiparasitic agents and for the treatment of other human diseases. Lysyl-tRNA synthetase (LysRS) from this family has been validated as a promising target for the development of antimalarial drugs. Here, we developed a high-throughput compatible assay and screened 1215 bioactive compounds to identify Plasmodium falciparum cytoplasmic LysRS (PfLysRS) inhibitor. ASP3026, an anaplastic lymphoma kinase inhibitor that was used in clinical trials for the treatment of B-cell lymphoma and solid tumors, was identified as a novel PfLysRS inhibitor. ASP3026 suppresses the enzymatic activity of PfLysRS at nanomolar potency, which is >380-fold more effective than inhibition of the human counterpart. In addition, the compound suppressed blood-stage P. falciparum growth. To understand the molecular mechanism of inhibition by ASP3026, we further solved the cocrystal structure of PfLysRS-ASP3026 at a resolution of 2.49 Å, providing clues for further optimization of the compound. Finally, primary structure-activity relationship analyses indicated that the inhibition of PfLysRS by ASP3026 is highly structure specific. This work not only provides a new chemical scaffold with good druggability for antimalarial development but also highlights the potential for repurposing kinase-inhibiting drugs to tRNA synthetase inhibitors to treat human diseases.


Assuntos
Antimaláricos/farmacologia , Inibidores Enzimáticos/farmacologia , Lisina-tRNA Ligase/antagonistas & inibidores , Plasmodium falciparum/enzimologia , Quinase do Linfoma Anaplásico/antagonistas & inibidores , Animais , Antimaláricos/química , Inibidores Enzimáticos/química , Humanos , Lisina-tRNA Ligase/química , Modelos Moleculares , Plasmodium falciparum/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Conformação Proteica/efeitos dos fármacos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Coelhos , Relação Estrutura-Atividade , Sulfonas/química , Sulfonas/farmacologia , Triazinas/química , Triazinas/farmacologia
16.
Parasit Vectors ; 13(1): 175, 2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32264948

RESUMO

BACKGROUND: Antigens expressed in sexual stages of the malaria parasites are targets of transmission-blocking vaccines (TBVs). HAP2/GCS1, a TBV candidate, is critical for fertilization in Plasmodium. Here, the genetic diversity of PvHAP2 was studied in Plasmodium vivax parasite populations from the Greater Mekong Subregion (GMS). METHODS: Plasmodium vivax clinical isolates were collected in clinics from the China-Myanmar border region (135 samples), western Thailand (41 samples) and western Myanmar (51 samples). Near full-length Pvhap2 (nucleotides 13-2574) was amplified and sequenced from these isolates. Molecular evolution studies were conducted to evaluate the genetic diversity, selection and population differentiation. RESULTS: Sequencing of the pvhap2 gene for a total of 227 samples from the three P. vivax populations revealed limited genetic diversity of this gene in the GMS (π = 0.00036 ± 0.00003), with the highest π value observed in Myanmar (0.00053 ± 0.00009). Y133S was the dominant mutation in the China-Myanmar border (99.26%), Myanmar (100%) and Thailand (95.12%). Results of all neutrality tests were negative for all the three populations, suggesting the possible action of purifying selection. Codon-based tests identified specific codons which are under purifying or positive selections. Wright's fixation index showed low to moderate genetic differentiation of P. vivax populations in the GMS, with FST ranging from 0.04077 to 0.24833, whereas high levels of genetic differentiation were detected between the China-Myanmar border and Iran populations (FST = 0.60266), and between Thailand and Iran populations (FST = 0.44161). A total of 20 haplotypes were identified, with H2 being the abundant haplotype in China-Myanmar border, Myanmar and Thailand populations. Epitope mapping prediction of Pvhap2 antigen showed that high-score B-cell epitopes are located in the S307-G324, L429-P453 and V623-D637 regions. The E317K and D637N mutations located within S307-G324 and V623-D637 epitopes slightly reduced the predicted score for potential epitopes. CONCLUSIONS: The present study showed a very low level of genetic diversity of pvhap2 gene among P. vivax populations in the Greater Mekong Subregion. The relative conservation of pvhap2 supports further evaluation of a Pvhap2-based TBV.


Assuntos
Antígenos de Protozoários/genética , Evolução Molecular , Variação Genética , Plasmodium vivax/genética , Proteínas de Protozoários/genética , China , DNA de Protozoário/genética , Humanos , Malária Vivax/parasitologia , Mianmar , Análise de Sequência de DNA , Tailândia
17.
Vaccine ; 38(14): 2913-2924, 2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-32127225

RESUMO

INTRODUCTION: CD4+ T cells are essential for inducing optimal CD8+ T cell and antibody-producing B cell responses and maintaining their long-term immunological memory. Therefore, CD4+ T cells are a critical component in HIV vaccine development. Due to enormous viral gene variation and significant human host genetic diversity, HIV vaccines may need to be custom-made for different countries. METHODS: Previously, we designed a CD4+ T cell vaccine based on Chinese HIV isolates and HLA-DR alleles using bioinformatics tools and predicted that 20 epitopes could cover 98.1% of the Chinese population. In vivo testing of the poly-epitope antigen in mice only activated specific T cells for some epitopes. To elucidate the mechanism of the observed differential immunogenicity, we examined poly-epitope antigen processing and presentation using in vitro and in vivo analytical methods. RESULTS: Enzymatic digestion indicated that all 20 epitopes comprising the poly-epitope antigen could be liberated, but MHC II binding assays showed that neither binding affinity nor dissociation rate was associated with the magnitude of T cell immune responses elicited by each peptide epitope in vaccinated mice. Mass spectrometry analysis of MHC II-bound peptides suggested that the abundance of endogenously processed peptides bound to MHC II molecules was significantly associated with the relative immunodominance of these epitopes. CONCLUSION: These results provide a new rationale for improving the design and testing of poly-epitope vaccines for HIV and other diseases.


Assuntos
Vacinas contra a AIDS/imunologia , Linfócitos T CD4-Positivos/imunologia , Epitopos de Linfócito T/imunologia , Antígenos HLA-DR/genética , Epitopos Imunodominantes/imunologia , Animais , Camundongos
18.
Nature ; 579(7797): 118-122, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32103178

RESUMO

It has long been assumed that lifespan and healthspan correlate strongly, yet the two can be clearly dissociated1-6. Although there has been a global increase in human life expectancy, increasing longevity is rarely accompanied by an extended healthspan4,7. Thus, understanding the origin of healthy behaviours in old people remains an important and challenging task. Here we report a conserved epigenetic mechanism underlying healthy ageing. Through genome-wide RNA-interference-based screening of genes that regulate behavioural deterioration in ageing Caenorhabditis elegans, we identify 59 genes as potential modulators of the rate of age-related behavioural deterioration. Among these modulators, we found that a neuronal epigenetic reader, BAZ-2, and a neuronal histone 3 lysine 9 methyltransferase, SET-6, accelerate behavioural deterioration in C. elegans by reducing mitochondrial function, repressing the expression of nuclear-encoded mitochondrial proteins. This mechanism is conserved in cultured mouse neurons and human cells. Examination of human databases8,9 shows that expression of the human orthologues of these C. elegans regulators, BAZ2B and EHMT1, in the frontal cortex increases with age and correlates positively with the progression of Alzheimer's disease. Furthermore, ablation of Baz2b, the mouse orthologue of BAZ-2, attenuates age-dependent body-weight gain and prevents cognitive decline in ageing mice. Thus our genome-wide RNA-interference screen in C. elegans has unravelled conserved epigenetic negative regulators of ageing, suggesting possible ways to achieve healthy ageing.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Epigênese Genética , Envelhecimento Saudável/genética , Histona-Lisina N-Metiltransferase/metabolismo , Fatores Genéricos de Transcrição/metabolismo , Envelhecimento/genética , Animais , Proteínas de Caenorhabditis elegans/genética , Cognição , Disfunção Cognitiva , Histona-Lisina N-Metiltransferase/deficiência , Histona-Lisina N-Metiltransferase/genética , Histonas/química , Histonas/metabolismo , Humanos , Longevidade/genética , Lisina/metabolismo , Masculino , Memória , Metilação , Camundongos , Mitocôndrias/metabolismo , Neurônios/metabolismo , Proteínas/genética , Interferência de RNA , Aprendizagem Espacial , Fatores Genéricos de Transcrição/deficiência , Fatores Genéricos de Transcrição/genética
19.
RNA Biol ; 17(6): 828-842, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32079470

RESUMO

The tight gene expression regulation controls the development and pathogenesis of human malaria parasite Plasmodium falciparum throughout the complex life cycle. Recent studies have revealed the pervasive nascent transcripts in the genome of P. falciparum, suggesting the existence of a hidden transcriptome involved in the dynamic gene expression. However, the landscape and related biological functions of nascent non-coding RNAs (ns-ncRNAs) are still poorly explored. Here we profiled the transcription dynamics of nascent RNAs by rRNA-depleted and stranded RNA sequencing over the course of 48-h intraerythrocytic developmental cycle (IDC). We identified the genome-wide sources of a total of 2252 ns-ncRNAs, mostly originating from intergenic and untranslated regions of annotated genes. By integrating the nascent RNA abundances with ATAC-seq and ChIP-seq analysis, we uncovered the euchromatic microenvironment surrounding the ns-ncRNA loci, and revealed a positive correlation between ns-ncRNAs and corresponding mRNA abundances. Finally, by gene knock-down strategy, we showed that the cooperation of RNA exosome catalytic subunit PfDis3 and PfMtr4 cofactor played a major role in ns-ncRNAs degradation. Collectively, this study contributes to understanding of the potential roles of short-lived nascent ncRNAs in regulating gene expression in malaria parasites.


Assuntos
Regulação da Expressão Gênica , Malária Falciparum/parasitologia , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/genética , Splicing de RNA , RNA de Protozoário/genética , Biologia Computacional/métodos , Eritrócitos/parasitologia , Complexo Multienzimático de Ribonucleases do Exossomo , Perfilação da Expressão Gênica , Ontologia Genética , Humanos , Estágios do Ciclo de Vida , Estabilidade de RNA , RNA Mensageiro/genética , RNA não Traduzido/genética
20.
Parasit Vectors ; 13(1): 67, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32051017

RESUMO

BACKGROUND: The malaria elimination plan of the Greater Mekong Subregion (GMS) is jeopardized by the increasing number of Plasmodium vivax infections and emergence of parasite strains with reduced susceptibility to the frontline drug treatment chloroquine/primaquine. This study aimed to determine the evolution of the P. vivax multidrug resistance 1 (Pvmdr1) gene in P. vivax parasites isolated from the China-Myanmar border area during the major phase of elimination. METHODS: Clinical isolates were collected from 275 P. vivax patients in 2008, 2012-2013 and 2015 in the China-Myanmar border area and from 55 patients in central China. Comparison was made with parasites from three border regions of Thailand. RESULTS: Overall, genetic diversity of the Pvmdr1 was relatively high in all border regions, and over the seven years in the China-Myanmar border, though slight temporal fluctuation was observed. Single nucleotide polymorphisms previously implicated in reduced chloroquine sensitivity were detected. In particular, M908L approached fixation in the China-Myanmar border area. The Y976F mutation sharply decreased from 18.5% in 2008 to 1.5% in 2012-2013 and disappeared in 2015, whereas F1076L steadily increased from 33.3% in 2008 to 77.8% in 2015. While neutrality tests suggested the action of purifying selection on the pvmdr1 gene, several likelihood-based algorithms detected positive as well as purifying selections operating on specific amino acids including M908L, T958M and F1076L. Fixation and selection of the nonsynonymous mutations are differently distributed across the three border regions and central China. Comparison with the global P. vivax populations clearly indicated clustering of haplotypes according to geographic locations. It is noteworthy that the temperate-zone parasites from central China were completely separated from the parasites from other parts of the GMS. CONCLUSIONS: This study showed that P. vivax populations in the China-Myanmar border has experienced major changes in the Pvmdr1 residues proposed to be associated with chloroquine resistance, suggesting that drug selection may play an important role in the evolution of this gene in the parasite populations.


Assuntos
Antimaláricos/farmacologia , Variação Genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Plasmodium vivax/genética , Proteínas de Protozoários/genética , China , Cloroquina/farmacologia , Erradicação de Doenças , Evolução Molecular , Haplótipos , Humanos , Malária Vivax/epidemiologia , Malária Vivax/parasitologia , Mutação , Mianmar , Plasmodium vivax/efeitos dos fármacos , Análise de Sequência de DNA , Tailândia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA