Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Animals (Basel) ; 14(4)2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38396500

RESUMO

In recent years, the meat and dairy value of buffaloes has become a major concern in buffalo breeding, and the improvement of buffalo beef quality is key to protecting buffalo germplasm resources and solving the problem of beef supply. MiRNAs play a significant role in regulating muscle development. However, the precise mechanism by which they regulate the development of buffalo skeletal muscles remains largely unexplored. In this study, we examined miRNA expression profiles in buffalo myoblasts during the proliferation and differentiation stages. A total of 177 differentially expressed miRNAs were identified, out of which 88 were up-regulated and 89 down-regulated. We focused on a novel miRNA, named bbu-miR-493-5p, that was significantly differentially expressed during the proliferation and differentiation of buffalo myoblasts and highly expressed in muscle tissues. The RNA-FISH results showed that bbu-miR-493-5p was primarily located in the cytoplasm to encourage buffalo myoblasts' proliferation and differentiation. In conclusion, our study lays the groundwork for future research into the regulatory role of miRNAs in the growth of buffalo muscle.

2.
Aging Cell ; 22(10): e13947, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37594178

RESUMO

Glia and neurons face different challenges in aging and may engage different mechanisms to maintain their morphology and functionality. Here, we report that adult-onset downregulation of a Drosophila gene CG32529/GLAD led to shortened lifespan and age-dependent brain degeneration. This regulation exhibited cell type and subtype-specificity, involving mainly surface glia (comprising the BBB) and cortex glia (wrapping neuronal soma) in flies. In accordance, pan-glial knockdown of GLAD disrupted BBB integrity and the glial meshwork. GLAD expression in fly heads decreased with age, and the RNA-seq analysis revealed that the most affected transcriptional changes by RNAi-GLAD were associated with upregulation of immune-related genes. Furthermore, we conducted a series of lifespan rescue experiments and the results indicated that the profound upregulation of immune and related pathways was not the consequence but cause of the degenerative phenotypes of the RNAi-GLAD flies. Finally, we showed that GLAD encoded a heterochromatin-associating protein that bound to the promoters of an array of immune-related genes and kept them silenced during the cell cycle. Together, our findings demonstrate a previously unappreciated role of heterochromatic gene silencing in repressing immunity in fly glia, which is required for maintaining BBB and brain integrity as well as normal lifespan.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila/genética , Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Longevidade/genética , Neuroglia/metabolismo
3.
Immun Ageing ; 20(1): 27, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37340309

RESUMO

TDP-43 is an important DNA/RNA-binding protein that is associated with age-related neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD); however, its pathomechanism is not fully understood. In a transgenic RNAi screen using Drosophila as a model, we uncovered that knockdown (KD) of Dsor1 (the Drosophila MAPK kinase dMEK) suppressed TDP-43 toxicity without altering TDP-43 phosphorylation or protein levels. Further investigation revealed that the Dsor1 downstream gene rl (dERK) was abnormally upregulated in TDP-43 flies, and neuronal overexpression of dERK induced profound upregulation of antimicrobial peptides (AMPs). We also detected a robust immune overactivation in TDP-43 flies, which could be suppressed by downregulation of the MEK/ERK pathway in TDP-43 fly neurons. Furthermore, neuronal KD of abnormally increased AMPs improved the motor function of TDP-43 flies. On the other hand, neuronal KD of Dnr1, a negative regulator of the Drosophila immune deficiency (IMD) pathway, activated the innate immunity and boosted AMP expression independent of the regulation by the MEK/ERK pathway, which diminished the mitigating effect of RNAi-dMEK on TDP-43 toxicity. Finally, we showed that an FDA-approved MEK inhibitor trametinib markedly suppressed immune overactivation, alleviated motor deficits and prolonged the lifespan of TDP-43 flies, but did not exhibit a lifespan-extending effect in Alzheimer disease (AD) or spinocerebellar ataxia type 3 (SCA3) fly models. Together, our findings suggest an important role of abnormal elevation of the MEK/ERK signaling and innate immunity in TDP-43 pathogenesis and propose trametinib as a potential therapeutic agent for ALS and other TDP-43-related diseases.

4.
Gene ; 871: 147430, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37062454

RESUMO

Spermatogenesis is a complex process that requires many regulatory mechanisms to form healthy sperm. Numerous studies have also proved that m6A methylation modification and lncRNA are essential for normal spermatogenesis. However, the mutual regulation of m6A methylation and lncRNA in spermatogenesis is still unclear. In this study, we knocked down METTL3 in GC-1spg cells and found that a reduction in METTL3 increased cell proliferation. Further, we examined the lncRNA expression profiles of normal spermatogonia and spermatogonia with knocked down METTL3. We detected 30,924 lncRNAs, of which 34 were up-regulated and 77 down-regulated. The results of the MeRIP-qPCR experiment showed that ENSMUST00000186472, MSTRG.8019.3 and ENSMUST00000202148 had m6A methylation sites and were regulated by METTL3. We constructed ceRNA networks for these 3 lncRNAs. And we identified that these 3 lncRNAs might act as miRNA sponges to regulate some genes related to spermatogenesis. This study focuses on exploring the regulatory mechanisms of m6A methylation on lncRNAs in spermatogonia and provides some epigenetic theories for subsequent studies on the expression mechanisms of lncRNAs.


Assuntos
MicroRNAs , RNA Longo não Codificante , Masculino , Humanos , Metilação , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Sêmen/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , MicroRNAs/genética , Proliferação de Células/genética
5.
Genes (Basel) ; 14(2)2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36833242

RESUMO

MicroRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally regulate several pathway intermediates and affect the skeletal muscle development in mice, pigs, sheep, and cattle. However, to date, only a small number of miRNAs have been reported in the muscle development of goats. In this report, the longissimus dorsi transcripts of one- and ten-month-old goats were analyzed by sequencing RNAs and miRNAs. The results showed that the ten-month-old Longlin goats had 327 up- and 419 down-regulated differentially expressed genes (DEGs) compared with the one-month-old. In addition, 20 co-up-regulated and 55 co-down-regulated miRNAs involved in the muscle fiber hypertrophy of goats were identified in ten-month-old Longlin and Nubian goats compared with one-month-old. Five miRNA-mRNA pairs (chi-let-7b-3p-MIRLET7A, chi-miR193b-3p-MMP14, chi-miR-355-5p-DGAT2, novel_128-LOC102178119, novel_140-SOD3) involved in the goat skeletal muscle development were identified by miRNA-mRNA negative correlation network analysis. Our results provided new insight into the functional roles of goat muscle-associated miRNAs, allowing a deeper understanding of the transformation of miRNA roles during mammalian muscle development.


Assuntos
MicroRNAs , Suínos , Animais , Bovinos , Camundongos , Ovinos/genética , MicroRNAs/genética , Perfilação da Expressão Gênica , RNA Mensageiro/genética , Cabras/genética , Fibras Musculares Esqueléticas/metabolismo , Hipertrofia
6.
Int J Mol Sci ; 25(1)2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38203513

RESUMO

In cis-regulatory elements, enhancers and promoters with complex molecular interactions are used to coordinate gene transcription through physical proximity and chemical modifications. These processes subsequently influence the phenotypic characteristics of an organism. An in-depth exploration of enhancers and promoters can substantially enhance our understanding of gene regulatory networks, shedding new light on mammalian development, evolution and disease pathways. In this review, we provide a comprehensive overview of the intrinsic structural attributes, detection methodologies as well as the operational mechanisms of enhancers and promoters, coupled with the relevant novel and innovative investigative techniques used to explore their actions. We further elucidated the state-of-the-art research on the roles of enhancers and promoters in the realms of mammalian development, evolution and disease, and we conclude with forward-looking insights into prospective research avenues.


Assuntos
Redes Reguladoras de Genes , Mamíferos , Animais , Estudos Prospectivos , Regiões Promotoras Genéticas , Mamíferos/genética
7.
Poult Sci ; 101(10): 102100, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36055031

RESUMO

Poultry production was long plagued by coccidiosis, and the development of alternative therapies will make practical sense. In this work, 2 battery experiments were designed. In battery experiment 1, the best effect of 7 anticoccidial herbs (Sophora japonica Linn, Citrus aurantium L, leaf of Acer palmatum, bark of Magnolia officinalis, fruit peel of Punica granatum L., Eclipta prostrata L., and Piper sarmentosum Roxb.) against Eimeria tenella infection of 21-day-old male Chinese Guangxi yellow-feathered chickens were screened out by clinic indexes (bloody feces scores, cecal lesion scores, oocysts output, relative weight gain rate, and survival rate). According to the results from battery experiment 1 and other literature research, we selected 2 monomers which were extracted from fruit peel of Punica granatum L. for further battery experiment 2 which were similar with battery experiment 1. Clinic results showed that Punicalagin had better anticoccidial effect than Ellagic acid. The anticoccidial mechanism exploration results of Elisa, antioxidant test, and pathological observation showed that Punicalagin reduced the cecal inflammation, improved the expression of immunoglobulin in cecal tissue, improved cecal integrity, and restored its REDOX state. Results of 16S rRNA sequencing analysis showed that Punicalagin also maintained the fecal flora health during E. tenella infection through insignificantly increasing the proportion of Lactobacillus and Faecalibacterium as well as significantly reducing the proportion of pathogenic bacteria, Escherichia-Shigella. RNA-Seq analysis results suggested that Punicalagin may play a role in controlling E. tenella infection by interaction with cytochrome P450 family enzymes. Overall, Punicalagin has promising potential as an alternative therapy for chicken Eimeria tenella infection.


Assuntos
Coccidiose , Eimeria tenella , Punica granatum , Doenças das Aves Domésticas , Animais , Antioxidantes/farmacologia , Galinhas , China , Coccidiose/tratamento farmacológico , Coccidiose/veterinária , Ácido Elágico/farmacologia , Frutas , Taninos Hidrolisáveis , Masculino , Doenças das Aves Domésticas/tratamento farmacológico , RNA Ribossômico 16S
8.
Front Vet Sci ; 9: 857044, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36032282

RESUMO

Buffalo meat is of good quality because it is lean and tender, and could bring significant cardiovascular benefits. The underlying difference in muscle development and meat quality is a complex and precisely orchestrated process which has been demonstrated to be regulated by long non-coding RNAs (lncRNAs). However, the regulatory role of lncRNAs in the growth and development of buffalo skeletal muscle is still unclear. In this study, the Ribo-Zero RNA-Seq method was used to explore the lncRNA expression profiles of buffalo myoblasts during the proliferation and differentiation phases. A specific set of 9,978 lncRNAs was found. By comparing the expression profiles of lncRNAs, it was found that there were 1,576 differentially expressed lncRNAs (DELs) during buffalo myoblast differentiation. Twelve DELs were chosen and subsequently verified in eight different buffalo tissues during fetal and adult stages by using qPCR. Gene11007 was found to be one of the most down-regulated lncRNAs during buffalo myoblasts differentiation and it was subsequently characterized. EdU, CCK-8, qPCR and western blotting assays showed that gene11007 promoted the proliferation of buffalo myoblasts but it had no effect on cell differentiation. Our research may enrich the genome annotations of buffalo and provide a new molecular target for the in-depth understanding of the regulation of lncRNAs in skeletal muscle.

9.
Epigenetics ; 17(13): 2296-2317, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36043316

RESUMO

Buffalo holds an excellent potential for beef production, and circRNA plays an important role in regulating myogenesis. However, the regulatory mechanism of circRNAs during buffalo skeletal muscle development has not been fully explored. In this study, circRNA expression profiles during the proliferation and differentiation stages of buffalo myoblasts were analysed by RNA-seq. Here, a total of 3,142 circRNAs candidates were identified, and 110 of them were found to be differentially expressed in the proliferation and differentiation stages of buffalo myoblast libraries. We focused on a 347 nt circRNA subsequently named circCLTH. It consists of three exons and is expressed specifically in muscle tissues. It is a highly conserved non-coding RNA with about 95% homology to both the human and the mouse circRNAs. The results of cell experiments and RNA pull-down assays indicated that circCLTH may capture PLEC protein, promote the proliferation and differentiation of myoblasts as well as inhibit apoptosis. Overexpression of circCLTH in vivo suggests that circCLTH is involved in the stimulation of skeletal muscle regeneration. In conclusion, we identified a novel noncoding regulator, circCLTH, that promotes proliferation and differentiation of myoblasts and skeletal muscles.


A new highly conserved circRNA was identified during muscle developmentCircCLTH promotes proliferation and differentiation of myoblastsCircCLTH promoted muscle damage repair in miceCircCLTH may target the PLEC protein.


Assuntos
MicroRNAs , RNA Circular , Bovinos , Humanos , Camundongos , Animais , RNA Circular/genética , Búfalos/genética , Búfalos/metabolismo , MicroRNAs/genética , Metilação de DNA , Desenvolvimento Muscular/genética , Diferenciação Celular/genética , Músculo Esquelético/metabolismo , Regeneração/genética , Proliferação de Células/genética
10.
J Agric Food Chem ; 70(29): 9166-9178, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35837734

RESUMO

Myogenesis is an essential process that can affect the yield and quality of beef. Transcriptional studies have shown that histone deacetylase 11 (HDAC11) was differentially expressed in muscle tissues of 6 and 18 month old Longlin cattle, but its role in the regulation of myogenesis remains unclear. This study aimed to determine the role of HDAC11 in the proliferation and differentiation of bovine muscle stem cells (MuSCs). HDAC11 promoted MuSC proliferation by activating Notch signaling and inhibited myoblast differentiation by reducing MyoD1 transcription. In addition, overexpression of HDAC11 inhibited the repair regeneration process of muscle in mice. HDAC11 was found to be a novel key target for the control of myogenesis, and this is a theoretical basis for the development of HDAC11-specific modulators as a new strategy to regulate myogenesis.


Assuntos
Histona Desacetilases , Mioblastos , Animais , Bovinos , Diferenciação Celular , Proliferação de Células , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Camundongos , Músculo Esquelético/metabolismo , Músculos/metabolismo , Regeneração/genética , Transdução de Sinais
11.
Theriogenology ; 186: 155-167, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35468549

RESUMO

2-Mercaptoethanol (2-ME) is often used as an antioxidant to optimize culture systems for in vitro oocyte maturation in livestock. However, the relationship between 2-ME and autophagy has not yet been elucidated. In this study, we hypothesized that 2-ME can promote porcine oocyte maturation in vitro by maintaining autophagy homeostasis. To test this hypothesis, we explored the effects of 2-ME on the maturation of porcine oocytes exposed to an autophagy activator (rapamycin) or an autophagy inhibitor (3-methyladenine, i.e., 3-MA) in vitro. Rapamycin-induced autophagy over-activation significantly increased autophagy- and apoptosis-related gene expression, oxidative stress, apoptosis rates, abnormal mitochondrial redistribution, and significantly decreased oocyte first polar body extrusion (PBE) rates, spindle/chromosome integrity and developmental competence. 3-MA-mediated autophagy inhibition exerted similar effects on all these parameters except the expression of genes that promote autophagy and inhibit apoptosis. Importantly, 2-ME supplementation significantly attenuated the detrimental effects of rapamycin and 3-MA. Interestingly, we observed that 44 h of coincubation with rapamycin/3-MA and 2-ME restored autophagy homeostasis in vitro. In conclusion, our study confirmed that 2-ME promotes porcine oocyte maturation and embryo development in vitro by maintaining autophagy homeostasis and lays a foundation for further research on the underlying mechanism.


Assuntos
Técnicas de Maturação in Vitro de Oócitos , Oócitos , Animais , Autofagia , Homeostase , Técnicas de Maturação in Vitro de Oócitos/veterinária , Mercaptoetanol/farmacologia , Oócitos/fisiologia , Sirolimo/metabolismo , Sirolimo/farmacologia , Suínos
12.
Annu Rev Genet ; 55: 93-113, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34351802

RESUMO

Significant advances have been made in recent years in identifying the genetic components of Wallerian degeneration, the process that brings the progressive destruction and removal of injured axons. It has now been accepted that Wallerian degeneration is an active and dynamic cellular process that is well regulated at molecular and cellular levels. In this review, we describe our current understanding of Wallerian degeneration, focusing on the molecular players and mechanisms that mediate the injury response, activate the degenerative program, transduce the death signal, execute the destruction order, and finally, clear away the debris. By highlighting the starring roles and sketching out the molecular script of Wallerian degeneration, we hope to provide a useful framework to understand Wallerian and Wallerian-like degeneration and to lay a foundation for developing new therapeutic strategies to treat axon degeneration in neural injury as well as in neurodegenerative disease.


Assuntos
Doenças Neurodegenerativas , Degeneração Walleriana , Axônios/patologia , Axônios/fisiologia , Humanos , Doenças Neurodegenerativas/patologia , Degeneração Walleriana/genética , Degeneração Walleriana/patologia
13.
Genes (Basel) ; 12(7)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34210052

RESUMO

Litsea cubeba L. essential oil(LCEO) can affect the growth of drug-resistance bacteria. However, research on stress response of drug-resistant A. baumannii under sub-lethal LCEO concentrations had been limited so far. Therefore, transcriptomic analysisof A. baumannii under 1/2 minimum inhibitory concentration (MIC, 0.54 mg/mL) of LCEO was performed. Results of transcriptomic analysis showed that 320/352 genes were significantly up/down-regulated, respectively, in LCEO-treated A. baumannii. Both up and down-regulated genes were significantly enriched in three GO terms (oxidation-reduction process; oxidoreductase activity; oxidoreductase activity, acting on the CH-CH group of donors), which indicated that the redox state of A. baumannii was significantly affected by LCEO. LCEO may also inhibit aerobic respiration, synthesis of ketone bodies and the metabolism of some amino acids while, meanwhile, promoting fatty acid degradation of A. baumannii according to Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment. The permeability and the stress of cell membrane of A. baumannii were significantly affected by LCEO. After crystal violet dyeing, the biofilm formation of A. baumannii was promoted/inhibited by extremely low/relatively high concentration of LCEO, respectively. LCEO and chloramphenicol have synergistic growth inhibitory effect against A. baumannii according to the Fractional Inhibitory Concentration Index (FICI) value = 0.375. Our results indicate that the growth of A. baumannii was inhibited by LCEO, and give insights into the stress response of A. baumannii under sub-lethal concentrations of LCEO. These results provided evidence that A. baumannii was inhibited by LCEO, and expanded knowledges of stress response of A. baumannii under sub-lethal concentration of LCEO.


Assuntos
Acinetobacter baumannii/genética , Farmacorresistência Bacteriana/genética , Óleos Voláteis/toxicidade , Óleos de Plantas/toxicidade , Transcriptoma , Acinetobacter baumannii/efeitos dos fármacos , Concentração Inibidora 50 , Litsea/química , Estresse Fisiológico
14.
Reprod Domest Anim ; 56(4): 629-641, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33492695

RESUMO

The microenvironment in the seminiferous tubules of buffalo changes with age, which affects the self-renewal and growth of spermatogonial stem cells (SSCs) and the process of spermatogenesis, but the mechanism remains to be elucidated. RNA-seq was performed to compare the transcript profiles of pre-pubertal buffalo (PUB) and adult buffalo (ADU) seminiferous tubules. In total, 17,299 genes from PUB and ADU seminiferous tubules identified through RNA-seq, among which 12,271 were expressed in PUB and ADU seminiferous tubules, 4,027 were expressed in only ADU seminiferous tubules, and 956 were expressed in only PUB seminiferous tubules. Of the 17,299 genes, we identified 13,714 genes that had significant differences in expression levels between PUB and ADU through GO enrichment analysis. Among these genes, 5,342 were significantly upregulated and possibly related to the formation or identity of the surface antigen on SSCs during self-renewal; 7,832 genes were significantly downregulated, indicating that genes in PUB seminiferous tubules do not participate in the biological processes of sperm differentiation or formation in this phase compared with those in ADU seminiferous tubules. Subsequently, through the combination with KEGG analysis, we detected enrichment in a number of genes related to the development of spermatogonial stem cells, providing a reference for study of the development mechanism of buffalo spermatogonial stem cells in the future. In conclusion, our data provide detailed information on the mRNA transcriptomes in PUB and ADU seminiferous tubules, revealing the crucial factors involved in maintaining the microenvironment and providing a reference for further in vitro cultivation of SSCs.


Assuntos
Células-Tronco Germinativas Adultas/fisiologia , Búfalos/fisiologia , Perfilação da Expressão Gênica/veterinária , Maturidade Sexual/fisiologia , Animais , Regulação da Expressão Gênica no Desenvolvimento , Masculino , RNA Mensageiro , Túbulos Seminíferos/citologia , Túbulos Seminíferos/fisiologia
15.
Front Microbiol ; 11: 1693, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013718

RESUMO

Litsea cubeba L. essential oil (LCEO) is a natural essential oil with considerable antimicrobial activity, and it can gradually replace some chemical additives in the food industry. However, the genetic evidences of stress response of bacteria under sub-lethal treatment with LCEO is limited. To this end, transcriptomic analysis of Staphylococcus aureus 29213 under a low concentration of LCEO was performed. Bacterial RNA samples were extracted from 1/4 MIC (0.07 µL/mL) of LCEO-treated and non-treated S. aureus 29213. The transcriptional results were obtained by RNA sequencing (RNA-Seq). After treated with LCEO of S. aureus 29213, 300, and 242 genes were significantly up and down-regulated. Up-regulated genes were mainly related to cell membrane (wall) stress stimulon including genes related to two-component regulatory system (VraS), histidine metabolism (hisABCD etc.) and L-lysine biosynthesis (thrA, lysC, asd etc.). Significant differences were also founded between LCEO-treated and non-treated groups in peptidoglycan biosynthesis related pathways. Down-regulated genes were related to nitrogen metabolism (NarGHIJ etc.), carotenoid biosynthesis (all) and pyruvate metabolism (phdA, pflB, pdhC etc.) of S. aureus 29213 in an LCEO-existing environment compared to the control. At the same time, we confirmed that LCEO can significantly affect the staphyloxanthin level of S. aureus 29213 for the first time, which is closely related to the redox state of S. aureus 29213. These evidences expanded the knowledge of stress response of S. aureus 29213 strain under sub-lethal concentration of LCEO.

16.
Artigo em Inglês | MEDLINE | ID: mdl-32148535

RESUMO

Semiaquilegia adoxoides (DC.) Makino is a herbal medicine and it is recorded that its water extract can be used to treat acute diseases caused by bacterial infections. In order to understand the polysaccharide of Semiaquilegia adoxoides (DC.) Makino (SMP), FT-IR and HPLC methods were performed to determine the basic chemical structure and monosaccharide compositions of SMP. The antioxidant capacity of SMP was analyzed by monitoring both the scavenging rate of DPPH and ABTS free radical. To investigate the effects of SMP on the acute bacterial disease, minimum inhibitory concentrations (MICs) of SMP on E. coli or S. aureus were detected; meanwhile, mice were administrated with SMP for 7 days and then infected with E. coli or S. aureus, and the parameters were measured at the 9th day. Results showed that SMP was a furanose which was mainly composed of glucose (60.3%) and had certain antioxidant activities. Both MIC values of SMP on E. coli and S. aureus were 250 ml/mL, which means that SMP has no direct antibacterial effects. The mice experiments revealed that SMP had potential effects on immunomodulatory by reducing WBC and the expression of serum IL-1, IL-6, and TNF-α and increasing IgM of E. coli or S. aureus infected mice. These findings supported the effect of Semiaquilegia adoxoides (DC.) Makino in folk use with scientific evidence.

17.
Cell Reprogram ; 22(1): 22-29, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32011919

RESUMO

In this study, Squalene epoxidase (SQLE) overexpression vector was transfected into bovine skeletal muscle-derived mesenchymal stem/stromal cells (MSCs) to study the molecular mechanism of SQLE regulating meat quality through myogenesis. We initially profiled the expression of SQLE in cattle embryos and adults, in the muscle tissue of four different cattle varieties, and in 11 different tissues/organs of Guangxi cattle variety. Subsequently, we isolated and cultured bovine skeletal muscle-derived MSCs and detected the expression of SQLE during cell proliferation and differentiation. Then, we constructed a bovine SQLE overexpression vector and transfected it into bovine skeletal muscle-derived MSCs by liposome transfection. Cell Counting Kit-8 (CCK-8), 5-ethynyl-20-deoxyuridine (EdU), flow cytometry, immunofluorescence, and quantitative polymerase chain reaction assays were used to characterize cell proliferation and differentiation in detail. The results showed that the relative expression level of bovine SQLE gene in brain tissue was the highest, and in adult muscle tissue was significantly higher than that in embryonic stage. Especially, the expression of SQLE was significantly upregulated in cell differentiation stage. Furthermore, the proliferation, cell cycle, apoptosis, and myoblast differentiation assays indicated that SQLE significantly promoted the differentiation and apoptosis of bovine skeletal muscle-derived MSCs, but inhibited their proliferation. In conclusion, our study reveals the role of SQLE in myoblast differentiation. These results will provide new clues for the regulation network of bovine muscle development.


Assuntos
Células-Tronco Mesenquimais/citologia , Desenvolvimento Muscular , Esqualeno Mono-Oxigenase/genética , Esqualeno Mono-Oxigenase/metabolismo , Animais , Apoptose , Bovinos , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Células HEK293 , Humanos , Músculo Esquelético/citologia , Regulação para Cima
18.
J Environ Sci Health B ; 54(6): 449-458, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30939985

RESUMO

Fipronil is a broad-spectrum insecticide that has a good control effect on pests of commercial poultry. Although many studies have reported the environmental fate of fipronil, the influence of residual fipronil in poultry waste on biogas production has not been further explored yet. In this article, an experimental comparative study on anaerobic digestion (AD) of chicken manure (CM) and corn straw (CS) with different fipronil concentrations (FCs) was carried at 8% of total solid (TS) and mid-temperature (35 ± 1)°C. The results showed that fipronil had a significant effect on biogas production during AD of CM and CS. When the FC is at a low level (≤10 mg·kg-1), the biogas production rate is increased and the digestion period was shortened, while higher FC (≥ 20 mg·kg-1) showed an inhibitory effect. During the monitoring of enzyme activity, low FC showed no significant effect on cellulase and saccharase, but the urease activity increased in the early stage. High FC showed inhibition of activity of cellulase and urease, but the saccharase activity was significantly inhibited until FC reached 40 mg·kg-1. This study also confirms that the environment in anaerobic digester is favorable for the degradation of fipronil, and its half-life is about 15.83 days.


Assuntos
Biocombustíveis , Esterco , Pirazóis , Eliminação de Resíduos Líquidos/métodos , Zea mays , Anaerobiose/efeitos dos fármacos , Animais , Celulase/antagonistas & inibidores , Celulase/metabolismo , Galinhas , Meia-Vida , Inseticidas/metabolismo , Inseticidas/farmacologia , Metano , Caules de Planta/metabolismo , Pirazóis/metabolismo , Pirazóis/farmacologia , Temperatura , Eliminação de Resíduos Líquidos/instrumentação , beta-Frutofuranosidase/antagonistas & inibidores , beta-Frutofuranosidase/metabolismo
19.
AMB Express ; 6(1): 98, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27734418

RESUMO

The composition of mammalian intestinal microflora is related to many environmental and geographical factors, and it plays an important role in many aspects such as growth and development. Sequencing data of the bacterial 16S rRNA gene from sable (Martes zibellina) samples using next-generation sequencing technology are limited. In our research, 84,116 reads obtained by high-throughput sequencing were analyzed to characterize and compare the intestinal microflora of wild sables and housed sables. Firmicutes (31.1 %), Bacteroidetes (26.0 %) and Proteobacteria (21.5 %) were the three most abundant phyla present in wild sables, whereas Firmicutes (55.6 %), Proteobacteria (29.1 %) and Actinobacteria (6.0 %) were the three predominant phyla present in housed sables. At the phylum level, wild sables exhibited a significant difference in the relative abundances of Bacteroidetes and Actinobacteria, whereas housed sables only exhibited significant changes in TM7 at the phylum level, and Clostridia, at the class level. The predominance of Bacteroidetes in wild sables warrants further research. These results indicate that a sudden change in diet may be a key factor that influences fecal bacterial diversity in mammals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA