Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Adv Mater ; 36(32): e2405473, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38837833

RESUMO

In the pursuit of high-performance energy storage systems, four-electron zinc-iodine aqueous batteries (4eZIBs) with successive I-/I2/I+ redox couples are appealing for their potential to deliver high energy density and resource abundance. However, susceptibility of positive valence I+ to hydrolysis and instability of Zn plating/stripping in conventional aqueous electrolyte pose significant challenges. In response, polyethylene glycol (PEG 200) is introduced as co-solvent in 2 m ZnCl2 aqueous solution to design a wide temperature electrolyte. Through a comprehensive investigation combining spectroscopic characterizations and theoretical simulations, it is elucidated that PEG disrupts the intrinsic strong H-bonds of water by global weak PEG-H2O interaction, which strengthens the O─H covalent bond of water and intensifies the coordination with Zn2+. This synergistic effect substantially reduces water activity to restrain the I+ hydrolysis, facilitating I-/I2/I+ redox kinetics, mitigating I3 - formation and smoothening Zn deposition. The 4eZIBs in the optimized hybrid electrolyte not only deliver superior cyclability with a low fading rate of 0.0009% per cycle over 20 000 cycles and a close-to-unit coulombic efficiency but also exhibit stable performance in a wide temperature range from 40 °C to -40 °C. This study offers valuable insights into the rational design of electrolytes for 4eZIBs.

2.
Angew Chem Int Ed Engl ; 63(35): e202407261, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-38842470

RESUMO

The cycling performance of zinc-ion batteries is greatly affected by dendrite formation and side reactions on zinc anode, particularly in scenarios involving high depth of discharge (DOD) and low negative/positive capacity (N/P) ratios in full cells. Herein, drawing upon principles of host-guest interaction chemistry, we investigate the impact of molecular structure of electrolyte additives, specifically the -COOH and -OH groups, on the zinc negative electrode through molecular design. Our findings reveal that molecules containing these groups exhibit strong adsorption onto zinc anode surfaces and chelate with Zn2+, forming a H2O-poor inner Helmholtz plane. This effectively suppresses side reactions and promotes dendrite-free zinc deposition of exposed (002) facets, enhancing stability and reversibility of an average coulombic efficiency of 99.89 % with the introduction of Lactobionic acid (LA) additive. Under harsh conditions of 92 % DOD, Zn//Zn cells exhibit stable cycling at challenging current densities of 15 mA ⋅ cm-2. Even at a low N/P ratio of 1.3, Zn//NH4V4O10 full cells with LA electrolyte exhibit high-capacity retention of 73 % after 300 cycles, significantly surpassing that of the blank electrolyte. Moreover, in a conversion type Zn//Br static battery with a high areal capacity (~5 mAh ⋅ cm-2), LA electrolyte sustains an improved cycling stability of 700 cycles.

3.
ACS Appl Mater Interfaces ; 16(20): 26757-26767, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38722961

RESUMO

Aerogel fibers are good thermal insulators, suitable for weaving, and show potential as the next generation of intelligent textiles that can effectively reduce heat consumption for personal thermal management. However, the production of continuous aerogel fibers from biomass with sufficient strength and radial elasticity remains a significant challenge. Herein, continuous gel fibers were produced via wet spinning using agarose (AG) as the matrix, 2,2,2,6,6-tetramethylpiperidine-1-oxyl radical-oxidized cellulose nanofibers (TOCNs) as the reinforcing agent, and no other chemical additives by utilizing the gelling properties of AG. Supercritical drying and chemical vapor deposition (CVD) were then used to produce hydrophobic AG-TOCN aerogel fibers (HATAFs). During CVD, the HATAF gel skeleton was covered with an isostructural silica coating. Consequently, the HATAFs can recover from radial compression under 60% strain. Moreover, the HATAFs have low densities (≤0.14 g cm-3), high porosities (≥91.8%), high specific surface areas (≥188 m2 g-1), moderate tensile strengths (≤1.75 MPa), excellent hydrophobicity (water contact angles of >130°), and good thermal insulating properties at different temperatures. Thus, HATAFs are expected to become a new generation of materials for efficient personal thermal management.

4.
Gels ; 10(4)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38667686

RESUMO

Aerogel fibers, characterized by their ultra-low density and ultra-low thermal conductivity, are an ideal candidate for personal thermal management as they hold the potential to effectively reduce the energy consumption of room heating and significantly contribute to energy conservation. However, most aerogel fibers have weak mechanical properties or require complex manufacturing processes. In this study, simple continuous silk fibroin-agarose composite aerogel fibers (SCAFs) were prepared by mixing agarose with silk fibroin through wet spinning and rapid gelation, followed by solvent replacement and supercritical carbon dioxide treatment. Among them, the rapid gelation of the SCAFs was achieved using agarose physical methods with heat-reversible gel properties, simplifying the preparation process. Hydrophobic silk fibroin-agarose composite aerogel fibers (HSCAFs) were prepared using a simple chemical vapor deposition (CVD) method. After CVD, the HSCAFs' gel skeletons were uniformly coated with a silica layer containing methyl groups, endowing them with outstanding radial elasticity. Moreover, the HSCAFs exhibited low density (≤0.153 g/cm3), a large specific surface area (≥254.0 m2/g), high porosity (91.1-94.7%), and excellent hydrophobicity (a water contact angle of 136.8°). More importantly, they showed excellent thermal insulation performance in low-temperature (-60 °C) or high-temperature (140 °C) environments. The designed HSCAFs may provide a new approach for the preparation of high-performance aerogel fibers for personal thermal management.

5.
Chem Sci ; 15(9): 3357-3364, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38425523

RESUMO

Four-electron aqueous zinc-iodine batteries (4eZIBs) leveraging the I-/I0/I+ redox couple have garnered attention for their potential high voltage, capacity, and energy density. However, the electrophilic I+ species is highly susceptible to hydrolysis due to the nucleophilic attack by water. Previous endeavors to develop 4eZIBs primarily relied on highly concentrated aqueous electrolytes to mitigate the hydrolysis issue, nonetheless, it introduced challenges associated with dissolution, high electrolyte viscosity, and sluggish electrode kinetics. In this work, we present a novel complexation strategy that capitalizes on quaternary ammonium salts to form solidified compounds with I+ species, rendering them impervious to solubilization and hydrolysis in aqueous environments. The robust interaction in this complexation chemistry facilitates a highly reversible I-/I0/I+ redox process, significantly improving reaction kinetics within a conventional ZnSO4 aqueous electrolyte. The proposed 4eZIB exhibits a superior rate capability and an extended lifespan of up to 2000 cycles. This complexation chemistry offers a promising pathway for the development of advanced 4eZIBs.

6.
Molecules ; 28(24)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38138468

RESUMO

A large quantity of coal fly ash is generated worldwide from thermal power plants, causing a serious environmental threat owing to disposal and storage problems. In this work, for the first time, coal fly ash is converted into advanced and novel aerogel fibers and high-purity α-Al2O3. Silica-bacterial cellulose composite aerogel fibers (CAFs) were synthesized using an in situ sol-gel process under ambient pressure drying. Due to the unique "nanoscale interpenetrating network" (IPN) structure, the CAFs showed wonderful mechanical properties with an optimum tensile strength of 5.0 MPa at an ultimate elongation of 5.8%. Furthermore, CAFs with a high porosity (91.8%) and high specific surface area (588.75 m2/g) can inherit advanced features, including excellent thermal insulation, stability over a wide temperature range, and hydrophobicity (contact angle of approximately 144°). Additionally, Al2O3 was simultaneously extracted from the coal fly ash to ensure that the coal fly ash was fully exploited. Overall, low-cost woven CAFs fabrics are suitable for wearable applications and offer a great approach to comprehensively use coal fly ash to address environmental threats.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA