Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Biotechnol J ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600703

RESUMO

Sterols have long been associated with diverse fields, such as cancer treatment, drug development, and plant growth; however, their underlying mechanisms and functions remain enigmatic. Here, we unveil a critical role played by a GmNF-YC9-mediated CCAAT-box transcription complex in modulating the steroid metabolism pathway within soybeans. Specifically, this complex directly activates squalene monooxygenase (GmSQE1), which is a rate-limiting enzyme in steroid synthesis. Our findings demonstrate that overexpression of either GmNF-YC9 or GmSQE1 significantly enhances soybean stress tolerance, while the inhibition of SQE weakens this tolerance. Field experiments conducted over two seasons further reveal increased yields per plant in both GmNF-YC9 and GmSQE1 overexpressing plants under drought stress conditions. This enhanced stress tolerance is attributed to the reduction of abiotic stress-induced cell oxidative damage. Transcriptome and metabolome analyses shed light on the upregulation of multiple sterol compounds, including fucosterol and soyasaponin II, in GmNF-YC9 and GmSQE1 overexpressing soybean plants under stress conditions. Intriguingly, the application of soybean steroids, including fucosterol and soyasaponin II, significantly improves drought tolerance in soybean, wheat, foxtail millet, and maize. These findings underscore the pivotal role of soybean steroids in countering oxidative stress in plants and offer a new research strategy for enhancing crop stress tolerance and quality from gene regulation to chemical intervention.

2.
Plant Physiol Biochem ; 195: 310-321, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36657296

RESUMO

R2R3-MYB transcription factors play an important role in the synthesis of phenylpropanoid-derived compounds, which in turn provide salt tolerance in plant. In this study, we found that the expression of foxtail millet R2R3-MYB factor SiMYB16 can be induced by salt and drought. SiMYB16 is localized in the nucleus and acts as a transcriptional activator. Phylogenetic analysis indicates that SiMYB16 belongs to the R2R3-MYB transcription factor family subgroup 24. Transgenic rice expressing SiMYB16 (OX16) had a higher survival rate, lower malondialdehyde content, and heavier fresh weight compared with type (WT) under salt stress conditions. The transgenic plants also had a higher germination rate in salt treatment conditions and higher yield in the field compared with wild-type plants. Transcriptome analysis revealed that the up-regulated differential expression genes in the transgenic rice were mainly involved in phenylpropanoid biosynthesis, fatty acid elongation, phenylalanine metabolism, and flavonoid biosynthesis pathways. Quantitative real-time PCR analysis also showed that the genes encoding the major enzymes in the lignin and suberin biosynthesis pathways had higher expression level in SiMYB16 transgenic plants. Correspondingly, the content of flavonoid and lignin, and the activity of fatty acid synthase increased in SiMYB16 transgenic rice compared with wild-type plants under salt stress treatment. These results indicate that SiMYB16 gene can enhance plant salt tolerance by regulating the biosynthesis of lignin and suberin.


Assuntos
Oryza , Setaria (Planta) , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Tolerância ao Sal/genética , Setaria (Planta)/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Lignina/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Flavonoides/metabolismo , Secas
3.
Biochem Biophys Res Commun ; 519(4): 819-823, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31558318

RESUMO

Small guide RNA (sgRNA) is an important component of the CRISPR/Cas9 system. The gene editing efficiency of the CRISPR/Cas9 system could be enhanced by using highly active U6 promoters to drive the expression of sgRNA. Therefore, we constructed various expression vectors based on the 11 GmU6 promoters predicted and cloned in the whole soybean genome. The expression of truncated GUS driven by 11 GmU6 promoters was tested in hairy roots and by Arabidopsis thaliana transformation. The results indicated that higher transcriptional levels were driven by 5 GmU6 promoters (GmU6-4, GmU6-7, GmU6-8, GmU6-10 and GmU6-11) in both soybean hairy roots and Arabidopsis thaliana. In addition, three genes, Glyma03g36470, Glyma14g04180 and Glyma06g136900, were selected as targets to detect the transcriptional levels of multiple GmU6 promoters. Mutations in these three genes were detected in soybean hairy roots after Agrobacterium rhizogenes infection, indicating efficient target gene editing, including nucleotide insertion, deletion, and substitution. Mutation efficiencies differed among the 11 GmU6 promoters, ranging from 2.8% to 20.6%, and markedly higher efficiencies were obtained with all three genes using the GmU6-8 (20.3%) and GmU6-10 (20.6%) promoters. These two GmU6 promoters also showed higher ability to drive truncated GUS transcription in both soybean hairy roots and transformed Arabidopsis thaliana. These results will help to construct an efficient CRISPR-Cas9 gene editing system and promote the application of the CRISPR-Cas9 genome editing system in soybean molecular breeding.


Assuntos
Sistemas CRISPR-Cas/genética , Glycine max/genética , Regiões Promotoras Genéticas/genética , Edição de Genes , Glycine max/metabolismo
4.
Funct Plant Biol ; 36(3): 251-259, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32688644

RESUMO

Wheat hybrid necrosis has been genetically characterised for many years, but the specific gene(s) and the protein products involved in the processes remains unknown. In this study, protein expression in the base (B), mid (M) and tip (T) segments of the FL-2 leaves of a necrotic hybrid, PZF1 and its parents, Pan555 and Zheng891, was analysed and compared using a high throughput proteomic approach. Twenty-three protein spots, with significant variations in intensity across the necrotic leaf segments, were analysed by MALDI-TOF-MS, of which, 18 were matched to protein accessions in the NCBI database. Several of these proteins are enzymes involved in the methylation cycle, including AdoHcy hydrolase, AdoMet synthase 3 and methionine synthase 1; AdoHcy hydrolase was downregulated sharply in M and T, and AdoMet synthase 3 and methionine synthase 1 were upregulated gradually from M to T. This result suggests that methylation-associated processes, including epigenetic mechanisms, may play a role in the initiation and development of hybrid necrosis. Several energy cycle-associated proteins and cytoprotective proteins were also differentially expressed across the leaf segments, suggesting their direct association with or possible involvement in the necrotic processes. The significant imbalance of a heat-shock protein, a transposon protein and a RNA- and ssDNA-binding protein also makes these proteins potential molecular components in the necrotic processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA