RESUMO
Mycobacterium marinum, a photochromogenic, slow-growing mycobacterium, thrives in both marine and freshwater environments. Optimal growth occurs between 25°C and 35°C, with survival becoming challenging above 37°C. Typically, M. marinum enters the body via skin abrasions, often leading to infections of the upper extremities. Diagnosis of M. marinum infection is frequently challenging and delayed due to the difficult pathogen identification. At present, a standardized treatment protocol has yet to be established. Presented herein is a case study detailing an infection of the right hand's middle finger caused by M. marinum. Notably, his occupation as a chef, handling fish and seafood post-injury, was a significant factor. Histological examination of the skin biopsy and positive acid-fast staining were consistent with a diagnosis of mycobacterial infection. Pathological examination confirmed a skin infection with infectious granuloma, and tissue section acid-fast staining revealed acid-fast bacill. Cultures on Columbia blood agar yielded rough, flattened, yellow-fleshy colonies after 10 days, which was identified as M. marinum through 16S rRNA sequencing. The patient responded well to a 3-month regimen of oral moxifloxacin (0.4 qd) and linezolid (0.6 qd), resulting in rash resolution and pain relief, with no recurrence observed for 1-year follow-up. This report presents the first documented acid-fast staining images of M. marinum tissue sections and colony morphology photographs, offering an in-depth view of M. marinum's morphological characteristics. It aims to enhance awareness of M. marinum infections, underscore the necessity for clinicians to delve into patient histories, and provide a review of the clinical manifestations, diagnostic techniques, therapeutic approaches, and pathogenic mechanisms associated with M. marinum.
RESUMO
Due to global climate change, drought is emerging as a major threat to plant growth and agricultural productivity. Abscisic acid (ABA) has been implicated in plant drought tolerance, however, its retarding effects on plant growth cannot be ignored. The reactions catalyzed by 1-deoxy-D-xylulose-5-phosphate synthase (DXS) and 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) proteins are critical steps within the isoprenoid biosynthesis in plants. Here, five DXS (CtDXS1-5) and two DXR (CtDXR1-2) genes were identified from Cassia tora genome. Based on multiple assays including the phylogeny, cis-acting element, expression pattern, and subcellular localization, CtDXS1 and CtDXR1 genes might be potential candidates controlling the isoprenoid biosynthesis. Intriguingly, CtDXS1 transgenic plants resulted in drought tolerance but retardant growth, while CtDXR1 transgenic plants exhibited both enhanced drought tolerance and increased growth. By comparison of ß-carotene, chlorophyll, abscisic acid (ABA) and gibberellin 3 (GA3) contents in wild-type and transgenic plants, the absolute contents and (or) altered GA3/ABA levels were suggested to be responsible for the balance between drought tolerance and plant growth. The transcriptome of CtDXR1 transgenic plants suggested that the transcript levels of key genes, such as DXS, 9-cis-epoxycarotenoid dioxygenases (NCED), ent-kaurene synthase (KS) and etc, involved with chlorophyll, ß-carotene, ABA and GA3 biosynthesis were induced and their contents increased accordingly. Collectively, the trade-off effect induced by CtDXR1 was associated with redesigning architecture in phytohormone homeostasis and thus was highlighted for future breeding purposes.
RESUMO
Staphylococcus aureus (S. aureus) is a common opportunistic and zoonotic pathogen in the world and could easily cause human infections and food contaminations. This study investigated the sequence typing and resistance profiles of S. aureus isolates from patient and food samples in Shijiazhuang, China. A total of 101 S. aureus isolates were distributed into six clonal complexes (CCs) and 16 singletons. A total of 86 patient isolates were distributed into six clonal CCs and 12 singletons, including a new ST. CC59, CC5, CC22, and CC398 were the predominant CCs of patient isolates. A total of 15 foodborne S. aureus isolates were distributed into 3 CCs and 4 STs, and CC1 was the most prevalent CC. Moreover, 101 S. aureus isolates had high resistance to penicillin and low resistance to chloramphenicol and rifampicin. A total of 39 strains of methicillin-resistant Staphylococcus aureus (MRSA) were detected in this study, including thirty-eight strains of patient isolates (44.2%, 38/86) and one strain of food isolates (6.7%, 1/15). MRSA-ST5, MRSA-ST59, and MRSA-ST239 were the predominant MRSA isolates in hospitals. The present study explained the relationship between S. aureus isolated from patient and food samples and indicated the risks of S. aureus in infectious diseases.
RESUMO
As an opportunistic pathogen worldwide, Staphylococcus aureus can cause food poisoning and human infections. This study investigated the sequence typing, the penicillin (blaZ) and methicillin (mec) resistance profiles of S. aureus from food samples and food poisoning outbreaks in Shijiazhuang City, and the staphylococcal enterotoxin (SE) types of the S. aureus isolates from food poisoning. A total of 138 foodborne S. aureus isolates were distributed into 8 clonal complexes (CCs) and 12 singletons. CC1, CC5, CC8, CC15, CC97, CC59, CC398, CC88, and CC7 were the predominant CCs of foodborne S. aureus isolates. Moreover, CC59, CC15, and CC5 were the most prevalent CCs in food poisoning outbreaks. SEE was the most commonly detected SE in food poisoning isolates. One hundred thirty-three S. aureus isolates harbored the penicillin-resistant gene blaZ, and nine isolates carried the mec gene. The present study further explained the relationship between S. aureus and foods and food poisoning and indicated the potential risk of S. aureus infection.
RESUMO
Fritillaria species, a well-known Chinese traditional medicine for more than 2,000 years, have become rare resources due to excessive harvesting. In order to balance the economical requirement and ecological protection of Fritillaria species, it is necessary to determine (1) the important environmental variables that were responsible for the spatial distribution, (2) distribution change in response to climate change in the future, (3) ecological niche overlap between various Fritillaria species, and (4) the correlation between spatial distribution and phylogenies as well. In this study, the areas with potential ecological suitability for Fritillaria cirrhosa, Fritillaria unibracteata, and Fritillaria przewalskii were predicted using MaxEnt based on the current occurrence records and bioclimatic variables. The result indicated that precipitation and elevation were the most important environmental variables for the three species. Moreover, the current suitable habitats of F. cirrhosa, F. unibracteata, and F. przewalskii encompassed 681,951, 481,607, and 349,199 km2, respectively. Under the scenario of the highest concentration of greenhouse gas emission (SSP585), the whole suitable habitats of F. cirrhosa and F. przewalskii reach the maximum from 2021 to 2100, while those of F. unibracteata reach the maximum from 2021 to 2100 under the scenario of moderate emission (SSP370) from 2021 to 2100. The MaxEnt data were also used to predict the ecological niche overlap, and thus high overlap occurring among three Fritillaria species was observed. The niche overlap of three Fritillaria species was related to the phylogenetic analysis despite the non-significance (P > 0.05), indicating that spatial distribution was one of the factors that contributed to the speciation diversification. Additionally, we predicted species-specific habitats to decrease habitat competition. Overall, the information obtained in this study provided new insight into the potential distribution and ecological niche of three species for the conservation and management in the future.
RESUMO
Hydroxypropyl methylcellulose (HPMC) film containing bovine bone collagen (BC) and nano-TiO2 were developed via casting method. The films were characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR), and their mechanical properties, barrier properties, thermal stability and surface color were investigated. The results showed that polymer matrices of HPMC and BC had good compatibility. The nano-TiO2 could be well embedded and dispersed in the matrix of HPMC/BC films, resulting in homogeneous, continuous and compact structure of the composite films. The addition of BC and nano-TiO2 significantly (p < .05) changed the surface color parameters of the films (p < .05). In addition, the introduction of BC and nano-TiO2 had a positive effect on the improvement of mechanical properties, barrier properties and thermal stability of the HPMC based films. The results suggest that HPMC based films containing BC and nano-TiO2 are more suitable for active packaging in the food industry.
RESUMO
Citrobacter spp. are opportunistic human pathogens which can cause nosocomial infections, sporadic infections and outbreaks. In order to determine the genetic diversity, in vitro virulence properties and antimicrobial resistance profiles of Citrobacter spp., 128 Citrobacter isolates obtained from human diarrheal patients, foods and environment were assessed by multilocus sequence typing (MLST), antimicrobial susceptibility testing and adhesion and cytotoxicity testing to HEp-2 cells. The 128 Citrobacter isolates were typed into 123 sequence types (STs) of which 101 were novel STs, and these STs were divided into five lineages. Lineages I and II contained C. freundii isolates; Lineage III contained all C. braakii isolates, while Lineage IV and V contained C. youngae isolates. Lineages II and V contained more adhesive and cytotoxic isolates than Lineages I, III, and IV. Fifty-one of the 128 isolates were found to be multidrug-resistant (MDR, ≥3) and mainly distributed in Lineages I, II, and III. The prevalence of quinolone resistance varied with Lineage III (C. braakii) having the highest proportion of resistant isolates (52.6%), followed by Lineage I (C. freundii) with 23.7%. Seven qnrB variants, including two new alleles (qnrB93 and qnrB94) were found with Lineage I being the main reservoir. In summary, highly cytotoxic MDR isolates from diarrheal patients may increase the risk of severe disease.
RESUMO
Corn distarch phosphate-zein bilayer films (C-Z) fabricated from corn distarch phosphate-based films (C) laminated on zein-based films (Z) by thermocompression. The strong interaction between starch and zein molecules was formed by hydrogen bonding, which resulted in good thermal stability of bilayer films. Moreover, bilayer films exhibited better mechanical properties and ductility than monolayer Z films, and concomitantly enhanced the moisture barrier and oxygen barrier for monolayer C films. The tensile strength (TS) and elongation at break (EAB) of the C-Z bilayer films (the ratio C:Z was 6:4) increased by 74.04% and 348.13% over the Z films, respectively. Compared with C films, the water vapor permeability (WVP) and oxygen permeability (OP) of the C-Z bilayer films (the ratio C:Z was 6: 4) decreased by 31.53 and 24.26%, respectively.
Assuntos
Bicamadas Lipídicas/química , Fenômenos Mecânicos , Fosfatos/química , Amido/química , Temperatura , Zea mays/química , Zeína/química , Oxigênio/análise , Permeabilidade , Espectroscopia de Infravermelho com Transformada de Fourier , Vapor/análise , Resistência à Tração , Difração de Raios XRESUMO
BACKGROUND: In this paper, a novel modified microcrystalline corn straw cellulose (MMCSC) was prepared by ultrasonic/microwave-assisted treatment. Effective incorporation of MMCSC into corn distarch phosphate (CDP)-based composite films was investigated. RESULTS: As the proportion of MMCSC was increased, tensile strength increased initially before decreasing, and the elongation at break always decreased. The composite film of MMCSC20 showed the lowest water vapor permeability (2.917 × 10-7 g m-1 h-1 Pa-1 ). The measurement of surface color showed that by the increasing of the MMCSC proportion in composite films, the L* and b* values and the total color difference (ΔE* ) increased, while a* values decreased. Fourier transform infrared spectroscopy and X-ray diffraction analysis indicated that, with the incorporation of MMCSC, the stable structure of the films was enhanced through cross-linking and the crystallinity was increased. A scanning electron microscopy study revealed the surface microstructure of films (MMCSC0-MMCSC30) was smooth and homogeneous, and there was no distinct separation in the matrix of composite films. CONCLUSION: The incorporation of suitable MMCSC could improve the properties of composite films. The CDP-MMCSC films, which are completely biodegradable and environmental friendly, have a high potential to be used for food packaging. © 2018 Society of Chemical Industry.
Assuntos
Celulose/análogos & derivados , Embalagem de Alimentos/instrumentação , Extratos Vegetais/química , Amido/química , Zea mays/química , Celulose/química , Permeabilidade , Fosfatos/química , Caules de Planta/química , Espectroscopia de Infravermelho com Transformada de Fourier , Resistência à Tração , Água/químicaRESUMO
Edible films were casted using aqueous solutions of corn distarch phosphate (CDP, 3 wt%) and corn straw cellulose (CSC, 0.5 wt%). The effects of ultrasonic, microwave and ultrasonic/microwave-assisted treatment on mechanical properties and light transmittance, as well as the water vapour permeability (WVP) of edible films, were evaluated. It was found that corn distarch phosphate/corn straw cellulose (CDP/CSC) films treated using ultrasonic waves/microwaves for a certain condition has a distinct increase in tensile strength, elongation at break and light transmittance and a drastic decrease in WVP. Moreover, scanning electron microscopy demonstrated that the surface and cross-section morphology of CDP/CSC films after ultrasonic/microwave-assisted treatment were smoother, denser and without a notable phase separation compared with control films. The results of mechanical properties and barrier properties were in agreement with the changes in molecular interactions detected by Fourier transform infrared spectroscopy and X-ray diffraction analysis. These findings indicate that ultrasonic/microwave-assisted treatment can improve the application of biodegradable films.
RESUMO
Cold water paddy field soils are relatively unproductive, but can be ameliorated by supplementing with inorganic fertilizer from animal waste-based composts. The yield of two rice cultivars was significantly raised by providing either chicken manure or cow dung-based compost. The application of these composts raised the soil pH as well as both the total nitrogen and ammonium nitrogen content, which improved the soil's fertility and raised its nitrification potential. The composts had a measurable effect on the abundance of nitrogencycling- related soil microbes, as measured by estimating the copy number of various bacterial and archaeal genes using quantitative real-time PCR. The abundance of ammonia oxidizing archaea and bacteria was markedly encouraged by the application of chicken manure-based compost. Supplementation with the composts helped promote the availability of soil nitrogen in the cold water paddy field, thereby improving the soil's productivity and increasing the yield of the rice crop.
Assuntos
Agricultura , Bactérias/classificação , Bactérias/metabolismo , Oryza , Microbiologia do Solo , Biotecnologia , Temperatura Baixa , Água Subterrânea , NitrificaçãoRESUMO
sRNA-Xcc1 is a trans-acting sRNA recently identified from the plant pathogenic bacterium Xanthomonas campestris pathovar campestris (Xcc). Here, the phylogenetic distribution, predicted secondary structure and regulation of expression of sRNA-Xcc1 were analyzed. The analysis showed (1) a total 81 sRNA-Xcc1 homologs that are found in some bacterial strains that are taxonomically unrelated, belonging to the α-, ß-, γ- and δ-proteobacteria (2) that some sRNA-Xcc1 homologs are located in a plasmid-borne transposon or near a transposase coding gene, (3) that sRNA-Xcc1 is encoded by a integron gene cassette in Xcc and sRNA-Xcc1 homologs occur in integron gene cassettes of some uncultured bacteria and (4) that sRNA-Xcc1 homologs have a highly conserved sequence motif and a stable consensus secondary structure. These findings strongly support the idea that sRNA-Xcc1 represents a novel family of sRNAs which may be originally captured by integrons from natural environments and then spread among different bacterial species via horizontal gene transfer, possibly by means of transposons and plasmids. The expression analysis results demonstrated that the transcription of sRNA-Xcc1 is under the positive control of the key virulence regulators HrpG and HrpX, indicating that sRNA-Xcc1 may be involved in the virulence regulation of Xcc.
Assuntos
Proteínas de Bactérias/genética , RNA Bacteriano/genética , Pequeno RNA não Traduzido/genética , Transativadores/genética , Fatores de Transcrição/genética , Xanthomonas campestris/genética , Sequência de Bases , Northern Blotting , Elementos de DNA Transponíveis/genética , Regulação Bacteriana da Expressão Gênica , Integrons/genética , Dados de Sequência Molecular , Mutação , Conformação de Ácido Nucleico , Filogenia , Plasmídeos/genética , Regiões Promotoras Genéticas/genética , RNA Bacteriano/química , RNA Bacteriano/classificação , Pequeno RNA não Traduzido/química , Pequeno RNA não Traduzido/classificação , Homologia de Sequência do Ácido Nucleico , Virulência/genética , Xanthomonas campestris/patogenicidadeRESUMO
Infectious diseases have significantly delayed the growth of crab aquaculture. Identification of the immune molecules and characterization of the defense mechanisms will be pivotal to the reduction of these diseases. Hemocyanin is an important non-specific immune protein present in the hemolymph of both mollusks and arthropods. However, little is known about the hemocyanin from the mud crab Scylla serrata. In this study, we identified the S. serrata hemocyanin using affinity proteomics and investigated its agglutinative properties. The results showed that S. serrata hemocyanin consists of five subunits with molecular weights of 70, 72, 75, 76 and 80 kDa, respectively. It demonstrated agglutination activities against seven bacterial species at concentrations ranging from 7.5 to 30 µg/ml. Agglutination was inhibited by 50-200 mM of N-acetylneuraminic acid, α-d-glucose, d-galactose and d-xylose. The 76 kDa subunit was identified as the protein that primarily binds bacterial cells and we speculate that it functions as the agglutinating subunit. We showed that outer membrane proteins (Omp) of bacteria could completely inhibit agglutination and that the agglutination activities of hemocyanin against Escherichia coli âµOmpA and âµOmpX mutants were significantly decreased, suggesting that these two Omps may be important ligands of hemocyanin. Together, the data collectively suggests that the 76 kDa subunit of S. serrata hemocyanin mediates agglutination through recognition of OmpA and OmpX proteins in bacteria.
Assuntos
Aglutinação/fisiologia , Bactérias/metabolismo , Braquiúros/metabolismo , Hemocianinas/metabolismo , AnimaisRESUMO
BACKGROUND: In bacteria, small non-coding RNAs (sRNAs) have been recognized as important regulators of various cellular processes. Approximately 200 bacterial sRNAs in total have been reported. However, very few sRNAs have been identified from phytopathogenic bacteria. RESULTS: Xanthomons campestris pathovar campestris (Xcc) is the causal agent of black rot disease of cruciferous crops. In this study, a cDNA library was constructed from the low-molecular weight RNA isolated from the Xcc strain 8004 grown to exponential phase in the minimal medium XVM2. Seven sRNA candidates were obtained by sequencing screen of 2,500 clones from the library and four of them were confirmed to be sRNAs by Northern hybridization, which were named sRNA-Xcc1, sRNA-Xcc2, sRNA-Xcc3, and sRNA-Xcc4. The transcription start and stop sites of these sRNAs were further determined. BLAST analysis revealed that the four sRNAs are novel. Bioinformatics prediction showed that a large number of genes with various known or unknown functions in Xcc 8004 are potential targets of sRNA-Xcc1, sRNA-Xcc3 and sRNA-Xcc4. In contrast, only a few genes were predicted to be potential targets of sRNA-Xcc2. CONCLUSION: We have identified four novel sRNAs from Xcc by a large-scale screen. Bioinformatics analysis suggests that they may perform various functions. This work provides the first step toward understanding the role of sRNAs in the molecular mechanisms of Xanthomonas campestris pathogenesis.