Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Gigascience ; 132024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38837945

RESUMO

BACKGROUND: Traditional Chinese medicine has used Peucedanum praeruptorum Dunn (Apiaceae) for a long time. Various coumarins, including the significant constituents praeruptorin (A-E), are the active constituents in the dried roots of P. praeruptorum. Previous transcriptomic and metabolomic studies have attempted to elucidate the distribution and biosynthetic network of these medicinal-valuable compounds. However, the lack of a high-quality reference genome impedes an in-depth understanding of genetic traits and thus the development of better breeding strategies. RESULTS: A telomere-to-telomere (T2T) genome was assembled for P. praeruptorum by combining PacBio HiFi, ONT ultra-long, and Hi-C data. The final genome assembly was approximately 1.798 Gb, assigned to 11 chromosomes with genome completeness >98%. Comparative genomic analysis suggested that P. praeruptorum experienced 2 whole-genome duplication events. By the transcriptomic and metabolomic analysis of the coumarin metabolic pathway, we presented coumarins' spatial and temporal distribution and the expression patterns of critical genes for its biosynthesis. Notably, the COSY and cytochrome P450 genes showed tandem duplications on several chromosomes, which may be responsible for the high accumulation of coumarins. CONCLUSIONS: A T2T genome for P. praeruptorum was obtained, providing molecular insights into the chromosomal distribution of the coumarin biosynthetic genes. This high-quality genome is an essential resource for designing engineering strategies for improving the production of these valuable compounds.


Assuntos
Apiaceae , Cumarínicos , Genoma de Planta , Telômero , Cumarínicos/metabolismo , Apiaceae/genética , Apiaceae/metabolismo , Telômero/genética , Telômero/metabolismo , Evolução Molecular , Filogenia , Genômica/métodos , Vias Biossintéticas/genética
2.
Epigenetics ; 19(1): 2293411, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38105608

RESUMO

Analysis of transcription factors and chromatin modifications at the genome-wide level provides insights into gene regulatory processes, such as transcription, cell differentiation and cellular response. Chromatin immunoprecipitation is the most popular and powerful approach for mapping chromatin, and other enzyme-tethering techniques have recently become available for living cells. Among these, Cleavage Under Targets and Tagmentation (CUT&Tag) is a relatively novel chromatin profiling method that has rapidly gained popularity in the field of epigenetics since 2019. It has also been widely adapted to map chromatin modifications and TFs in different species, illustrating the association of these chromatin epitopes with various physiological and pathological processes. Scalable single-cell CUT&Tag can be combined with distinct platforms to distinguish cellular identity, epigenetic features and even spatial chromatin profiling. In addition, CUT&Tag has been developed as a strategy for joint profiling of the epigenome, transcriptome or proteome on the same sample. In this review, we will mainly consolidate the applications of CUT&Tag and its derivatives on different platforms, give a detailed explanation of the pros and cons of this technique as well as the potential development trends and applications in the future.


Assuntos
Cromatina , Sequenciamento de Nucleotídeos em Larga Escala , Cromatina/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Metilação de DNA , Epigênese Genética , Epigenômica/métodos
3.
BMC Genomics ; 24(1): 777, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102591

RESUMO

RNA-Seq analysis of Formalin-Fixed and Paraffin-Embedded (FFPE) samples has emerged as a highly effective approach and is increasingly being used in clinical research and drug development. However, the processing and storage of FFPE samples are known to cause extensive degradation of RNAs, which limits the discovery of gene expression or gene fusion-based biomarkers using RNA sequencing, particularly methods reliant on Poly(A) enrichment. Recently, researchers have developed an exome targeted RNA-Seq methodology that utilizes biotinylated oligonucleotide probes to enrich RNA transcripts of interest, which could overcome these limitations. Nevertheless, the standardization of this experimental framework, including probe designs, sample multiplexing, sequencing read length, and bioinformatic pipelines, remains an essential requirement. In this study, we conducted a comprehensive comparison of three main commercially available exome capture kits and evaluated key experimental parameters, to provide the overview of the advantages and limitations associated with the selection of library preparation protocols and sequencing platforms. The results provide valuable insights into the best practices for obtaining high-quality data from FFPE samples.


Assuntos
Exoma , Formaldeído , Perfilação da Expressão Gênica/métodos , Parafina , Inclusão em Parafina/métodos , RNA/genética , Análise de Sequência de RNA , Fixação de Tecidos/métodos
4.
iScience ; 26(3): 106116, 2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36994192

RESUMO

We used a green fluorescent protein marker gene for paternity analysis to determine if virus infection affected male reproductive success of tomato in bumblebee-mediated cross-pollination under glasshouse conditions. We found that bumblebees that visited flowers of infected plants showed a strong preference to subsequently visit flowers of non-infected plants. The behavior of the bumblebees to move toward non-infected plants after pollinating virus-infected plants appears to explain the paternity data, which demonstrate a statistically significant ∼10-fold bias for fertilization of non-infected plants with pollen from infected parents. Thus, in the presence of bumblebee pollinators, CMV-infected plants exhibit enhanced male reproductive success.

5.
J Integr Plant Biol ; 65(5): 1147-1152, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36537698

RESUMO

The roots of legume plant play a crucial role in nitrogen fixation. However, the transcriptomes of different cell types of legume root and their functions remain largely unknown. Here, we performed single-cell RNA sequencing and profiled more than 22,000 single cells from root tips of Lotus japonicus, a model species of legume. We identified seven clusters corresponding to seven major cell types, which were validated by in situ hybridization. Further analysis revealed regulatory programs including phytohormone and nodulation associated with specific cell types, and revealed conserved and diverged features for the cell types. Our results represent the first single-cell resolution transcriptome for legume root tips and a valuable resource for studying the developmental and physiological functions of various cell types in legumes.


Assuntos
Lotus , Lotus/genética , Lotus/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Análise da Expressão Gênica de Célula Única , Simbiose/genética , Fixação de Nitrogênio/genética , Nódulos Radiculares de Plantas/genética , Regulação da Expressão Gênica de Plantas/genética
6.
Front Cell Dev Biol ; 10: 1055808, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36407103

RESUMO

Epitranscriptomics has emerged as another level of epigenetic regulation similar to DNA and histone modifications. N 6-methyladenosine (m6A) is one of the most prevalent and abundant posttranscriptional modifications, widely distributed in many biological species. The level of N 6-methyladenosine RNA methylation is dynamically and reversibly regulated by distinct effectors including methyltransferases, demethylases, histone modification and metabolites. In addition, N 6-methyladenosine RNA methylation is involved in multiple RNA metabolism pathways, such as splicing, localization, translation efficiency, stability and degradation, ultimately affecting various pathological processes, especially the oncogenic and tumor-suppressing activities. Recent studies also reveal that N 6-methyladenosine modification exerts the function in immune cells and tumor immunity. In this review, we mainly focus on the regulatory mechanisms of N 6-methyladenosine RNA methylation, the techniques for detecting N 6-methyladenosine methylation, the role of N 6-methyladenosine modification in cancer and other diseases, and the potential clinical applications.

7.
Nat Commun ; 13(1): 7328, 2022 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-36443323

RESUMO

Tree peony (Paeonia ostii) is an economically important ornamental plant native to China. It is also notable for its seed oil, which is abundant in unsaturated fatty acids such as α-linolenic acid (ALA). Here, we report chromosome-level genome assembly (12.28 Gb) of P. ostii. In contrast to monocots with giant genomes, tree peony does not appear to have undergone lineage-specific whole-genome duplication. Instead, explosive LTR expansion in the intergenic regions within a short period (~ two million years) may have contributed to the formation of its giga-genome. In addition, expansion of five types of histone encoding genes may have helped maintain the giga-chromosomes. Further, we conduct genome-wide association studies (GWAS) on 448 accessions and show expansion and high expression of several genes in the key nodes of fatty acid biosynthetic pathway, including SAD, FAD2 and FAD3, may function in high level of ALAs synthesis in tree peony seeds. Moreover, by comparing with cultivated tree peony (P. suffruticosa), we show that ectopic expression of class A gene AP1 and reduced expression of class C gene AG may contribute to the formation of petaloid stamens. Genomic resources reported in this study will be valuable for studying chromosome/genome evolution and tree peony breeding.


Assuntos
Paeonia , Paeonia/genética , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Genômica , Cromossomos
8.
Int J Biol Macromol ; 198: 54-67, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34968536

RESUMO

Metallothioneins (MTs) are believed as key metal chelators and scavengers of reactive oxygen species (ROS), which are involved in tolerance and de-toxicity to multiple environmental stresses in plants. The MT gene family was characterized from upland cotton (Gossypium hirsutum L.), compared with its putative genome donors G. arboretum and raimondii. Subsequently, gene functions were predicted by promoter analysis. Moreover, gene expressions subjecting to exogenous stimuli, as well as in terms of developments, were studied. The main findings were shown as follows: 1) 19 GhMTs were identified from G. hirsutum, and the family completely included all four sub-types, namely p1, p2, p3, and pec. Sub-type p2 GhMTs were most conservative in protein motif compositions, gene structures, phylogenic relationships, and group numbers, while p3 GhMTs demonstrated much more diversiform and distant genetic relationships. 2) The GhMT family experienced apparent gene expansion, and the members from the D sub-genome were subjected to stronger environmental selection. 3) GhMTs played differential and overlapped roles in response to environmental cues. 4) GhMT6, GhMT8, and GhMT14 were involved in both vegetative and reproductive developments. These findings must provide valuable insights into understanding the plant MT gene family and novel gene resources for cotton breeding for environmental stresses, phytoremediation, and beyond.


Assuntos
Gossypium
9.
Mol Ecol Resour ; 22(4): 1545-1558, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34837460

RESUMO

Quasipaa spinosa is an Asian commercial Dicroglossidae species noted for its spiny chest found in adult males. Here, we report the first chromosomal level Q. spinosa genome employing PacBio long read sequencing and high-resolution chromosome conformation capture (Hi-C) technology. The total length of the final assembled genome was 2,839,292,578 bp, with contig N50 of 3.79 Mb and scaffold N50 of 327.44 Mb. Approximately 99.30% of the length of the assembled genome sequences were anchored to 13 chromosomes with the assistance of Hi-C reads. A total of 26,173 protein-coding genes were predicted, and 95.98% of the genes were functionally annotated. The annotated genes covered a total of 92.10% of the complete vertebrate core gene set according to the BUSCO pipeline evaluation. Approximately 41 million years ago, Q. spinosa began to diverge from its dicroglossid sister taxon Nanorana parkeri. The Q. spinosa genome revealed obvious chromosomal fissions compared with Xenopus tropicalis, which probably represented a specific chromosome evolutionary history within frogs. Population analysis showed that Chinese Q. spinosa could be divided into eastern and western genetic clusters, with the western population showing higher diversity than the eastern population. The effective population size of Q. spinosa showed a continuously decreasing trend from one million years ago to 10,000 years ago. In summary, this study sheds light on Q. spinosa evolution and population differentiation, providing a valuable genomic resource for further biological and genetic studies on this species, and other closely related frog taxa.


Assuntos
Cromossomos , Genoma , Animais , Anuros/genética , Cromossomos/genética , Masculino , Filogenia , Análise de Sequência de DNA
10.
Gigascience ; 122022 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-37776367

RESUMO

BACKGROUND: The Lycophyta species are the extant taxa most similar to early vascular plants that were once abundant on Earth. However, their distribution has greatly diminished. So far, the absence of chromosome-level assembled lycophyte genomes has hindered our understanding of evolution and environmental adaption of lycophytes. FINDINGS: We present the reference genome of the tetraploid aquatic quillwort, Isoetes sinensis, a lycophyte. This genome represents the first chromosome-level assembled genome of a tetraploid seed-free plant. Comparison of genomes between I. sinensis and Isoetestaiwanensis revealed conserved and different genomic features between diploid and polyploid lycophytes. Comparison of the I. sinensis genome with those of other species representing the evolutionary lineages of green plants revealed the inherited genetic tools for transcriptional regulation and most phytohormones in I. sinensis. The presence and absence of key genes related to development and stress responses provide insights into environmental adaption of lycophytes. CONCLUSIONS: The high-quality reference genome and genomic analysis presented in this study are crucial for future genetic and environmental studies of not only I. sinensis but also other lycophytes.


Assuntos
Poliploidia , Tetraploidia , Humanos , Genômica , Diploide , Cromossomos , Filogenia
11.
Nat Commun ; 12(1): 7083, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34873160

RESUMO

The availability of viral entry factors is a prerequisite for the cross-species transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Large-scale single-cell screening of animal cells could reveal the expression patterns of viral entry genes in different hosts. However, such exploration for SARS-CoV-2 remains limited. Here, we perform single-nucleus RNA sequencing for 11 non-model species, including pets (cat, dog, hamster, and lizard), livestock (goat and rabbit), poultry (duck and pigeon), and wildlife (pangolin, tiger, and deer), and investigated the co-expression of ACE2 and TMPRSS2. Furthermore, cross-species analysis of the lung cell atlas of the studied mammals, reptiles, and birds reveals core developmental programs, critical connectomes, and conserved regulatory circuits among these evolutionarily distant species. Overall, our work provides a compendium of gene expression profiles for non-model animals, which could be employed to identify potential SARS-CoV-2 target cells and putative zoonotic reservoirs.


Assuntos
Atlas como Assunto , Análise de Célula Única/veterinária , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Aves , Comunicação Celular , Evolução Molecular , Redes Reguladoras de Genes , Interações Hospedeiro-Patógeno , Pulmão/citologia , Pulmão/metabolismo , Pulmão/virologia , Mamíferos , Receptores Virais/genética , Receptores Virais/metabolismo , Répteis , SARS-CoV-2/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Transcriptoma , Tropismo Viral , Internalização do Vírus
12.
Front Oncol ; 11: 756326, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34745991

RESUMO

BACKGROUND: Aberrant methylation of CpG sites served as an epigenetic marker for building diagnostic, prognostic, and recurrence models for hepatocellular carcinoma (HCC). METHODS: Using Illumina 450K and EPIC Beadchip, we identified 34 CpG sites in peripheral blood mononuclear cell (PBMC) DNA that were differentially methylated in early HCC versus HBV-related liver diseases (HBVLD). We employed multiplex bisulfite sequencing (MBS) based on next-generation sequencing (NGS) to measure methylation of 34 CpG sites in PBMC DNA from 654 patients that were divided into a training set (n = 442) and a test set (n = 212). Using the training set, we selected and built a six-CpG-scorer (namely, cg14171514, cg07721852, cg05166871, cg18087306, cg05213896, and cg18772205), applying least absolute shrinkage and selection operator (LASSO) regression. We performed multivariable analyses of four candidate risk predictors (namely, six-CpG-scorer, age, sex, and AFP level), using 20 times imputation of missing data, non-linearly transformed, and backwards feature selection with logistic regression. The final model's regression coefficients were calculated according to "Rubin's Rules". The diagnostic accuracy of the model was internally validated with a 10,000 bootstrap validation dataset and then applied to the test set for validation. RESULTS: The area under the receiver operating characteristic curve (AUROC) of the model was 0.81 (95% CI, 0.77-0.85) and it showed good calibration and decision curve analysis. Using enhanced bootstrap validation, adjusted C-statistics and adjusted Brier score were 0.809 and 0.199, respectively. The model also showed an AUROC value of 0.84 (95% CI 0.79-0.88) of diagnosis for early HCC in the test set. CONCLUSIONS: Our model based on the six-CpG-scorer was a reliable diagnosis tool for early HCC from HBVLD. The usage of the MBS method can realize large-scale detection of CpG sites in clinical diagnosis of early HCC and benefit the majority of patients.

14.
Hortic Res ; 8(1): 189, 2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34354044

RESUMO

Ginger (Zingiber officinale), the type species of Zingiberaceae, is one of the most widespread medicinal plants and spices. Here, we report a high-quality, chromosome-scale reference genome of ginger 'Zhugen', a traditionally cultivated ginger in Southwest China used as a fresh vegetable, assembled from PacBio long reads, Illumina short reads, and high-throughput chromosome conformation capture (Hi-C) reads. The ginger genome was phased into two haplotypes, haplotype 1 (1.53 Gb with a contig N50 of 4.68 M) and haplotype 0 (1.51 Gb with a contig N50 of 5.28 M). Homologous ginger chromosomes maintained excellent gene pair collinearity. In 17,226 pairs of allelic genes, 11.9% exhibited differential expression between alleles. Based on the results of ginger genome sequencing, transcriptome analysis, and metabolomic analysis, we proposed a backbone biosynthetic pathway of gingerol analogs, which consists of 12 enzymatic gene families, PAL, C4H, 4CL, CST, C3'H, C3OMT, CCOMT, CSE, PKS, AOR, DHN, and DHT. These analyses also identified the likely transcription factor networks that regulate the synthesis of gingerol analogs. Overall, this study serves as an excellent resource for further research on ginger biology and breeding, lays a foundation for a better understanding of ginger evolution, and presents an intact biosynthetic pathway for species-specific gingerol biosynthesis.

15.
Exp Eye Res ; 205: 108501, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33600811

RESUMO

The angiotensin-converting enzyme 2 (ACE2) receptor has been proved for SARS-CoV-2 cell entry after auxiliary cellular protease priming by transmembrane protease serine 2 (TMPRSS2), but the co-effect of this molecular mechanism was unknown. Here, single-cell sequencing was performed with human conjunctiva and the results have shown that ACE2 and TMPRSS2 were highly co-expressed in the goblet cells with genes involved in immunity process. This identification of conjunctival cell types which are permissive to virus entry would help to understand the process by which SARS-CoV-2 infection was established. These finding might be suggestive for COVID-19 control and protection.


Assuntos
COVID-19/genética , Túnica Conjuntiva/metabolismo , Regulação da Expressão Gênica , Células Caliciformes/metabolismo , Peptidil Dipeptidase A/genética , Serina Endopeptidases/genética , COVID-19/metabolismo , COVID-19/patologia , Túnica Conjuntiva/patologia , Células Caliciformes/patologia , Humanos , Peptidil Dipeptidase A/biossíntese , RNA/genética , SARS-CoV-2 , Serina Endopeptidases/biossíntese
16.
Mol Ecol Resour ; 21(4): 1243-1255, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33421343

RESUMO

Chinese mahogany (Toona sinensis) is a woody plant that is widely cultivated in China and Malaysia. Toona sinensis is important economically, including as a nutritious food source, as material for traditional Chinese medicine and as a high-quality hardwood. However, the absence of a reference genome has hindered in-depth molecular and evolutionary studies of this plant. In this study, we report a high-quality T. sinensis genome assembly, with scaffolds anchored to 28 chromosomes and a total assembled length of 596 Mb (contig N50 = 1.5 Mb and scaffold N50 = 21.5 Mb). A total of 34,345 genes were predicted in the genome after homology-based and de novo annotation analyses. Evolutionary analysis showed that the genomes of T. sinensis and Populus trichocarpa diverged ~99.1-103.1 million years ago, and the T. sinensis genome underwent a recent genome-wide duplication event at ~7.8 million years and one more ancient whole genome duplication event at ~71.5 million years. These results provide a high-quality chromosome-level reference genome for T. sinensis and confirm its evolutionary position at the genomic level. Such information will offer genomic resources to study the molecular mechanism of terpenoid biosynthesis and the formation of flavour compounds, which will further facilitate its molecular breeding. As the first chromosome-level genome assembled in the family Meliaceae, it will provide unique insights into the evolution of members of the Meliaceae.


Assuntos
Genoma de Planta , Meliaceae , Toona , China , Cromossomos de Plantas , Malásia , Filogenia , Toona/genética
17.
Mol Plant ; 14(3): 384-394, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33352304

RESUMO

There are two main types of root systems in flowering plants, namely taproot systems of dicots and fibrous root systems found in monocots. Despite this fundamental split, our current knowledge of cellular and molecular mechanism driving root development is mainly based on studies of the dicot model Arabidopsis. However, the world major crops are monocots and little is known about the transcriptional programs underlying cell-type specification in this clade. Here, we report the transcriptomes of more than 20 000 single cells derived from root tips of two agronomically important rice cultivars. Using combined computational and experimental analyses we were able to robustly identify most of the major cell types and define novel cell-type-specific marker genes for both cultivars. Importantly, we found divergent cell types associated with specific regulatory programs, including phytohormone biosynthesis, signaling, and response, which were well conserved between the two rice cultivars. In addition, we detected substantial differences between the cell-type transcript profiles of Arabidopsis and rice. These species-specific features emphasize the importance of analyzing tissues across diverse model species, including rice. Taken together, our study provides insight into the transcriptomic landscape of major cell types of rice root tip at single-cell resolution and opens new avenues to study cell-type specification, function, and evolution in plants.


Assuntos
Oryza/genética , Raízes de Plantas/genética , Regulação da Expressão Gênica de Plantas/genética , Oryza/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/metabolismo , RNA-Seq
18.
Sci Bull (Beijing) ; 66(14): 1448-1461, 2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-36654371

RESUMO

The brain of the domestic pig (Sus scrofa domesticus) has drawn considerable attention due to its high similarities to that of humans. However, the cellular compositions of the pig brain (PB) remain elusive. Here we investigated the single-nucleus transcriptomic profiles of five regions of the PB (frontal lobe, parietal lobe, temporal lobe, occipital lobe, and hypothalamus) and identified 21 cell subpopulations. The cross-species comparison of mouse and pig hypothalamus revealed the shared and specific gene expression patterns at the single-cell resolution. Furthermore, we identified cell types and molecular pathways closely associated with neurological disorders, bridging the gap between gene mutations and pathogenesis. We reported, to our knowledge, the first single-cell atlas of domestic pig cerebral cortex and hypothalamus combined with a comprehensive analysis across species, providing extensive resources for future research regarding neural science, evolutionary developmental biology, and regenerative medicine.

19.
Mol Ecol Resour ; 21(3): 912-923, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33191666

RESUMO

The edible silver carp (Hypophthalmichthys molitrix) and bighead carp (H. nobilis), which are two of the "Four Domesticated Fish" of China, are cultivated intensively worldwide. Here, we constructed 837- and 845-Mb draft genome assemblies for the silver carp and the bighead carp, respectively, including 24,571 and 24,229 annotated protein-coding genes. Genetic maps, anchoring 71.7% and 83.8% of all scaffolds, were obtained for the silver and bighead carp, respectively. Phylogenetic analysis showed that the bighead carp formed a clade with the silver carp, with an estimated divergence time of 3.6 million years ago; the time of divergence between the silver carp and zebrafish was 50.7 million years ago. An East Asian cyprinid genome-specific chromosome fusion took place ~9.2 million years after this clade diverged from the clade containing the common carp and Sinocyclocheilus. KEGG and GO analyses indicated that the expanded gene families in the silver and bighead carp were associated with diseases, the immune system and environmental adaptations. Genomic regions differentiating the silver and bighead carp populations were detected based on the whole-genome sequences of 42 individuals. Genes associated with the divergent regions were associated with reproductive system development and the development of primary female sexual characteristics. Thus, our results provided a novel systematic genomic analysis of the East Asian cyprinids, as well as the evolution and speciation of the silver carp and bighead carp.


Assuntos
Evolução Biológica , Carpas , Especiação Genética , Animais , Carpas/classificação , Carpas/genética , China , Mapeamento Cromossômico , Feminino , Filogenia , Sequenciamento Completo do Genoma , Peixe-Zebra
20.
Plant J ; 104(6): 1673-1684, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33073434

RESUMO

Lotus (family: Nelumbonaceae) are perennial aquatic plants that represent one of the most ancient basal dicots. In the present study, we resequenced 296 lotus accessions from various geographical locations and germplasms to explore their genomic diversity and population structure. This germplasm set consisted of four accessions of American wild lotus and 292 accessions of Asian lotus, which were divided into four subgroups: wild, rhizome, flower and seed. Total single nucleotide polymorphisms (SNPs) suggested that the wild lotus had the highest variant number (7 191 010). Population structure and genome diversity analysis indicated that the American wild lotus demonstrated a distant genetic relationship with the Asian lotus. Furthermore, the seed and rhizome lotus groups had not originated from a single source but rather had a more complex multisource origin. Besides that, the seed lotus showed higher genetic diversity, which might have been due to the gene flow from the flower lotus to seed lotus by artificial crossing, and the rhizome lotus showed a much lower genetic diversity than the other groups. The present study provides SNP markers for lotus genomic diversity analysis, which will be useful for guiding lotus breeding.


Assuntos
Evolução Molecular , Nelumbo/genética , Melhoramento Vegetal , Variação Genética/genética , Polimorfismo de Nucleotídeo Único/genética , Rizoma/genética , Sementes/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA