RESUMO
Soil salinization is one of the major abiotic stresses affecting plant growth and development. Plant salt tolerance is controlled by complex metabolic pathways. Exploring effective methods and mechanisms to improve crop salt tolerance has been a key aspect of research on the utilization of saline soil. Exogenous substances, such as plant hormones and signal transduction substances, can regulate ion transmembrane transport and eliminate reactive oxygen species (ROS) to reduce salt stress damage by activating various metabolic processes. In this review, we summarize the mechanisms by which exogenous substances regulate ion transmembrane transport and ROS metabolism to improve plant salt tolerance. The molecular and physiological relationships among exogenous substances in maintaining the ion balance and enhancing ROS clearance are examined, and trends and research directions for the application of exogenous substances for improving plant salt tolerance are proposed.
RESUMO
Developing T1-weighted magnetic resonance imaging (MRI) contrast agents with enhanced biocompatibility and targeting capabilities is crucial owing to concerns over current agents' potential toxicity and suboptimal performance. Drawing inspiration from "biomimetic camouflage," we isolated cell membranes (CMs) from human glioblastoma (T98G) cell lines via the extrusion method to facilitate homotypic glioma targeting. At an 8:1 mass ratio of ferric chloride hexahydrate to gallic acid (GA), the resulting iron (Fe)-GA nanoparticles (NPs) proved effective as a T1-weighted MRI contrast agent. T98G CM-coated Fe-GA NPs demonstrated improved homotypic glioma targeting, validated through Prussian blue staining and in vitro MRI. This biomimetic camouflage strategy holds promise for the development of targeted theranostic agents in a safe and effective manner.
Assuntos
Meios de Contraste , Ácido Gálico , Imageamento por Ressonância Magnética , Ácido Gálico/química , Humanos , Imageamento por Ressonância Magnética/métodos , Linhagem Celular Tumoral , Meios de Contraste/química , Ferro/química , Materiais Biomiméticos/química , Glioblastoma/tratamento farmacológico , Glioblastoma/diagnóstico por imagem , Glioblastoma/patologia , Nanopartículas/química , Compostos Férricos/química , Membrana Celular/metabolismoRESUMO
In carbohydrate chemistry, the stereoselective synthesis of 1,2-cis-glycosides remains a formidable challenge. This complexity is comparable to the synthesis of 1,2-cis-ß-D-mannosides, primarily due to the adverse anomeric and Δ-2 effects. Over the past decades, to attain ß-stereoselectivity in D-rhamnosylation, researchers have devised numerous direct and indirect methodologies, including the hydrogen-bond-mediated aglycone delivery (HAD) method, the synthesis of ß-D-mannoside paired with C6 deoxygenation, and the combined approach of 1,2-trans-glycosylation and C2 epimerization. This review elaborates on the advancements in ß-D-rhamnosylation and its implications for the total synthesis of tiacumicin B and other physiologically relevant glycans.
Assuntos
Glicosídeos , Manosídeos , Glicosilação , EstereoisomerismoRESUMO
This article describes a potential treatment for early T-cell precursor acute lymphoblastic leukemia (ETP-ALL), a relatively rare and highly aggressive hematologic malignancy. A 59-year-old woman admitted to our hospital with enlarged cervical lymph nodes, weight loss, abnormal count, and morphology of peripheral blood cells was diagnosed with ETP-ALL according to morphology, immunology, cytogenetics, and molecular biology. The patient initially received two cycles of the VICP regimen, including vincristine, idarubicin, cyclophosphamide, and prednisone, and had a response with positive minimal residual disease (MRD). The patient was then given venetoclax plus the CAG regimen, including aclarubicin, cytosine arabinoside, and granulocyte colony-stimulating factor. After one cycle, the patient achieved complete remission with negative MRD and was eligible for allogeneic hematopoietic stem cell transplantation.
Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia-Linfoma Linfoblástico de Células Precursoras , Células Precursoras de Linfócitos T , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Feminino , Humanos , Pessoa de Meia-Idade , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Aclarubicina , Fator Estimulador de Colônias de Granulócitos , Citarabina , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológicoRESUMO
A series of C10-position imidazole-modified catalpol derivatives are specifically designed and synthesized for serving as potential pancreatic cancer inhibitors, which are characterized by 1 H NMR, 13 C NMR and high-resolution mass spectrometry (HRMS). They were evaluated by the 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide (MTT) test on two human pancreatic cancer cells PANC-1, BxPC-3 and normal pancreatic cell HPDE6-C7, which showed the significant inhibitory effected on the growth of human pancreatic cancer cells of PANC-1 and BxPC-3, especially 91.6% efficacy on BxPC-3, and 73.1% on PANC-1. Simulation studies like molecular docking supported strong binding of vascular endothelial growth factor receptor 2 (VEGFR-2) protein tyrosine kinase (PDB ID: 4AGD), a target of pancreatic cancer. A novel imidazol-modified catalpol compound 3i with strong inhibitory effect on pancreatic cancer cells, which could potentially develop into anti-pancreatic cancer drug candidates in the future.
Assuntos
Antineoplásicos , Neoplasias , Humanos , Linhagem Celular Tumoral , Proliferação de Células , Simulação de Acoplamento Molecular , Fator A de Crescimento do Endotélio Vascular , Antineoplásicos/química , Inibidores de Proteínas Quinases/química , Desenho de Fármacos , Relação Estrutura-Atividade , Neoplasias PancreáticasRESUMO
Phosphorylated saccharides are valuable targets in glycochemistry and glycobiology, which play an important role in various physiological and pathological processes. The current research on phosphorylated saccharides primarily focuses on small molecule inhibitors, glycoconjugate vaccines and novel anti-tumour targeted drug carrier materials. It can maximise the pharmacological effects and reduce the toxicity risk caused by nonspecific off-target reactions of drug molecules. However, the number and types of natural phosphorylated saccharides are limited, and the complexity and heterogeneity of their structures after extraction and separation seriously restrict their applications in pharmaceutical development. The increasing demands for the research on these molecules have extensively promoted the development of carbohydrate synthesis. Numerous innovative synthetic methodologies have been reported regarding the continuous expansion of the potential building blocks, catalysts, and phosphorylation reagents. This review summarizes the latest methods for enzymatic and chemical synthesis of phosphorylated saccharides, emphasizing their breakthroughs in yield, reactivity, regioselectivity, and application scope. Additionally, the anti-bacterial, anti-tumour, immunoregulatory and other biological activities of some phosphorylated saccharides and their applications were also reviewed. Their structure-activity relationship and mechanism of action were discussed and the key phosphorylation characteristics, sites and extents responsible for observed biological activities were emphasised. This paper will provide a reference for the application of phosphorylated saccharide in the research of carbohydrate-based drugs in the future.
Assuntos
Carboidratos , Neoplasias , Carboidratos/farmacologia , HumanosRESUMO
Actinomycin (Act) V, an analogue of Act D, presented stronger antitumor activity and less hepatorenal toxicity than Act D in our previous studies, which is worthy of further investigation. We hereby report that Act V induces apoptosis via mitochondrial and PI3K/AKT pathways in colorectal cancer (CRC) cells. Act V-induced apoptosis was characterized by mitochondrial dysfunction, with loss of mitochondria membrane potential (MMP) and cytochrome c release, which then activated cleaved caspase-9, cleaved caspase-3, and cleaved PARP, revealing that it was related to the mitochondrial pathway, and the apoptotic trendency can be reversed by caspase inhibitor Z-VAD-FMK. Furthermore, we proved that Act V significantly inhibited PI3K/AKT signalling in HCT-116 cells using cell experiments in vitro, and it also presented a potential targeted PI3Kα inhibition using computer docking models. Further elucidation revealed that it exhibited a 28-fold greater potency than the PI3K inhibitor LY294002 on PI3K inhibition efficacy. Taken together, Act V, as a superior potential replacement of Act D, is a potential candidate for inhibiting the PI3K/AKT pathway and is worthy of more pre-clinical studies in the therapy of CRC.
Assuntos
Antineoplásicos/farmacologia , Dactinomicina/análogos & derivados , Streptomyces , Animais , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Organismos Aquáticos , Linhagem Celular Tumoral/efeitos dos fármacos , Dactinomicina/química , Dactinomicina/farmacologia , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacosRESUMO
Wnt signaling has been implicated in the development and metastasis of colorectal cancer (CRC), as well as poorer outcomes. Thus, targeting the Wnt/ß-catenin signaling pathway is expected to be a promising treatment option for the therapy of advanced metastatic CRC. A new N-sulfonylamidine derivative (26ag) has been confirmed to suppress the growth of tumor cells by inhibiting C-met, showing strong anti-cancer activity. In this paper, we test the effectiveness of 26ag in suppressing CRC cell proliferation, invasion, and migration. In this regard, 26ag decreased the mRNA and protein expressions of important hallmarks associated with epithelial to mesenchymal transition (EMT). Furthermore, we provide evidence that ß-catenin-dependent signaling is involved in 26ag-induced Wnt/ß-catenin pathway effects in CRC, using in vitro cell culture and computer docking models. Our study indicates that inhibition of Wnt/ß-catenin by a novel compound, 26ag, demonstrates possibility for drug development in the therapy of CRC.
RESUMO
Osteosarcoma is the most common primary bone tumor in children, teenagers and adolescents. Cancer stem cells (CSCs) have the function to self-renew and keep the phenotype of tumor, causing clinical treatment failure. Therefore, developing effective therapies to inhibit osteosarcoma progression is urgently necessary. Glycogen synthase kinase 3ß (GSK-3ß)is highly expressed in osteosarcoma. In the present study, we made an exploration on the anti-tumor effect of tideglusib (TID), a small-molecule inhibitor of GSK-3ß, and revealed the underlying mechanisms. Here, we found that TID markedly reduced the cell viability of different osteosarcoma cell lines. Cell cycle arrest distributed in G2/M was markedly up-regulated in TID-incubated osteosarcoma cells through enhancing p21 expression levels. Apoptosis was evidently induced in osteosarcoma cells via blocking Caspase-3 activation. Consistently, tumor growth was effectively suppressed in an established murine xenograft model with few toxicity and side effects in vivo. Furthermore, TID markedly repressed stem-cell-like activity in osteosarcoma cells through down-regulating NOTCH1 expression. Notably, rescuing NOTCH1 significantly abolished the role of TID in reducing cell proliferation and sarcosphere-formation. Mechanistically, we found that TID-inhibited NOTCH1 expression was associated with the blockage of AKT/GSK-3ß signaling pathway. In summary, we for the first time provided evidence that TID could effectively inhibit osteosarcoma progression through repressing cell proliferation, inducing apoptosis, suppressing stem-cell-like properties via down-regulating AKT/GSK-3ß/NOTCH1 signaling pathway. Thus, TID may be a promising therapeutic strategy for osteosarcoma treatment without side effects.
Assuntos
Neoplasias Ósseas/tratamento farmacológico , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Osteossarcoma/tratamento farmacológico , Receptor Notch1/antagonistas & inibidores , Células-Tronco/efeitos dos fármacos , Tiadiazóis/farmacologia , Animais , Apoptose/efeitos dos fármacos , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Células-Tronco/patologia , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Reportedly, long non-coding RNAs (lncRNAs) are implicated in hepatocellular carcinoma (HCC) progression, yet little is known concerning the biological functions of TTN antisense RNA 1 (TTN-AS1) in HCC. In this study, quantitative real-time polymerase chain reaction (qRT-PCR) was performed for detecting TTN-AS1, SPOCK1 mRNA, and miR-139-5p expressions in HCC cells and tissues. After TTN-AS1 was overexpressed or knocked down in HCC cells, CCK-8 and 5-Ethynyl-2'-deoxyuridine (EdU) assays were carried out for examining cell multiplication. Transwell assays were conducted for evaluating HCC cell migration and invasion. Dual-luciferase reporter assay was employed for verifying the binding relationships between miR-139-5p and TTN-AS1, and between SPOCK1 3'UTR and miR-139-5p. Western blot was employed to measure SPOCK1, E-cadherin, N-cadherin, and Vimentin protein expressions. We demonstrated that, TTN-AS1 and SPOCK1 expression levels were remarkably enhanced in HCC cells and tissues, whereas miR-139-5p expression was observably reduced. Functional experiments suggested that TTN-AS1 knockdown markedly repressed HCC cell multiplication, migration, epithelial-mesenchymal transition (EMT), and invasion. In addition, TTN-AS1 interacted with miR-139-5p and decreased its expression. Moreover, SPOCK1 was a miR-139-5p target, and miR-139-5p inhibitors were able to reverse TTN-AS1 knockdown-induced inhibitory effect on SPOCK1 expression. SPOCK1 overexpression plasmid could counteract TTN-AS1 knockdown-induced inhibiting impact on HCC cell multiplication, migration, invasion, and EMT. In conclusion, TTN-AS1 expression level is remarkably enhanced in HCC, and TTN-AS1 can promote the multiplication, migration, invasion, and EMT of HCC cells via regulating miR-139-5p/SPOCK1 axis.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , RNA Antissenso , RNA Longo não Codificante , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Progressão da Doença , Transição Epitelial-Mesenquimal/genética , Feminino , Técnicas de Silenciamento de Genes , Humanos , Fígado/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Proteoglicanas/genética , Proteoglicanas/metabolismo , RNA Antissenso/genética , RNA Antissenso/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismoRESUMO
The conformational features of drugs are important with respect to their biological activity. In this report, we confirmed the solid-state conformation of 1-(4'-azido-2'-deoxy-2'-fluoro-ß-d-arabinofuranosyl) cytosine using single-crystal X-ray crystallography and the conformations of three 2'-deoxy-2'-fluoro-4'-substituted nucleosides in solution using Altona-Haasnoot's equations and Nuclear Overhauser effect spectroscopy (NOESY). Furthermore, we compared the preferred solid-state and solution conformation of these nucleosides with thermodynamics cycles to obtain more evidence of their conformations. The results showed 1-(4'-azido-2'-deoxy-2'-fluoro-ß-d-arabinofuranosyl) cytosine was south type conformation (C-3'-exo) in solid-state and three 4'-substituted nucleosides were north type conformations (C-3'-endo) in solution. The north type conformations in solution indicated these compounds were steady to acidic and enzymatic N-glycolysis.
Assuntos
Citosina/química , Nucleosídeos/química , Azidas/química , Cristalografia por Raios X , Halogenação , Modelos Moleculares , Conformação MolecularRESUMO
Catalpol has gained increasing attention for its potential contributions in controlling glycolipid metabolism and diabetic complications, which makes used as a very promising scaffold for seeking new anti-diabetic drug candidates. Acylation derivatives of catalpol crotonate (CCs) were designed as drug ligands of glutathione peroxidase (GSH-Px) based on molecular docking (MD) using Surfex-Docking method. Catalpol hexacrotonate (CC-6) was synthesized using microwave assisted method and characterized by FT-IR, NMR, HPLC and HRMS. The MD results indicate that with the increasing of esterification degree of hydroxyl, the C log P of CCs increased significantly, and the calculated total scores (Total_score) of CCs are all higher than that of catalpol. It shows that CCs maybe served as potential lead compounds for neuroprotective agents. It was found that the maximum Total_score of isomers in one group CCs is often not that the molecule with minimum energy. MD calculations show that there are five hydrogen bonds formed between CC-6 and the surrounding amino acid residues. Molecular dynamics simulation results show that the binding of CC-6 with GSH-Px is stable. CC-6 was screened for SH-SY5Y cells viability by MTT (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) assay, the result indicates CC-6 can effectively reverse SZT induced cells apoptosis with dose-dependent manner, which can indirectly show that CC-6 is a potential neuroprotective agent.
Assuntos
Crotonatos/farmacologia , Glutationa Peroxidase/antagonistas & inibidores , Hipoglicemiantes/farmacologia , Glucosídeos Iridoides/farmacologia , Fármacos Neuroprotetores/farmacologia , Sítios de Ligação , Encefalopatias/tratamento farmacológico , Encefalopatias/enzimologia , Encefalopatias/etiologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Crotonatos/síntese química , Complicações do Diabetes/tratamento farmacológico , Complicações do Diabetes/enzimologia , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/enzimologia , Glutationa Peroxidase/química , Glutationa Peroxidase/metabolismo , Humanos , Ligação de Hidrogênio , Hipoglicemiantes/síntese química , Glucosídeos Iridoides/síntese química , Micro-Ondas , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/síntese química , Ligação ProteicaRESUMO
The high toxicity of actinomycin D (Act D) severely limits its use as a first-line chemotherapeutic agent in the clinic. Actinomycin V (Act V), an analog of Act D, exhibited strong anticancer activity in our previous studies. Here, we provide evidence that Act V has less hepatorenal toxicity than Act D in vitro and in vivo, associated with the reactive oxygen species (ROS) pathway. Compared to Act D, Act V exhibited considerably stronger sensitivity for cancer cells and less toxicity to human normal liver LO-2 and human embryonic kidney 293T cells using the MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide) assay. Notably, Act V caused less damage to both the liver and kidney than Act D in vivo, indicated by organ to body weight ratios, as well as alanine aminotransferase (ALT), aspartate aminotransferase (AST), and serum creatinine (Scr) levels. Further experiments showed that the ROS pathway is involved in Act V-induced hepatorenal toxicity. Act V generates ROS and accumulates malondialdehyde (MDA), reducing levels of superoxide dismutase (SOD) and glutathione (GSH) in LO-2 and 293T cells. These findings indicate that Act V induces less hepatorenal toxicity than Act D in vitro and in vivo and merits further development as a potential therapeutic agent for the treatment of cancer.
Assuntos
Antibióticos Antineoplásicos/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Dactinomicina/análogos & derivados , Dactinomicina/toxicidade , Nefropatias/induzido quimicamente , Rim/efeitos dos fármacos , Fígado/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Animais , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Rim/metabolismo , Rim/patologia , Nefropatias/metabolismo , Nefropatias/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Masculino , CamundongosRESUMO
Catalpol hexapropionate (CP-6) was designed and synthesized as anti-aging drug. In order to investigate the behavior of CP-6 in simulated gastric juice, ultra-high performance liquid chromatography-electrospray ionization-high resolution mass spectrometry was used to determinate the components produced in simulated gastric conditions. Six metabolites were identified with the possible metabolic processes proposed. Hydrolysis may be the main metabolic pathways. The relative contents of CP-6 and its metabolites were determined using their extractive ion chromatograms. The results show that the relative content of CP-6 is rapidly decreased about 15% during the first 0.5 h and generally stable after 0.5 h. The mainly produced metabolites are catalpol penta-propionate (CP-5), catalpol and a spot of catalpol tetra-propionate (CP-4), catalpol tri-propionate (CP-3), catalpol dipropionate (CP-2) and catalpol propionate (CP-1). The metabolitic process of CP-6 may be an hydrolysis under acid conditions. The research results can provide useful information for development and utilization of CP-6 as a pharmaceutical preparation.
Assuntos
Suco Gástrico/química , Glucosídeos Iridoides/química , Cromatografia Líquida , Concentração de Íons de Hidrogênio , Hidrólise , Propionatos/química , Espectrometria de Massas por Ionização por ElectrosprayRESUMO
In this paper, catalpol propionylated analogs (CPs) were designed as drug ligands of glutathione peroxidase (GSH-Px) based on molecular docking (MD) using Surflex-Docking method. The calculated total scores (Total_score) and C log P of CPs are higher than that of catalpol, which show that the CPs maybe served as potential lead compounds as new antiaging drugs. Furthermore, the maximum Total_score of isomers in one group CPs is often not that the molecule with minimum energy structure. These show that the CPs docking with GSH-Px maybe not only affected by the molecular energy, but also affected by their conformations. The CPs were synthesized by esterification of catalpol with propionic anhydride using pyridine as solvent and acid banding agent, DMAP as catalyst, reaction at specific temperature. The synthesized perpropionylated catalpol analog (CP-6) was determined by NMR, FT-IR, HRMS, and HPLC, and the synthesis process was optimized by means of orthogonal experimental design. Subsequently, CP-6 was screened for cells viability by MTT assay, the results show that the CP-6 can effectively reversed STZ-induced reduction of cells viability, and CP-6 has potential antiaging activity.
RESUMO
A retrospective cohort study was conducted to explore the effectiveness of Traditional Chinese Medicine (TCM) in treating people living with HIV (PLHIV) by comparing the survival of PLHIV treated with TCM and without TCM. To identify prognostic factors that affect the survival of PLHIV, patients who enrolled in the national TCM HIV treatment trial program (NTCMTP) in October 2004 and PLHIV in the same region who did not enroll in the NTCMTP were compared. Participants were followed up to October 2012. Survival time was estimated through the Kaplan-Meier method, and hazard ratios to identify prognostic factors were computed through Cox proportional hazard models. A total of 3,229 PLHIV (1,442 in the TCM therapy group and 1,787 in the non-TCM therapy group) were followed up for 21,876 person-years. In this time period, 751 (23.3%) died and 209 (6.5%) were lost to follow-up, for an overall mortality rate of 3.43/100 person-years. In the TCM therapy group, 287 (19.0%) died and 139 (9.7%) were lost to follow-up, and in the non-TCM therapy group, 464 (26.0%) PLHIV died and 70 (3.9%) were lost to follow-up. The mortality rate in the TCM therapy group was 2.97/100 person-years, which was lower than the rate of 3.79/100 person-years in the non-TCM therapy group. The 8-year cumulative survival in the TCM therapy group was 78.5%, lower than the 74.0% survival in the non-TCM therapy group. After adjusting for other factors, risk factors of death included male gender, older age, less education, taking combined antiretroviral therapy (cART) at enrollment, not taking cART at follow-up, and lower CD4 + T cell counts. Our retrospective cohort study indicates that TCM increased the survival and lengthened the lifetime of PLHIV in Henan Province of China. However, the limitations of a retrospective cohort could have biased the study, so prospective studies should be carried out to confirm our primary results.
Assuntos
Infecções por HIV/terapia , Medicina Tradicional Chinesa , Fitoterapia , Adulto , Fatores Etários , Fármacos Anti-HIV/administração & dosagem , Contagem de Linfócito CD4 , Estudos de Coortes , Terapia Combinada , Escolaridade , Feminino , Seguimentos , Infecções por HIV/imunologia , Infecções por HIV/mortalidade , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Modelos de Riscos Proporcionais , Estudos Retrospectivos , Risco , População Rural , Fatores Sexuais , Taxa de Sobrevida , TempoRESUMO
OBJECTIVE: To observe the therapeutic effects of Jingyuankang capsules for leukopenia in AIDS patients. METHODS: In this randomized double-blind trial, 58 patients orally took Jingyuankang capsule, analog Leucogen tablet and the HAART (highly active anti-retroviral therapy) drugs, and the other 58 patients took Leucogen tablet, analog Jingyuankang capsule and the HAART drugs all for 6 months, during which the peripheral hemogram was periodically examined to observe the therapeutic effects of Jingyuankang capsule for leukopenia of the AIDS patients. RESULTS: With good therapeutic effect for leukopenia of the AIDS patients, Jingyuankang capsule can enhance leukocyte level as effective as Leucogen tablet in treating grade I and grade II leukopenia, and more effectively than Leucogen tablet in treating grade III leukopenia. No toxic side-effects and adverse reactions were found during the treatment and in the follow-up visit. CONCLUSION: Jingyuankang capsule can effectively treat leukopenia of the AIDS patients.