Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Monit Assess ; 195(4): 463, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36907941

RESUMO

High-resolution record of silver (Ag) in lakes is indispensable for examining human impact on its deposition, and for understanding its geochemical cycling in the environment. However, such studies are extremely insufficient. In this study, a piston core (CHY) collected from the Chaohu Lake, east China, was analyzed to examine sedimentary history of Ag. A record of this metal in recent times was further reconstructed. The record displays significant changes. Prior to the 1960s, Ag concentrations stabilized at a relatively low level (0.06 ppm), but they increased rapidly (0.26 ppm) afterward. The average concentration of Ag in the profile is 0.13 ppm, higher than its crustal abundance. Enrichment factor (EF) analysis further reveals that Chaohu Lake was not polluted with Ag until the 1960s, but the pollution level increases rapidly since then, and now shows a moderate pollution. Sedimentary record of Ag closely follows population changes within the watershed, suggesting that human activity is possibly the ultimate driving factor for its distribution. Intensified industrial activities associated with population expansion may release silver to inflow rivers and Chaohu Lake, resulting in its ultimate settling down to the sediments. Sedimentary flux of Ag varies significantly between 42.9 and 392.0 µg/(m2·year), with an average of 236.8 µg/(m2·year). This is so far as we know the first high-resolution record of Ag and its flux in east China, providing new perspective for better understanding the distribution and transport of Ag in lake environment.


Assuntos
Prata , Poluentes Químicos da Água , Humanos , Prata/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Poluição Ambiental/análise , Lagos , China , Sedimentos Geológicos
2.
Opt Express ; 30(20): 37101-37111, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36258627

RESUMO

A pulse compressing technology of single-frequency Q-switched laser based on the cascaded four-wave mixing (CFWM) effect is demonstrated theoretically and experimentally, for the first time to the best of our knowledge. A theoretical model of the pulse compression is established through deconstructing the pulse duration evolution in the high-order Stokes and anti-Stokes lights of CFWM. A pulse compression ratio of (2|m|+1)1/2 is quantificationally obtained with m corresponding to the order number of the CFWM light. Utilizing dual-wavelength (DW) single-frequency Q-switched laser injected into a highly nonlinear fiber (HNLF), the pulse compression and the spectral broadening phenomenon are observed simultaneously. As the order number of the CFWM light increases from 0-order to 3-order, the pulse duration has reduced from 115 ns to 47 ns with a compression ratio of 2.45, which is essentially consistent with the theoretical analysis. The pulse compressing technique by CFWM is conducive to promoting the performance development of the single-frequency Q-switched laser, which can improve the system precision in the Lidar, trace gas detection, and high-precision ranging. Furthermore, this technology based on time-frequency transformation dynamics may be generally applicable to other single-frequency pulsed fiber lasers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA