Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 198
Filtrar
1.
J Anim Sci Biotechnol ; 15(1): 116, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39218924

RESUMO

BACKGROUND: Methionine (Met) is the only sulfur-containing amino acid among animal essential amino acids, and methionine deficiency (MD) causes tissue damage and cell death in animals. The common modes of cell death include apoptosis, autophagy, pyroptosis, necroptosis. However, the studies about the major modes of cell death caused by MD have not been reported, which worth further study. METHODS: Primary hepatocytes from grass carp were isolated and treated with different doses of Met (0, 0.5, 1, 1.5, 2, 2.5 mmol/L) to examine the expression of apoptosis, pyroptosis, autophagy and necroptosis-related proteins. Based on this, we subsequently modeled pyroptosis using lipopolysaccharides and nigericin sodium salt, then autophagy inhibitors chloroquine (CQ), AMP-activated protein kinase (AMPK) inhibitors compound C (CC) and reactive oxygen species (ROS) scavengers N-acetyl-L-cysteine (NAC) were further used to examine the expression of proteins related to pyroptosis, autophagy and AMPK pathway in MD-treated cells respectively. RESULTS: MD up-regulated B-cell lymphoma protein 2 (Bax), microtubule-associated protein 1 light chain 3 II (LC3 II), and down-regulated the protein expression levels of B-cell lymphoma-2 (Bcl-2), sequestosome 1 (p62), cleaved-caspase-1, cleaved-interleukin (IL)-1ß, and receptor-interacting protein kinase (RIP) 1 in hepatocytes, while it did not significantly affect RIP3. In addition, MD significantly increased the protein expression of liver kinase B1 (LKB1), p-AMPK, and Unc-51-like kinase 1 (ULK1) without significant effect on p-target of rapamycin. Subsequently, the use of CQ increased the protein expression of NOD-like receptor thermal protein domain associated protein 3 (NLRP3), cleaved-caspase-1, and cleaved-IL-1ß inhibited by MD; the use of CC significantly decreased the protein expression of MD-induced LC3 II and increased the protein expression of MD-suppressed p62; then the use of NAC decreased the MD-induced p-AMPK protein expression. CONCLUSION: MD promoted autophagy and apoptosis, but inhibited pyroptosis and necroptosis. MD inhibited pyroptosis may be related regarding the promotion of autophagy. MD activated AMPK by inducing ROS production which in turn promoted autophagy. These results could provide partial theoretical basis for the possible mechanisms of Met in ensuring the normal structure and function of animal organs. Furthermore, ferroptosis is closely related to redox states, it is worth investigating whether MD affects ferroptosis in hepatocytes.

2.
Anim Nutr ; 18: 119-132, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39263441

RESUMO

Ochratoxin A (OTA) is one of the most common pollutants in aquatic feed. As a first line of defense, intestinal barriers could be utilized against OTA in order to prevent disorders. Natural product supplementation is one of the most popular strategies to alleviate toxicity induced by mycotoxins, but there is a lack of knowledge about how it functions in the teleost intestine. In this study, 720 juvenile grass carp of about 11 g were selected and four treatment groups (control group, OTA group, curcumin [Cur] group, and OTA + Cur group) were set up to conduct a 60-day growth test. After the test, the growth performance and intestinal health related indexes of grass carp were investigated. The addition of dietary Cur could have the following main results: (1) inhibit absorption and promote efflux transporters mRNA expression, reducing the residuals of OTA, (2) decrease oxidative stress by reducing oxidative damage and enhancing the expression of antioxidant enzymes, (3) promote mitochondrial fusion proteins to inhibit the expression of mitotic proteins and mitochondrial autophagy proteins and enhance mitochondrial function, (4) reduce necroptosis-related gene expression through inhibiting the tumor necrotic factor receptor-interacting protein kinase/mixed lineage kinase domain-like pathway, (5) reduce the expression of pro-inflammatory factors by inhibiting the Toll-like receptor 4/nuclear factor-κB signaling pathway to alleviate the intestinal inflammatory response. In summary, the results suggested that Cur could alleviate OTA-induced intestinal damage by enhancing antioxidant capacity and mitochondrial function as well as reducing necroptosis and inflammation in the grass carp intestine. This study provided a theoretical basis and production implications for dietary Cur that could improve growth performance and alleviate the intestinal damage induced by OTA in fish.

3.
Fish Shellfish Immunol ; 153: 109850, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39179187

RESUMO

Increasing evidence shows the potential threat of gill rot in freshwater fish culture. F. columnare is wide-spread in aquatic environments, which can cause fish gill rot and result in high mortality and losses of fish. This study investigated the effects of myo-inositol (MI) on the proliferation, structural integrity, and different death modes of grass carp (Ctenopharyngodon idella) gill epithelial cells, as well as its possible mechanism. 30 mg/L MI up-regulated CCK8 OD value and the protein level of solute carrier family 5A 3 (SLC5A3), and down-regulated the reactive oxygen species (ROS) content in gill cells and lactate dehydrogenase (LDH) release in the culture medium (P < 0.05). MI up-regulated the protein level of Beclin1, the protein level and fluorescence expression of microtubule-associated protein light chain 3B (LC3B) and down-regulated the protein level of sequestosome-1 (SQSTM1, also called p62) (P < 0.05). MI down-regulated the protein levels of Cysteine aspartate protease-1 (caspase-1), Gasdermin E (GSDME) and Cleaved interleukin 1 beta (IL-1ß) (P < 0.05). MI up-regulated the protein level of caspase-8 (P < 0.05), but had no effect on apoptosis (P > 0.05). MI down-regulated the mRNA expressions and protein levels of tumor necrosis factor α (tnfα), TNF receptor 1 (tnfr1), receptor interacting protein 1 (ripk1), receptor interacting protein 3 (ripk3) and mixed lineage kinase domain-like protein (mlkl), and reduce the ratio of p-MLKL/MLKL (P < 0.05). The addition of MI or necrosulfonamide (NSA) alone, or the addition of MI after induction of necroptosis, significantly up-regulated the cell activity and the protein level of SLC5A3 in gill cells, and significantly reduced the LDH release in the culture medium and the intracellular ROS content, the number of necroptosis cells, the protein expression of TNFα, TNFR1 and RIPK1, and the ratio of p-RIPK3/RIPK3 and p-MLKL/MLKL (P < 0.05). It indicated MI induce autophagy may relate to Beclin1/LC3/p62 signaling pathway, inhibits pyroptosis may attribute to Caspase-1/GSDMD/IL-1ß signaling pathway, and inhibits necroptosis via MLKL signaling pathway. However, MI had no effect on apoptosis.


Assuntos
Carpas , Doenças dos Peixes , Brânquias , Inositol , Animais , Carpas/imunologia , Brânquias/efeitos dos fármacos , Doenças dos Peixes/imunologia , Inositol/farmacologia , Morte Celular/efeitos dos fármacos , Proteínas de Peixes/genética
4.
Fish Shellfish Immunol ; 153: 109808, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39102968

RESUMO

Selenium (Se), a trace element, is vital for the maintenance of cellular redox balance, thyroid hormone metabolism, inflammation, and immunity. Aeromonas hydrophila (A. hydrophila) is a common Gram-negative conditional pathogenic bacterium in fish culture, posing a serious threat to intensive aquaculture. Our study investigated the influence of dietary Se on the intestinal immune function of grass carp (Ctenopharyngodon idella) and the related regulatory mechanisms. The 2160 healthy juvenile grass carp (9.76 ± 0.005 g) were randomly assigned to 6 test groups of 6 replicates each, and fed graded selenomethionine (0.05, 0.20, 0.40, 0.61, 0.77, 0.98 mg Se/kg diet) for 70 days and then injected with A. hydrophila for a 6-day attack test. The results indicated that appropriate Se levels (0.40 mg/kg diet) alleviated intestinal damage caused by A. hydrophila and increased intestinal immune substances C3 and C4 levels as well as the activity of acid phosphatase (ACP) and lysozyme (LZ) (P > 0.05). Appropriate levels of Se (0.40 mg/kg-0.61 mg/kg diet) decreased intestinal pro-inflammatory cytokines (IFN-γ2, IL-6, IL-12p35, IL-17 A F and IL-17D) mRNA levels (P > 0.05) and increased intestinal anti-inflammatory factors (TGF-ß1, IL-4/13A, IL-4/13B, IL-10 and IL-22) mRNA levels (P > 0.05) in juvenile grass carp. Further studies revealed that Se (0.40 mg/kg-0.61 mg/kg diet) inhibited intestinal endoplasmic reticulum stress (ERS)-related signaling pathway. Furthermore, we found that appropriate levels of Se (0.40 mg/kg-0.61 mg/kg diet) inhibited intestinal autophagy in juvenile grass carp, which may be related to ULK1, Beclin 1, ATG5, ATG12, LC3, and P62. In conclusion, appropriate levels of Se can alleviate intestinal inflammation and inhibit ERS and autophagy in juvenile grass carp. A quadratic regression analysis of intestinal ACP and LZ also indicated that the Se requirements of juvenile grass carp were 0.59 and 0.51 mg/kg, respectively.


Assuntos
Aeromonas hydrophila , Ração Animal , Autofagia , Carpas , Dieta , Suplementos Nutricionais , Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Intestinos , Selênio , Animais , Carpas/imunologia , Autofagia/efeitos dos fármacos , Aeromonas hydrophila/fisiologia , Dieta/veterinária , Selênio/farmacologia , Selênio/administração & dosagem , Intestinos/efeitos dos fármacos , Intestinos/imunologia , Ração Animal/análise , Infecções por Bactérias Gram-Negativas/veterinária , Infecções por Bactérias Gram-Negativas/imunologia , Doenças dos Peixes/imunologia , Suplementos Nutricionais/análise , Distribuição Aleatória , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Relação Dose-Resposta a Droga
5.
Antioxidants (Basel) ; 13(7)2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-39061877

RESUMO

Ferroptosis is a form of regulated cell death characterized by iron-dependent lipid peroxidation, affecting physiological and pathological processes. Fatty liver disease associated with metabolic dysfunction is a common pathological condition in aquaculture. However, the exact role and mechanism of ferroptosis in its pathogenesis and progression remains unclear. In this study, an experiment was conducted using different dietary lipid levels in the feeding of largemouth bass (Micropterus salmoides) for 11 weeks. The results revealed that the growth performance and whole-body protein content significantly increased with the elevation of dietary lipid levels up to 12%. The activities of antioxidant enzymes as well as the content of GSH (glutathione) in the liver initially increased but later declined as the lipid levels increased; the contents of MDA (malondialdehyde) and GSSG (oxidized glutathione) demonstrated an opposite trend. Moreover, elevating lipid levels in the diet significantly increased liver Fe2+ content, as well as the expressions of TF (Transferrin), TFR (Transferrin receptor), ACSL4 (acyl-CoA synthetase long-chain family member 4), LPCAT3 (lysophosphatidylcholine acyltransferase 3), and LOX12 (Lipoxygenase-12), while decreasing the expressions of GPX4 (glutathione peroxidase 4) and SLC7A11 (Solute carrier family 7 member 11). In conclusion, the optimal lipid level is 12.2%, determined by WG-based linear regression. Excess lipid-level diets can up-regulate the ACSL4/LPCAT3/LOX12 axis, induce hepatic oxidative stress and cell death through a ferroptotic-like program, and decrease growth performance.

6.
Anim Nutr ; 18: 96-106, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39056059

RESUMO

This research evaluated the effects of copper (Cu) on intestinal antioxidant capacity and apical junctional complex (AJC) in juvenile grass carp. A total of 1080 healthy juvenile grass carp (11.16 ± 0.01 g) were fed six diets including different dosages of Cu, namely 0, 2, 4, 6, 8 mg/kg (Cu citrate [CuCit] as Cu source) and 3 mg/kg (CuSO4·5H2O as Cu source). The trial lasted for 9 weeks. The findings revealed that dietary optimal Cu supplementation (2.2 to 4.1 mg/kg) promoted intestinal growth, including intestinal length, intestinal length index, intestinal weight, and intestinal somatic index (P < 0.05). Furthermore, optimal Cu boosted the intestinal mucosal barrier in juvenile grass carp. On the one hand, optimal Cu reduced diamine oxidase and D-lactate levels in serum (P < 0.05), reduced levels of the oxidative damage indicators malondialdehyde, reactive oxygen species (ROS), protein carbonyl, superoxide dismutase (P < 0.05), and catalase mRNA levels were elevated (P < 0.05), thus boosting intestinal antioxidant capacity, the binding protein Keap1a/1b/Nrf2 signaling pathway might be involved. Optimal Cu had no impact on glutathione peroxidase 1b (GPx1b) gene expression (P > 0.05). On the other hand, optimal Cu increased intestinal tight junction (TJ) proteins (except for claudin 15b) and adherens junction (AJ) proteins (E-cadherin, α-catenin, ß-catenin, nectin and afadin) mRNA levels (P < 0.05), which could be connected to the signaling pathway formed by the Ras homolog gene family, member A (RhoA), Rho-associated kinase (ROCK), and myosin light chain kinase (MLCK). Finally, based on serum indicator D-lactate and intestinal oxidative damage index (ROS), Cu requirement (CuCit as Cu source) for juvenile grass carp from initial weight to final weight (from 11 to 173 g) was determined to be 4.14 and 4.12 mg/kg diet, respectively. This work may provide a theoretical foundation for identifying putative Cu regulation pathways on fish intestinal health.

7.
Anim Nutr ; 18: 27-38, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39026602

RESUMO

In nature, aflatoxins, especially aflatoxin B1 (AFB1), are the common mycotoxins, which cause serious health problems for humans and animals. This paper aimed to study the effects of AFB1 on flesh flavor and muscle development of grass carp (Ctenopharyngodon idella) and its mechanism. There were 1440 individual fish in total, with 6 treatments and each treatment replicated 3 times. The 6 treatments were fed a control diet with different doses of AFB1 (0.04, 29.48, 58.66, 85.94, 110.43 and 146.92 µg/kg diet) for 60 d. AFB1 increased myofiber diameter, as well as decreased myofiber density of grass carp muscle (P < 0.05). The contents of free amino acid decreased gradually (P < 0.05) as dietary AFB1 increased in the muscle of grass carp. The levels of reactive oxygen species, malonaldehyde and protein carbonyl (PC) were increased (P < 0.05) with the dietary AFB1 increased. The levels of antioxidant enzyme (glutathione peroxidase, glutathione, glutathione reductase, total antioxidant capacity, anti-superoxide anion, and anti-hydroxyl radical) were decreased (P < 0.05) with the dietary AFB1 increased. In addition, dietary AFB1 decreased the content of collagen, and downregulated the mRNA and protein levels of transforming growth factor-ß (TGF-ß)/Smads signaling pathway in grass carp muscle (P < 0.05). The mRNA and protein levels of myogenic regulatory factors were downregulated in grass carp muscle (P < 0.05). Furthermore, the activities of matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) were increased (P < 0.05), and the protein levels of phosphorylate-38 mitogen-activated protein kinase (p-p38MAPK), phosphorylate-c-Jun N-terminal kinase, urokinase-type plasminogen activator (uPA), MMP-2 and MMP-9 were upregulated (P < 0.05), but collagen Ⅰ, laminin ß1 and fibronectin were downregulated (P < 0.05) with the dietary AFB1 increased in the muscle of grass carp. Based on the results of this study, we can draw the following conclusion: dietary AFB1 might damage flesh flavor and inhibit the muscle development through MAPK/uPA/MMP/extracellular matrix (ECM) signaling pathway in grass carp. Moreover, the recommended safe limit of AFB1 in feed is no more than 26.77 µg/kg diet according to the PC levels in grass carp muscle.

8.
Fish Shellfish Immunol ; 151: 109690, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38866347

RESUMO

Leucine is an essential amino acid for fish. The ability of leucine to resist stress in fish has not been reported. Nitrite is a common pollutant in the aquatic environment. Therefore, we investigated the effects of dietary leucine on growth performance and nitrite-induced liver damage, mitochondrial dysfunction, autophagy, and apoptosis for sub-adult grass carp. A total of 450 grass carp (615.91 ± 1.15 g) were selected and randomly placed into 18 net cages. The leucine contents of the six diets were 2.91, 5.90, 8.92, 11.91, 14.93, and 17.92 g/kg, respectively. After a 9-week feeding trial, the nitrite exposure experiment was set up for 96 h. These results indicated that dietary leucine significantly promoted FW, WG, PWG, and SGR of sub-adult grass carp (P < 0.05). Appropriate levels of dietary leucine (11.91-17.92 g/kg) decreased the activities of serum parameters (glucose, cortisol, and methemoglobin contents, glutamic oxaloacetic transaminase, glutamic pyruvic transaminase, and lactate dehydrogenase), the contents of reactive oxygen species (ROS), nitric oxide (NO) and peroxynitrite (ONOO-). In addition, appropriate levels of dietary leucine (11.91-17.92 g/kg) increased the mRNA levels of mitochondrial biogenesis genes (PGC-1α, Nrf1/2, TFAM), fusion-related genes (Opa1, Mfn1/2) (P < 0.05), and decreased the mRNA levels of caspase 3, caspase 8, caspase 9, fission-related gene (Drp1), mitophagy-related genes (Pink1, Parkin) and autophagy-related genes (Beclin1, Ulk1, Atg5, Atg7, Atg12) (P < 0.05). Appropriate levels of dietary leucine (8.92-17.92 g/kg) also increased the protein levels of AMP-activated protein kinase (AMPK), prostacyclin (p62) and decreased the protein levels of protein light chain 3 (LC3), E3 ubiquitin ligase (Parkin), and Cytochrome c (Cytc). Appropriate levels of leucine (8.92-17.92 g/kg) could promote growth performance and alleviate nitrite-induced mitochondrial dysfunction, autophagy, apoptosis for sub-adult grass carp. Based on quadratic regression analysis of PWG and serum GPT activity, dietary leucine requirements of sub-adult grass carp were recommended to be 12.47 g/kg diet and 12.55 g/kg diet, respectively.


Assuntos
Ração Animal , Carpas , Dieta , Suplementos Nutricionais , Leucina , Nitritos , Animais , Ração Animal/análise , Leucina/administração & dosagem , Leucina/farmacologia , Dieta/veterinária , Suplementos Nutricionais/análise , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Distribuição Aleatória , Fígado/efeitos dos fármacos , Fígado/metabolismo , Doenças dos Peixes/induzido quimicamente , Doenças dos Peixes/prevenção & controle , Poluentes Químicos da Água/efeitos adversos , Apoptose/efeitos dos fármacos , Relação Dose-Resposta a Droga
9.
Food Chem X ; 22: 101421, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38756468

RESUMO

Muscle is the main edible part of bony fish. The purpose of this study was to investigate the influences of phenylalanine (Phe) on muscle quality, amino acid composition, fatty acid composition, glucose metabolism, and protein deposition in adult grass carp. The diets at 2.30, 4.63, 7.51, 10.97, 13.53, and 17.07 g/kg Phe levels were fed for 9 weeks. The results manifested that Phe (10.97-13.53 g/kg) increased the pH of the fillets and decreased muscle cooking loss and lactic acid content; Phe (7.51-17.07 g/kg) improved the composition of the fillets in terms of flavor (free) amino acids, bound amino acids (especially EAA), and fatty acids (especially EPA and DHA); Phe (7.51-13.53 g/kg) increased muscle glycogen content (possibly related to the AMPK signaling pathway) and muscle protein deposition (possibly related to IGF-1/4EBP1/TOR and AKT/FOXOs signaling pathways). In conclusion, a diet with appropriate Phe levels could improve fillet quality.

10.
J Anim Sci Biotechnol ; 15(1): 72, 2024 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-38734645

RESUMO

BACKGROUND: Ochratoxin A (OTA), a globally abundant and extremely hazardous pollutant, is a significant source of contamination in aquafeeds and is responsible for severe food pollution. The developmental toxicity of OTA and the potential relieving strategy of natural products remain unclear. This study screened the substance curcumin (Cur), which had the best effect in alleviating OTA inhibition of myoblast proliferation, from 96 natural products and investigated its effect and mechanism in reducing OTA myotoxicity in vivo and in vitro. METHODS: A total of 720 healthy juvenile grass carp, with an initial average body weight of 11.06 ± 0.05 g, were randomly assigned into 4 groups: the control group (without OTA and Cur), 1.2 mg/kg OTA group, 400 mg/kg Cur group, and 1.2 mg/kg OTA + 400 mg/kg Cur group. Each treatment consisted of 3 replicates (180 fish) for 60 d. RESULTS: Firstly, we cultured, purified, and identified myoblasts using the tissue block culture method. Through preliminary screening and re-screening of 96 substances, we examined cell proliferation-related indicators such as cell viability and ultimately found that Cur had the best effect. Secondly, Cur could alleviate OTA-inhibited myoblast differentiation and myofibrillar development-related proteins (MyoG and MYHC) in vivo and in vitro and improve the growth performance of grass carp. Then, Cur could also promote the expression of OTA-inhibited protein synthesis-related proteins (S6K1 and TOR), which was related to the activation of the AKT/TOR signaling pathway. Finally, Cur could downregulate the expression of OTA-enhanced protein degradation-related genes (murf1, foxo3a, and ub), which was related to the inhibition of the FoxO3a signaling pathway. CONCLUSIONS: In summary, our data demonstrated the effectiveness of Cur in alleviating OTA myotoxicity in vivo and in vitro. This study confirms the rapidity, feasibility, and effectiveness of establishing a natural product screening method targeting myoblasts to alleviate fungal toxin toxicity.

11.
Food Chem ; 451: 139426, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38670026

RESUMO

Energy metabolism exerts profound impacts on flesh quality. Niacin can be transformed into nicotinamide adenine dinucleotide (NAD), which is indispensable to energy metabolism. To investigate whether niacin deficiency could affect energy metabolism and flesh quality, six diets with graded levels of 0.49, 9.30, 21.30, 33.30, 45.30 and 57.30 mg/kg niacin were fed to grass carp (Ctenopharyngodon idella) for 63 days. The results showed that niacin deficiency declined flesh quality by changing amino acid and fatty acid profiles, decreasing shear force, increasing cooking loss and accelerating pH decline. The accelerated pH decline might be associated with enhanced glycolysis as evident by increased hexokinase (HK), pyruvate kinase (PK) and lactic dehydrogenase (LDH) activities, and mitochondrial dysfunction as evident by destroyed mitochondrial morphology, impaired respiratory chain complex I and antioxidant ability. Based on PWG and cooking loss, the niacin requirements for sub-adult grass carp were 31.95 mg/kg and 29.66 mg/kg diet, respectively.


Assuntos
Carpas , Glicólise , Mitocôndrias , Niacina , Animais , Carpas/metabolismo , Niacina/metabolismo , Niacina/deficiência , Mitocôndrias/metabolismo , Ração Animal/análise , Homeostase , Culinária , Carne/análise
12.
Ecotoxicol Environ Saf ; 276: 116332, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38626608

RESUMO

According to the International Agency for Research on Cancer (IARC), aflatoxin B1 (AFB1) has been recognized as a major contaminant in food and animal feed and which is a common mycotoxin with high toxicity. Previous research has found that AFB1 inhibited zebrafish muscle development. However, the potential mechanism of AFB1 on fish muscle development is unknown, so it is necessary to conduct further investigation. In the present research, the primary myoblast of grass carp was used as a model, we treated myoblasts with AFB1 for 24 h. Our results found that 5 µM AFB1 significantly inhibited cell proliferation and migration (P < 0.05), and 10 µM AFB1 promoted lactate dehydrogenase (LDH) release (P < 0.05). Reactive oxygen species (ROS), protein carbonyl (PC) and malondialdehyde (MDA) levels were increased in 15, 5 and 10 µM AFB1 (P < 0.05), respectively. Catalase (CAT), glutathione peroxidase (GPx) and total superoxide dismutase (T-SOD) activities were decreased in 10, 10 and 15 µM AFB1 (P < 0.05), respectively. Furthermore, 15 µM AFB1 induced oxidative damage by Nrf2 pathway, also induced apoptosis in primary myoblast of grass carp. Meanwhile, 15 µM AFB1 decreased MyoD gene and protein expression (P < 0.05). Importantly, 15 µM AFB1 decreased the protein expression of collagen Ⅰ and fibronectin (P < 0.05), and increased the protein levels of urokinase plasminogen activator (uPA), matrix metalloproteinase 9 (MMP-9), matrix metalloproteinase 2 (MMP-2), and p38 mitogen-activated protein kinase (p38MAPK) (P < 0.05). As a result, our findings suggested that AFB1 damaged the cell morphology, induced oxidative damage and apoptosis, degraded ECM components, in turn inhibiting myoblast development by activating the p38MAPK/urokinase-type plasminogen activator (uPA)/matrix metalloproteinase (MMPs)/extracellular matrix (ECM) signaling pathway.


Assuntos
Aflatoxina B1 , Carpas , Proliferação de Células , Matriz Extracelular , Mioblastos , Espécies Reativas de Oxigênio , Animais , Aflatoxina B1/toxicidade , Mioblastos/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Proliferação de Células/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos
13.
Fish Shellfish Immunol ; 148: 109511, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38499215

RESUMO

Lactobacillus rhamnosus is a probiotic, which not only promotes the growth of animals, but also has anti-inflammatory effects. However, the mechanism by which Lactobacillus rhamnosus regulates intestinal immunity is not well comprehended. Hence, the study aimed to research how Lactobacillus rhamnosus affects the intestinal immunity using juvenile grass carp (Ctenopharyngodon idella) as a model. We selected 1800 juvenile grass carp for testing. They were divided into six treatments and fed with six gradients of Lactobacillus rhamnosus GCC-3 (0.0, 0.5, 1.0, 1.5, 2.0, 2.5 g/kg) for 70 days. Enteritis was subsequently induced with dextroside sodium sulfate. Results indicated that dietary Lactobacillus rhamnosus GCC-3 addition improved growth performance. Meanwhile, appropriate levels of Lactobacillus rhamnosus GCC-3 alleviated excessive inflammatory response by down-regulating the expression of TLR4 and NOD receptors, up-regulating the expression of TOR, and then down-regulating the expression of NF-κB. Additionally, appropriate Lactobacillus rhamnosus GCC-3 improved intestinal immunity by reducing pyroptosis triggered by NLRP3 inflammasome and mediated by GSDME. Furthermore, 16 S rRNA sequencing showing appropriate levels of Lactobacillus rhamnosus GCC-3 increased Lactobacillus and Bifidobacterium abundance and decreased Aeromonas abundance. These results suggest that Lactobacillus rhamnosus GCC-3 can alleviate intestinal inflammation through down-regulating NF-κB and up-regulating TOR signaling pathways, as well as by inhibiting pyroptosis.


Assuntos
Carpas , Doenças dos Peixes , Lacticaseibacillus rhamnosus , Animais , NF-kappa B/metabolismo , Suplementos Nutricionais , Imunidade Inata , Carpas/metabolismo , Dieta/veterinária , Inflamação/veterinária , Ração Animal/análise , Proteínas de Peixes/genética
14.
J Hazard Mater ; 469: 134005, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38484660

RESUMO

Hypoxia in water environment is one of the important problems faced by intensive aquaculture. Under hypoxia stress, the effects of dietary thiamine were investigated on grass carp gill tissue damage and their mechanisms. Six thiamine diets with different thiamine levels (0.22, 0.43, 0.73, 1.03, 1.33 and 1.63 mg/kg) were fed grass carp (Ctenopharyngodon idella) for 63 days. Then, 96-hour hypoxia stress test was conducted. This study described that thiamine enhanced the growth performance of adult grass carp and ameliorated nutritional status of thiamine (pyruvic acid, glucose, lactic acid and transketolase). Additionally, thiamine alleviated the deterioration of blood parameters [glutamic oxalacetic transaminase (GOT), glutamic pyruvic transaminase (GPT), glucose, cortisol, lactic dehydrogenase (LDH), erythrocyte fragility, and red blood cell count (RBC count)] caused by hypoxia stress, and reduced reactive oxygen species (ROS) content and oxidative damage to the gills. In addition, thiamine alleviated endoplasmic reticulum stress in the gills, which may be related to its inhibition of RNA-dependent protein kinase-like ER kinase (PERK)/eukaryotic translation initiation factor-2α (eIF2α)/activating transcription factor4 (ATF4), inositol-requiring enzyme 1 (IRE1)/X-Box binding protein 1 (XBP1) and activating transcription factor 6 (ATF6) pathways. Furthermore, thiamine maintaining mitochondrial dynamics balance was probably related to promoting mitochondrial fusion and inhibiting mitochondrial fission, and inhibiting mitophagy may involve PTEN induced putative kinase 1 (PINK1)/Parkin-dependent pathway and hypoxia-inducible factor (HIF)-Bcl-2 adenovirus E1B 19 kDa interacting protein 3 (BNIP3) pathway. In summary, thiamine alleviated hypoxia stress in fish gills, which may be related to reducing endoplasmic reticulum stress, regulating mitochondrial dynamics balance and reducing mitophagy. The thiamine requirement for optimum growth [percent weight gain (PWG)] of adult grass carp was estimated to be 0.81 mg/kg diet. Based on the index of anti-hypoxia stress (ROS content in gill), the thiamine requirement for adult grass carp was estimated to be 1.32 mg/kg diet.


Assuntos
Carpas , Brânquias , Animais , Brânquias/metabolismo , Carpas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteínas de Peixes/metabolismo , Imunidade Inata , Dieta/veterinária , Homeostase , Glucose/metabolismo , Ração Animal/análise
15.
Anim Nutr ; 16: 202-217, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38362511

RESUMO

Bacterial pathogens destroy the structural integrity of functional organs in fish, leading to severe challenges in the aquaculture industry. Vitamin D3 (VD3) prevents bacterial infections and strengthens immune system function via vitamin D receptor (VDR). However, the correlation between VD3/VDR and the structural integrity of functional organs remains unclarified. This study aimed to investigate the influence of VD3 supplementation on histological characteristics, apoptosis, and tight junction characteristics in fish intestine during pathogen infection. A total of 540 healthy grass carp (257.24 ± 0.63 g) were fed different levels of VD3 (15.2, 364.3, 782.5, 1,167.9, 1,573.8, and 1,980.1 IU/kg) for 70 d. Subsequently, fish were challenged with Aeromonas hydrophila, a pathogen that causes intestinal inflammation. Our present study demonstrated that optimal supplementation with VD3 (1) alleviated intestinal structural damage, and inhibited oxidative damage by reducing levels of oxidative stress biomarkers; (2) attenuated excessive apoptosis-related death receptor and mitochondrial pathway processes in relation to p38 mitogen-activated protein kinase signaling (P < 0.05); (3) enhanced tight junction protein expression by inhibiting myosin light chain kinase signaling (P < 0.05); and (4) elevated VDR isoform expression in fish intestine (P < 0.05). Overall, the results demonstrated that VD3 alleviates oxidative injury, apoptosis, and the destruction of tight junction protein under pathogenic infection, thereby strengthening pathogen defenses in the intestine. This finding supports the rationale for VD3 intervention as an essential practice in sustainable aquaculture.

16.
J Agric Food Chem ; 72(9): 4977-4990, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38386875

RESUMO

Ochratoxin A (OTA) is a common mycotoxin in food and feed that seriously harms human and animal health. This study investigated the effect of OTA on the muscle growth of juvenile grass carp (Ctenopharyngodon idella) and its possible mechanism in vitro. Our results have the following innovative findings: (1) Dietary OTA increased the expression of increasing phase I metabolic enzymes and absorbing transporters while reducing the expression of efflux transporters, thereby increasing their residue in muscles; (2) OTA inhibited the expressions of cell cycle and myogenic regulatory factors (MyoD, MyoG, and MyHC) and induced ferroptosis by decreasing the mRNA and protein expressions of FTH, TFR1, GPX4, and Nrf2 both in vivo and in vitro; and (3) the addition of DFO improved OTA-induced ferroptosis of grass carp primary myoblasts and promoted cell proliferation, while the addition of AKT improved OTA-inhibited myoblast differentiation and fusion, thus inhibiting muscle growth. Overall, this study provides a potential research target to further mitigate the myotoxicity of OTA.


Assuntos
Carpas , Ferroptose , Doenças dos Peixes , Ocratoxinas , Animais , Humanos , Suplementos Nutricionais , Imunidade Inata , Transdução de Sinais , Carpas/genética , Carpas/metabolismo , Dieta , Músculos/metabolismo , Ração Animal/análise , Proteínas de Peixes/metabolismo
17.
Anim Nutr ; 16: 275-287, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38371478

RESUMO

Vitamin E (VE) is an essential lipid-soluble vitamin that improves the fish flesh quality. However, the underlying molecular mechanisms remain unclear. This study aimed to investigate the effects of VE on growth performance and flesh quality in sub-adult grass carp (Ctenopharyngodon idella). A total of 450 fish (713.53 ± 1.50 g) were randomly divided into six treatment groups (three replicates per treatment) and fed for nine weeks with different experimental diets (dietary lipid 47.8 g/kg) that contained different levels of VE (5.44, 52.07, 96.85, 141.71, 185.66, and 230.12 mg/kg diet, supplemented as dl-α-tocopherol acetate). Notably, the treatment groups that were fed with dietary VE ranging from 52.07 to 230.12 mg/kg diet showed improvement in the percent weight gain, special growth rate, and feed efficiency of grass carp. Moreover, the treatment groups supplemented with dietary VE level of 141.71, 185.66, and 230.12 mg/kg diet showed enhancement in crude protein, lipid, and α-tocopherol contents in the muscle, and the dietary levels of VE ranging from 52.07 to 141.71 mg/kg diet improved muscle pH24h and shear force but reduced muscle cooking loss in grass carp. Furthermore, appropriate levels of VE (52.07 to 96.85 mg/kg diet) increased the muscle polyunsaturated fatty acid content in grass carp. Dietary VE also increased the mRNA levels of fatty acid synthesis-related genes, including fas, scd-1, fad, elovl, srebp1, pparγ, and lxrα, and up-regulated the expression of SREBP-1 protein. However, dietary VE decreased the expression of fatty acid decomposition-related genes, including hsl, cpt1, acox1, and pparα, and endoplasmic reticulum stress-related genes, including perk, ire1, atf6, eif2α, atf4, xbp1, chop, and grp78, and down-regulated the expression of p-PERK, p-IRE1, ATF6, and GRP78 proteins. In conclusion, dietary VE increased muscle fatty acid synthesis, which may be partly associated with the alleviation of endoplasmic reticulum stress, and ultimately improves fish flesh quality. Moreover, the VE requirements for sub-adult grass carp (713.53 to 1590.40 g) were estimated to be 124.9 and 122.73 mg/kg diet based on percentage weight gain and muscle shear force, respectively.

18.
Int J Biol Macromol ; 254(Pt 3): 127050, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37742887

RESUMO

Flavobacterium columnare (F. columnare) is one of the deadliest fish pathogens causing bacterial gill rot disease in various freshwater fish species globally. Tea polyphenols (TPs) are an inexpensive product extracted from tea that have received much attention as a feed additive in aquaculture. The current study was designed to investigate the underlying mechanisms and protective effects of dietary TPs against F. columnare-induced gill injury via suppression of oxidative stress, apoptosis, and inflammation in grass carp. TPs were not supplemented to the diet (control) and were supplemented at 40, 80, 120, 160 or 200 mg/kg diet. The feeding experiment was carried out for 60 days, followed by a 3-Day F. columnare challenge test. The results showed that 120 mg/kg TPs in the diet exerted the following five protective effects in fish gill: (1) control gill-rot disease and improved histopathology, (2) inhibit excessive apoptosis, (3) enhance the activity of antioxidant enzymes and upregulate related gene expression via the Nrf2/Keap1 pathway, (4) increase the activity of immune enzymes, And (5) mediate inflammatory cytokine gene expression via the JAK/STAT3 pathway. Taken together, dietary supplementation with TPs is a compelling approach to protect the gill function of fish against F. columnare.


Assuntos
Carpas , Doenças dos Peixes , Animais , Proteína 1 Associada a ECH Semelhante a Kelch , Brânquias , Fator 2 Relacionado a NF-E2 , Estresse Oxidativo , Inflamação , Apoptose , Chá
19.
Anim Nutr ; 15: 173-186, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38023377

RESUMO

Arecoline is an alkaloid with important pharmacological effects in the plant areca nut, which has been demonstrated to be an agonist of muscarinic receptors (M receptor). This study explored the influences of dietary arecoline on growth performance, intestinal digestion and absorption abilities, antioxidant capacity, and the apical junction complex (AJC) of adult grass carp (Ctenopharyngodon idella). Adult grass carp (608 to 1512 g) were fed at 6 graded levels of dietary arecoline (0, 0.5, 1.0, 1.5, 2.0, and 2.5 mg/kg diet) for 9 weeks. The results suggested that appropriate dietary supplementation of arecoline (1.0 mg/kg) increased growth parameters and intestinal growth in adult grass carp (P < 0.05), enhanced digestion and absorption capacities (P < 0.05), up-regulated muscarinic receptor 3 (M3) mRNA level (P < 0.05), increased the content of neuropeptide fish substance P (P < 0.05), improved antioxidant capacity by activating the Keap1a/Nrf2 signaling pathway (P < 0.05), reduced intestinal mucosal permeability (P < 0.05), and increased mRNA levels of tight junction (TJ) and adherent junction AJ-related proteins in fish by inhibiting the RhoA/ROCK signaling pathway (RhoA/ROCK/MLCK/NMII) (P < 0.05). In addition, the appropriate arecoline supplementation for adult grass carp was determined to be 1.20, 1.21, 1.07, and 1.19 mg/kg based on percentage weight gain, lipase activity, serum diamine oxidase, and protein carbonyl, respectively. Overall, to the best of our knowledge, we investigated for the first time the effects and possible mechanisms of dietary arecoline on intestinal digestive and absorptive capacities and structural integrity in fish and evaluated the appropriate level of supplementation.

20.
Anim Nutr ; 15: 22-33, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37771856

RESUMO

Copper (Cu) is a trace element, essential for fish growth. In the current study, in addition to growth performance, we first explored the effects of Cu on collagen synthesis and myofiber growth and development in juvenile grass carp (Ctenopharyngodon idella). A total of 1080 fish (11.16 ± 0.01 g) were randomly divided into 6 treatments (3 replicates per treatment) to receive five doses of organic Cu, which were Cu citrate (CuCit) at 0.99 (basal diet), 2.19, 4.06, 6.15, and 8.07 mg/kg, and one dose of inorganic Cu (CuSO4·5H2O at 3.15 mg/kg), for 9 weeks. The results showed appropriate Cu level (4.06 mg/kg) enhanced growth performance, improved nutritional Cu status, and downregulated Cu-transporting ATPase 1 mRNA levels in the hepatopancreas, intestine, and muscle of juvenile grass carp. Meanwhile, collagen content in fish muscle was increased after Cu intake, which was probably due to the following pathways: (1) activating CTGF/TGF-ß1/Smads signaling pathway to regulate collagen transcription; (2) upregulating of La ribonucleoprotein domain family 6 (LARP6) mRNA levels to regulate translation initiation; (3) increasing proline hydroxylase, lysine hydroxylase, and lysine oxidase activities to regulate posttranslational modifications. In addition, optimal Cu group increased myofiber diameters and the frequency of myofibers with diameter >50 µm, which might be associated with upregulation of cyclin B, cyclin D, cyclin E, proliferating cell nuclear antigen, myogenic determining factor (MyoD), myogenic factor 5, myogenin (MyoG), myogenic regulatory factor 4 and myosin heavy chain (MyHC) and downregulation of myostatin mRNA levels, increasing protein levels of MyoD, MyoG and MyHC in fish muscle. Finally, based on percentage weight gain (PWG), serum ceruloplasmin (Cp) activity and collagen content in fish muscle, Cu requirements were determined as 4.74, 4.37 and 4.62 mg/kg diet (CuCit as Cu source) of juvenile grass carp, respectively. Based on PWG and Cp activity, compared to CuSO4·5H2O, the efficacy of CuCit were 131.80% and 115.38%, respectively. Our findings provide new insights into Cu supplementation to promote muscle growth in fish, and help improve the overall productivity of aquaculture.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA