Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Org Lett ; 26(27): 5805-5810, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38949597

RESUMO

Minisci-type dehydrogenative coupling of C(sp3)-H and N-heteroaromatics was performed with N-hydroxysuccinimide as a hydrogen atom transfer catalyst in a photoelectrochemical cell composed of a mesoporous BiVO4 photoanode and a Pt electrode. In the absence of metal catalysts and chemical oxidants, a range of N-heteroarenes (e.g., quinolines, isoquinolines, and quinoxaline) can undergo coupling with various C(sp3)-H partners to form the corresponding products in excellent yields.

2.
Org Lett ; 26(25): 5329-5334, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38869223

RESUMO

Multisubstituted furans occupy a pivotal position within the realms of synthetic chemistry and pharmacological science due to their distinctive chemical configurations and inherent properties. We herein introduce a tandem difunctionalization protocol of alcohols for the efficient synthesis of multisubstituted 2,3-dihydrofurans and γ-butyrolactones through the combination of photocatalysis and iron catalysis under mild conditions. Photoredox alcohol α-C(sp3)-H activation and Pinner-type intramolecular cyclization are two key processes. This method features significant convenience, economic benefits, and environmental friendliness.

3.
Org Lett ; 26(13): 2646-2650, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38530907

RESUMO

A successful synthesis of helical-shaped axially chiral bisoxime ethers is reported. This approach utilized symmetric L-shaped diketone scaffolds as carbonyl components for the enantioselective condensation with hydroxylamines, delivering dual axially chiral oxime ethers with up to 99% ee. Additionally, the axially chiral mono-oxime ethers of azabicyclic ketones with high ee's were also successfully produced. Various chiral bicyclic lactams can be readily synthesized via Beckmann rearrangement, demonstrating a potential application in organic synthetic chemistry.

4.
Org Lett ; 25(13): 2300-2305, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-36972412

RESUMO

Here we report facile and manipulable access to methylenebisamide derivatives via visible-light-driven radical cascade processes incorporating C(sp3)-H activation and C-N/N-O cleavage. Mechanistic studies reveal that a traditional Ir-catalyzed photoredox pathway and a novel copper-induced complex-photolysis pathway are both involved, contributing to activating the inert N-methoxyamides and rendering the valuable bisamides. This approach exhibits many advantages, including mild reaction conditions, broad scope and functional group tolerance, and competitive step economy. Given the mechanistic plenitude and operational simplicity, we believe this package deal paves a promising way for the synthesis of valuable nitrogen-containing molecules.

5.
Chemosphere ; 318: 137812, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36642140

RESUMO

The controllable design of multivariate heterojunction with sequential structures is of significant relevance for breaking the performance limit of binary composite photocatalysts. In this work, the novel dual S-scheme ternary-component AgI/Ag6Mo7O24/exfoliated g-C3N4 (ECN) composite was prepared by a two-step in-situ synthetic strategy. The energy band bending at the heterointerface and the formation of dual built-in electric field could be observed due to distinct work functions of different components in the ternary composite. Benefiting from the sequential heterojunction structure, the AgI/Ag6Mo7O24/ECN composite achieved 98.7% removal efficiency of 2-nitrophenol (2-NP) within 70 min under visible light irradiation, and AgI/Ag6Mo7O24/ECN also showed higher degradation efficiency for a variety of organic pollutants such as methylene blue (MB), rhodamine B (RhB), methyl orange (MO), 4-nitrophenol (4-NP), 2-sec-butyl-4,6-dinitrophenol (DNBP) and tetracycline (TC). Notably, •OH and •O2- played dominant roles in the AgI/Ag6Mo7O24/ECN set up, which was consistent with the dual S-scheme charge transfer mechanism. In-depth insights for the photodegradation of 2-NP were presented based on a combined DFT study and GC-MS analysis. Additionally, the photoreduction of Ag+ in AgI/Ag6Mo7O24/ECN was also evaded by the fast transfer of photogenerated electrons through the dual S-scheme pathway, achieving the effect of killing two birds with one stone.


Assuntos
Antibacterianos , Poluentes Ambientais , Dinitrofenóis , Eletricidade , Elétrons
6.
J Org Chem ; 86(21): 15743-15752, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34694134

RESUMO

A new photocatalyst-free strategy for the cross-dehydrogenative C-C and C-P coupling reaction has been described. This protocol provides a concise method to synthesize various 1-substituted tetrahydroisoquinoline (THIQ) derivatives enabled by visible-light direct excitation of substrates without using any photocatalyst. Moreover, a wide substrate scope demonstrated good synthetic versatility and practicality.

7.
Inorg Chem ; 60(22): 17325-17338, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34702028

RESUMO

The construction of efficient and stable heterojunction photocatalysts with a controllable close contact interface and visible-light response is a challenging research topic in the field of photocatalysis. Herein, a series of BiOCl/rutile-TiO2 (R-TiO2) nanorod heterojunctions were constructed using R-TiO2 nanorods as supporting frameworks followed by selective adsorption of Cl- on R-TiO2(110) facets and in situ growth of BiOCl on the surface of TiO2 nanorods. The strong affinity of rhodamine B (RhB) as a photosensitizer for BiOCl allowed the prepared BiOCl/R-TiO2 heterojunctions to work efficiently under visible-light irradiation. The dye-sensitized BiOCl/R-TiO2 nanorod heterojunctions displayed promising photocatalytic performance for simultaneously treating RhB and the persistent organic pollutant 2-sec-butyl-4,6-dinitrophenol (DNBP). The highly enhanced photodegradation activity of the BiOCl/R-TiO2 system was mainly attributed to the efficient RhB-photosensitization effect, the enhanced heterojunction effect, and the suitable conduction band match between BiOCl and R-TiO2, which facilitated electron transfer from the excited RhB to the catalyst surface and charge separation across the BiOCl/R-TiO2 interface, thus promoting the formation of •O2- and h+ as dominant active species in the reaction system for degradation of pollutants. The results demonstrate that the construction of a dye-sensitized BiOCl/R-TiO2 heterojunction system is an effective strategy for improving the photocatalytic potential.

8.
Org Biomol Chem ; 13(3): 686-90, 2015 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-25424983

RESUMO

A miscible tetrahydrofuran-tris buffer mixture has been used to fabricate polydopamine hollow capsules with a size of 200 nm and with a shell thickness of 40 nm. An unusual non-emulsion soft template mechanism has been disclosed to explain the formation of capsules. The results indicate that the capsule structure is highly dependent on the volume fraction of tetrahydrofuran as well as the solvent, and the shell thickness of capsules can be controlled by adjusting the reaction time and dopamine concentration.


Assuntos
Dopamina/química , Furanos/química , Indóis/síntese química , Nanocápsulas/química , Polímeros/síntese química , Trometamina/química , Microscopia Eletrônica de Transmissão , Nanocápsulas/ultraestrutura , Tamanho da Partícula , Propriedades de Superfície , Fatores de Tempo
9.
J Hazard Mater ; 183(1-3): 347-52, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20685038

RESUMO

The chlorine dioxide (ClO(2)) oxidative degradation of 2-sec-butyl-4,6-dinitrophenol (DNBP) in aqueous solution was studied in detail using Al(2)O(3) as a heterogeneous catalyst. The operating parameters such as the ClO(2) concentration, catalyst dosage, initial DNBP concentration, reaction time and pH were evaluated. Compared with the conventional ClO(2) oxidation process without the catalyst, the ClO(2) catalytic oxidation system could significantly enhance the degradation efficiency. Under the optimal condition (DNBP concentration 39 mg L(-1), ClO(2) concentration 0.355 g L(-1), reaction time 60 min, catalyst dosage 10.7 g L(-1) and pH 4.66), degradation efficiency approached 99.1%. The catalyst was used at least 8 cycles without any appreciable loss of activity. The kinetic studies revealed that the ClO(2) catalytic oxidation degradation of DNBP followed pseudo-first-order kinetics with respect to DNBP concentration. The ClO(2) catalytic oxidation process was found to be very effective in the decolorization and COD(Cr) reduction of real wastewater from DNBP manufacturing. Thus, this study showed potential application of ClO(2) catalytic oxidation process in degradation of organic contaminants and industrial effluents.


Assuntos
Óxido de Alumínio/química , Compostos Clorados/química , Resíduos Industriais/prevenção & controle , Óxidos/química , Poluentes Químicos da Água/química , Catálise , Praguicidas , Purificação da Água/métodos
10.
J Hazard Mater ; 176(1-3): 1058-64, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20034737

RESUMO

A novel and efficient photo-Fenton catalyst of Fe(III)-5-sulfosalicylic acid (ssal) supported on Al(2)O(3) was prepared and characterized by FT-IR and TEM-EDX technique. A detailed investigation of photocatalytic degradation of 2-sec-butyl-4,6-dinitrophenol (DNBP) using this catalyst and H(2)O(2) under solar light irradiation was carried out. The effects of reaction parameters on photodegradation performance were investigated by examining H(2)O(2) dosage, catalyst loading, solution pH, initial DNBP concentration and temperature. The optimal conditions were an initial DNBP concentration of 40 mg L(-1) at pH 2.5 and temperature 30 degrees C with catalyst loading of 1.0 g L(-1) and H(2)O(2) concentration of 5 mmol L(-1) under solar light irradiation for 100 min. Almost complete degradation of DNBP was observed with [Fe(III)-ssal]-Al(2)O(3)/H(2)O(2) process under the optimal conditions. The degradation of DNBP by photo-Fenton-type process can be divided into the initiation phase and the fast phase. The kinetics of Fenton oxidation is complex and the degradation of DNBP in the two phases both can be described by a pseudo-first-order kinetic model. No obvious decline in efficiency of the [Fe(III)-ssal]-Al(2)O(3) catalyst was observed after 5 repeated cycles indicating this catalyst is stable and reusable. A possible reaction mechanism was proposed on the basis of all the information obtained under various experimental conditions.


Assuntos
2,4-Dinitrofenol/análogos & derivados , Praguicidas/química , Fotólise , Salicilatos/química , 2,4-Dinitrofenol/química , 2,4-Dinitrofenol/efeitos da radiação , Óxido de Alumínio , Benzenossulfonatos , Catálise , Compostos Férricos , Peróxido de Hidrogênio/química , Ferro , Cinética , Oxirredução , Praguicidas/efeitos da radiação , Luz Solar
11.
Chemosphere ; 75(8): 1105-11, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19201448

RESUMO

Multi-walled carbon nanotubes (MWCNTs)-TiO(2) composite photocatalysts with excellent activity were prepared by sol-gel method in order to investigate its photocatalytic activity under solar irradiation for the degradation of 2,6-dinitro-p-cresol (DNPC) in aqueous solution. The prepared composite were analyzed by XRD, FTIR, SEM, TEM, TG-DTA and UV-vis absorption spectra techniques. The results showed that the composite can cause an obvious red shift of UV-vis spectra compared with pure TiO(2). The degradation of DNPC by MWCNTs-TiO(2) composite photocatalysts under solar irradiation was systematically studied by varying the experimental parameters such as pH value, irradiation time, the initial substrate concentration, reaction temperature, catalyst concentration, etc. The optimal conditions were a DNPC concentration of 33.4 mgL(-1) at pH 6.0 with MWCNTs-TiO(2) concentration of 6.0gL(-1) under solar irradiation for the illumination of 150 min. The presence of MWCNTs can enhance the photoefficiency of TiO(2). The highest efficiency on photodegradation of DNPC can be achieved with an optimal MWCNTs/TiO(2) mass ratio of 0.05%. The photocatalytic degradation of DNPC obeys a pseudo-first-order behavior according to the Langmuir-Hinshelwood model, and possible decomposing mechanisms are also discussed. The photocatalyst was used for five cycles with photocatalytic degradation efficiency still higher than 96%. The results of the study showed the feasible and potential use of MWCNTs-TiO(2) composite in degradation of toxic organic pollutants.


Assuntos
Dinitrocresóis/química , Nanotubos de Carbono/química , Titânio/química , Catálise , Recuperação e Remediação Ambiental , Concentração de Íons de Hidrogênio , Cinética , Fotoquímica , Espectrofotometria Ultravioleta , Temperatura , Fatores de Tempo
12.
Water Res ; 43(1): 204-10, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18976788

RESUMO

Nanosized multi-walled carbon nanotubes (MWCNTs)/TiO2 composite and neat TiO2 photocatalysts were synthesized by sol-gel technique using tetrabutyl titanate as a precursor. The as prepared photocatalysts were characterized using XRD, SEM, FTIR and UV-vis spectra. The samples were evaluated for their photocatalytic activity towards the degradation of 2,4-dinitrophenol (DNP) under solar irradiation. The results indicated that the addition of an appropriate amount of MWCNTs could remarkably improve the photocatalytic activity of TiO2. An optimal MWCNTs:TiO2 ratio of 0.05% (w/w) was found to achieve the maximum rate of DNP degradation. The effects of pH, irradiation time, catalyst concentration, DNP concentration, etc. on the photocatalytic activity were studied and the results obtained were fitted to the Langmuir-Hinshelwood model to study the degradation kinetics. The optimal conditions were an initial DNP concentration of 38.8 mg/L at pH 6.0 with catalyst concentration of 8 g/L under solar irradiation for 150 min with good recyclisation of catalyst. The degree of photocatalytic degradation of DNP increased with an increase in temperature. The MWCNTs/TiO2 composite was found to be very effective in the decolorization and COD reduction of real wastewater from DNP manufacturing. Thus, this study showed the feasible and potential use of MWCNTs/TiO2 composite in degradation of various toxic organic contaminants and industrial effluents.


Assuntos
2,4-Dinitrofenol/química , 2,4-Dinitrofenol/efeitos da radiação , Nanocompostos/química , Nanotubos de Carbono/química , Luz Solar , Titânio/química , Catálise/efeitos da radiação , Cor , Cinética , Nanocompostos/ultraestrutura , Nanotubos de Carbono/ultraestrutura , Oxigênio , Soluções/química , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Fatores de Tempo , Purificação da Água , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA