Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Cell Rep ; 43(1): 113665, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38194344

RESUMO

mRNA vaccines have proven to be pivotal in the fight against COVID-19. A recommended booster, given 3 to 4 weeks post the initial vaccination, can substantially amplify protective antibody levels. Here, we show that, compared to contralateral boost, ipsilateral boost of the SARS-CoV-2 mRNA vaccine induces more germinal center B cells (GCBCs) specific to the receptor binding domain (RBD) and generates more bone marrow plasma cells. Ipsilateral boost can more rapidly generate high-affinity RBD-specific antibodies with improved cross-reactivity to the Omicron variant. Mechanistically, the ipsilateral boost promotes the positive selection and plasma cell differentiation of pre-existing GCBCs from the prior vaccination, associated with the expansion of T follicular helper cells. Furthermore, we show that ipsilateral immunization with an unrelated antigen after a prior mRNA vaccination enhances the germinal center and antibody responses to the new antigen compared to contralateral immunization. These findings propose feasible approaches to optimize vaccine effectiveness.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , SARS-CoV-2 , COVID-19/prevenção & controle , Imunização , Vacinação , RNA Mensageiro/genética , Anticorpos Antivirais , Anticorpos Neutralizantes
2.
Cells ; 12(23)2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-38067190

RESUMO

Homology-directed repair (HDR) of double-strand DNA breaks (DSBs) is dependent on enzymatic resection of DNA ends by the Mre11/Rad50/Nbs1 complex. DNA resection is triggered by the CtIP/Sae2 protein, which allosterically promotes Mre11-mediated endonuclease DNA cleavage at a position internal to the DSB. Although the mechanics of resection, including the initial endonucleolytic step, are largely conserved in eucaryotes, CtIP and its functional counterpart in Saccharomyces cerevisiae (Sae2) share only a modest stretch of amino acid homology. Nonetheless, this stretch contains two highly conserved phosphorylation sites for cyclin-dependent kinases (T843 in mouse) and the damage-induced ATM/ATR kinases (T855 in mouse), both of which are required for DNA resection. To explore the function of ATM/ATR phosphorylation at Ctip-T855, we generated and analyzed mice expressing the Ctip-T855A mutant. Surprisingly, unlike Ctip-null mice and Ctip-T843A-expressing mice, both of which undergo embryonic lethality, homozygous CtipT855A/T855A mice develop normally. Nonetheless, they are hypersensitive to ionizing radiation, and CtipT855A/T855A mouse embryo fibroblasts from these mice display marked defects in DNA resection, chromosomal stability, and HDR-mediated repair of DSBs. Thus, although ATM/ATR phosphorylation of CtIP-T855 is not required for normal animal development, it enhances CtIP-mediated DNA resection in response to acute stress, such as genotoxin exposure.


Assuntos
Proteínas de Transporte , Proteínas de Ciclo Celular , Mutagênicos , Animais , Camundongos , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fosforilação , Saccharomyces cerevisiae/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-37711103

RESUMO

OBJECTIVE: This study aimed to improve lung adenocarcinoma (LUAD) prognosis prediction based on a signature of immune-related long non-coding RNAs (lncRNAs). METHODS: LUAD samples from the TCGA database were divided into the immunity_H group and the immunity_L group. Differentially expressed RNAs (DERs) between the two groups were identified. Optimized immune-related lncRNAs combination was obtained using LASSO Cox regression. A prognostic risk prediction (RS) model was built and further validated in the training and validation datasets. A network among lncRNAs in the RS model, their co-expressed DERs, and the related KEGG pathways were established. Critical lncRNAs were validated in LUAD tissue samples. RESULTS: In total, 255 DERs were obtained, and 11 immune-related lncRNAs were significantly related to prognosis. Six lncRNAs were demonstrated as an optimal combination for building the RS model, including LINC00944, LINC00930, LINC00607, LINC00582, LINC00543, and LINC00319. The KM curve and ROC curve revealed the RS model to be a reliable indicator for LUAD prognosis. LINC00944 and LINC00582 showed a co-expression relationship with the MS4A1. LINC00944, LINC00582, and MS4A1 were successfully validated in LUAD samples. CONCLUSION: We have established a promising LUAD patient survival prediction model based on six immune-related lncRNAs. For LUAD patients, this prognostic model could guide personalized treatment.

4.
Cell Mol Immunol ; 20(11): 1313-1327, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37653127

RESUMO

Aeroallergen sensitization, mainly mediated by lung epithelium and dendritic cells (DCs), is integral to allergic asthma pathogenesis and progression. IL-10 has a dual role in immune responses, as it inhibits myeloid cell activation but promotes B-cell responses and epithelial cell proliferation. Here, we report a proinflammatory function of B-cell-derived IL-10 modulated by Bcl-3 in allergic asthma. Specifically, Bcl-3-/- mice showed elevated IL-10 levels and were found to be highly vulnerable to allergic asthma induced by house dust mites (HDMs). IL-10 had a positive correlation with the levels of the DC chemoattractant CCL-20 in HDM-sensitized mice and in patients with asthma and induced a selective increase in CCL-20 production by mouse lung epithelial cells. Blockade of IL-10 or IL-10 receptors during sensitization dampened both HDM-induced sensitization and asthma development. IL-10 levels peaked 4 h post sensitization with HDM and IL-10 was primarily produced by B cells under Bcl-3-Blimp-1-Bcl-6 regulation. Mice lacking B-cell-derived IL-10 displayed decreased lung epithelial CCL-20 production and diminished DC recruitment to the lungs upon HDM sensitization, thereby demonstrating resistance to HDM-induced asthma. Moreover, responses to HDM stimulation in Bcl-3-/- mice lacking B-cell-derived IL-10 were comparable to those in Bcl-3+/+ mice. The results revealed an unexpected role of B-cell-derived IL-10 in promoting allergic sensitization and demonstrated that Bcl-3 prevents HDM-induced asthma by inhibiting B-cell-derived IL-10 production. Thus, targeting the Bcl-3/IL-10 axis to inhibit allergic sensitization is a promising approach for treating allergic asthma. IL-10 is released rapidly from lung plasma cells under Bcl-3-Blimp-1-Bcl-6 regulation upon house dust mite exposure and amplifies lung epithelial cell (EC)-derived CCL-20 production and subsequent dendritic cell (DC) recruitment to promote allergic sensitization in asthma.


Assuntos
Asma , Interleucina-10 , Animais , Humanos , Camundongos , Alérgenos , Células Dendríticas , Modelos Animais de Doenças , Pulmão/patologia , Pyroglyphidae , Células Th2
5.
Proc Natl Acad Sci U S A ; 120(31): e2301972120, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37487079

RESUMO

PARP1 (poly-ADP ribose polymerase 1) is recruited and activated by DNA strand breaks, catalyzing the generation of poly-ADP-ribose (PAR) chains from NAD+. PAR relaxes chromatin and recruits other DNA repair factors, including XRCC1 and DNA Ligase 3, to maintain genomic stability. Here we show that, in contrast to the normal development of Parp1-null mice, heterozygous expression of catalytically inactive Parp1 (E988A, Parp1+/A) acts in a dominant-negative manner to disrupt murine embryogenesis. As such, all the surviving F1 Parp1+/A mice are chimeras with mixed Parp1+/AN (neoR retention) cells that act similarly to Parp1+/-. Pure F2 Parp1+/A embryos were found at Mendelian ratios at the E3.5 blastocyst stage but died before E9.5. Compared to Parp1-/- cells, genotype and expression-validated pure Parp1+/A cells retain significant ADP-ribosylation and PARylation activities but accumulate markedly higher levels of sister chromatid exchange and mitotic bridges. Despite proficiency for homologous recombination and nonhomologous end-joining measured by reporter assays and supported by normal lymphocyte and germ cell development, Parp1+/A cells are hypersensitive to base damages, radiation, and Topoisomerase I and II inhibition. The sensitivity of Parp1+/A cells to base damages and Topo inhibitors exceed Parp1-/- controls. The findings show that the enzymatically inactive PARP1 dominant negatively blocks DNA repair in selective pathways beyond wild-type PARP1 and establishes a crucial physiological difference between PARP1 inactivation vs. deletion. As a result, the expression of enzymatically inactive PARP1 from one allele is sufficient to abrogate murine embryonic development, providing a mechanism for the on-target side effect of PARP inhibitors used for cancer therapy.


Assuntos
ADP-Ribosilação , Instabilidade Genômica , Feminino , Gravidez , Animais , Camundongos , Causalidade , Alelos , Genótipo
6.
bioRxiv ; 2023 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-37292881

RESUMO

The ATR kinase, which coordinates cellular responses to DNA replication stress, is also essential for the proliferation of normal unstressed cells. Although its role in the replication stress response is well defined, the mechanisms by which ATR supports normal cell proliferation remain elusive. Here, we show that ATR is dispensable for the viability of G0-arrested naïve B cells. However, upon cytokine-induced proliferation, Atr-deficient B cells initiate DNA replication efficiently in early S phase, but by mid-S phase they display dNTP depletion, fork stalling, and replication failure. Nonetheless, productive DNA replication can be restored in Atr-deficient cells by pathways that suppress origin firing, such as downregulation of CDC7 and CDK1 kinase activities. Together, these findings indicate that ATR supports the proliferation of normal unstressed cells by tempering the pace of origin firing during the early S phase to avoid exhaustion of dNTPs and other replication factors.

7.
Proc Natl Acad Sci U S A ; 120(25): e2221894120, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37307443

RESUMO

The nonhomologous end-joining (NHEJ) pathway is a major DNA double-strand break repair pathway in mammals and is essential for lymphocyte development. Ku70 and Ku80 heterodimer (KU) initiates NHEJ, thereby recruiting and activating the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs). While DNA-PKcs deletion only moderately impairs end-ligation, the expression of kinase-dead DNA-PKcs completely abrogates NHEJ. Active DNA-PK phosphorylates DNA-PKcs at two clusters-PQR around S2056 (S2053 in mouse) and ABCDE around T2609. Alanine substitution at the S2056 cluster moderately compromises end-ligation on plasmid-based assays. But, mice carrying alanine substitution at all five serine residues within the S2056 cluster (DNA-PKcsPQR/PQR) display no defect in lymphocyte development, leaving the physiological significance of S2056 cluster phosphorylation elusive. Xlf is a nonessential NHEJ factor. Xlf -/- mice have substantial peripheral lymphocytes that are completely abolished by the loss of DNA-PKcs, the related ATM kinases, other chromatin-associated DNA damage response factors (e.g., 53BP1, MDC1, H2AX, and MRI), or RAG2-C-terminal regions, suggesting functional redundancy. While ATM inhibition does not further compromise end-ligation, here we show that in XLF-deficient background, DNA-PKcs S2056 cluster phosphorylation is critical for normal lymphocyte development. Chromosomal V(D)J recombination from DNA-PKcsPQR/PQRXlf -/- B cells is efficient but often has large deletions that jeopardize lymphocyte development. Class-switch recombination junctions from DNA-PKcsPQR/PQRXlf -/- mice are less efficient and the residual junctions display decreased fidelity and increased deletion. These findings establish a role for DNA-PKcs S2056 cluster phosphorylation in physiological chromosomal NHEJ, implying that S2056 cluster phosphorylation contributes to the synergy between XLF and DNA-PKcs in end-ligation.


Assuntos
Proteínas Quinases , Processamento de Proteína Pós-Traducional , Animais , Camundongos , Fosforilação , Alanina , Linfócitos B , Proteína Quinase Ativada por DNA , Mamíferos , Proteínas de Ligação a DNA
8.
Nat Commun ; 14(1): 3618, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37336885

RESUMO

The ATR kinase, which coordinates cellular responses to DNA replication stress, is also essential for the proliferation of normal unstressed cells. Although its role in the replication stress response is well defined, the mechanisms by which ATR supports normal cell proliferation remain elusive. Here, we show that ATR is dispensable for the viability of G0-arrested naïve B cells. However, upon cytokine-induced proliferation, Atr-deficient B cells initiate DNA replication efficiently, but by mid-S phase they display dNTP depletion, fork stalling, and replication failure. Nonetheless, productive DNA replication and dNTP levels can be restored in Atr-deficient cells by suppressing origin firing, such as partial inhibition of CDC7 and CDK1 kinase activities. Together, these findings indicate that ATR supports the proliferation of normal unstressed cells by tempering the pace of origin firing during the early S phase to avoid exhaustion of dNTPs and importantly also other replication factors.


Assuntos
Replicação do DNA , Proteínas Serina-Treonina Quinases , Fase S , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proliferação de Células , Dano ao DNA
9.
J Psychiatr Res ; 161: 426-434, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37031497

RESUMO

BACKGROUND: Post-stroke depression (PSD) is a common mental disorder of stroke survivors, its pathogenesis remains elusive. Previous studies suggested a role of the microbiota-gut-brain (MGB) axis in stroke and depression. In this study, we characterized microbial composition and function, and gut-brain metabolic signatures, in PSD rats. We aim to explore how disordered gut microbes participate in the pathogenesis of PSD through the MGB axis. MATERIALS AND METHODS: 16S rRNA gene sequence and fecal metabolome analysis were performed to identify the gut microbiome and their functional metabolites in PSD rats. Then, the lipid metabolic signatures in the prefrontal cortex (PFC) of PSD were conducted by liquid chromatography mass spectrometry. Finally, the potential pathway between gut and brain in the onset of PSD were explored. RESULTS: Compared to control and stroke rats, there were 10 genera (most of them belonged to phylum Firmicutes) significantly changed and 3 short chain fatty acids (SCFAs: butyric acid, acetic acid and pentanoic acid) significantly decreased in PSD rats. Meanwhile, altered gut microbial in PSD rats was significantly associated with these SCFAs. Compared with control and stroke rats, 57 lipid metabolites in the PFC of PSD rats were significantly changed. In addition, the altered SCFAs in PSD rats were also significantly correlated with most of disordered lipid metabolites in PFC. CONCLUSIONS: Our findings suggest that the SCFAs may be a bridge of gut-brain communication. The Firmicutes-SCFAs-lipid metabolism might be a potential pathway to further investigate the MGB axis and pathogenesis of PSD.


Assuntos
Microbiota , Acidente Vascular Cerebral , Ratos , Animais , Depressão/etiologia , Metabolismo dos Lipídeos , RNA Ribossômico 16S/genética , Fezes , Ácidos Graxos Voláteis/análise , Ácidos Graxos Voláteis/metabolismo , Acidente Vascular Cerebral/complicações , Ácido Butírico/análise
10.
PLoS One ; 18(1): e0279966, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36607901

RESUMO

Identifying traffic congestion accurately is crucial for improving the expressway service level. Because the distributions of microscopic traffic quantities are highly sensitive to slight changes, the traffic congestion measurement is affected by many factors. As an essential part of the expressway, service areas should be considered when measuring the traffic state. Although existing studies pay increasing attention to service areas, the impact caused by service areas is hard to measure for evaluating traffic congestion events. By merging ETC transaction datasets and service area entrance data, this work proposes a traffic congestion measurement with the influence of expressway service areas. In this model, the traffic congestion with the influence of service areas is corrected by three modules: 1) the pause rate prediction module; 2) the fitting module for the relationship between effect and pause rate; 3) the measurement module with correction terms. Extensive experiments were conducted on the real dataset of the Fujian Expressway, and the results show that the proposed method can be applied to measure the effect caused by service areas in the absence of service area entry data. The model can also provide references for other traffic indicator measurements under the effect of the service area.


Assuntos
Acidentes de Trânsito , Coleta de Dados
11.
Int J Biol Macromol ; 231: 123239, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36641025

RESUMO

As artificial extracellular matrix-like materials, silk-elastin-like protein (SELP) hydrogels, with excellent mechanical properties, high tunability, favorable biocompatibility, and controlled degradability, have become an important candidate in biomedical materials. In this study, SELP is composed of silk-like (GAGAGS) and elastin-like (GXGVP) tandem repeats, in which X residues are set as tyrosine and lysine. Furthermore, SELP polymers are prepared via SpyTag/SpyCatcher. To explore a gentler and more efficient enzymatic crosslinking method, an innovative method was invented to apply laccase to catalyze the formation of SELP hydrogels. Gelation could be successfully achieved in 2-5 min . SELP hydrogels mediated by laccase had the characteristic of low swelling rate, which could maintain a relatively stable shape even when immersed in water, and hence had the potential to be further developed into injectable biomaterials. Additionally, SELP hydrogels cross-linked by laccase showed excellent biocompatibility verified by L929 and HEK 293 T cells with cell viability >93.8 %. SELP hydrogels also exhibit good properties in sustained drug release and cell encapsulation in vitro. This study demonstrates a novel method to construct SELP hydrogels with excellent biocompatibility and expands the possibility of SELP-based material applications in biomedical fields.


Assuntos
Elastina , Lacase , Humanos , Elastina/química , Sequência de Aminoácidos , Hidrogéis/química , Células HEK293 , Peso Molecular , Seda/química , Materiais Biocompatíveis/química
12.
Nat Immunol ; 24(2): 337-348, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36577930

RESUMO

Our previous study using systems vaccinology identified an association between the sterol regulatory binding protein (SREBP) pathway and humoral immune response to vaccination in humans. To investigate the role of SREBP signaling in modulating immune responses, we generated mice with B cell- or CD11c+ antigen-presenting cell (APC)-specific deletion of SCAP, an essential regulator of SREBP signaling. Ablation of SCAP in CD11c+ APCs had no effect on immune responses. In contrast, SREBP signaling in B cells was critical for antibody responses, as well as the generation of germinal centers,memory B cells and bone marrow plasma cells. SREBP signaling was required for metabolic reprogramming in activated B cells. Upon mitogen stimulation, SCAP-deficient B cells could not proliferate and had decreased lipid rafts. Deletion of SCAP in germinal center B cells using AID-Cre decreased lipid raft content and cell cycle progression. These studies provide mechanistic insights coupling sterol metabolism with the quality and longevity of humoral immunity.


Assuntos
Proteínas de Transporte , Linfoma de Células B , Esteróis , Animais , Humanos , Camundongos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Esteróis/metabolismo , Linfoma de Células B/metabolismo
13.
Oncol Lett ; 24(6): 427, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36311683

RESUMO

Polo-like kinase 4 (PLK4) promotes tumorigenesis and is associated with the prognosis of several solid tumors, while its clinical role in patients with renal cell carcinoma (RCC) remains unidentified. The present study aimed to analyze the association of PLK4 with clinicopathological characteristics and long-term prognosis in patients with RCC. The present study detected PLK4 protein and mRNA expression using immunohistochemical and reverse transcription-quantitative PCR assays in 120 patients with RCC. Disease-free survival (DFS) and overall survival (OS) time were calculated based on a median follow-up duration of 6.9 years (range, 1.2-9.9 years). PLK4 protein expression was elevated in tumor tissues compared with adjacent tissues (P<0.001). Upregulation of PLK4 protein was associated with increased T stage (P=0.023), N stage (P=0.014) and TNM stage (P=0.007). Additionally, elevated tumor PLK4 protein expression exhibited an associating trend (without statistical significance) with reduced DFS rate (P=0.066) and was associated with decreased OS rate (P=0.036). However, univariate Cox's regression analysis indicated that high PLK4 protein expression (compared with low PLK4 protein expression) was associated with reduced OS rate (P=0.040) but not with PFS rate (P=0.070). Following adjustment by multivariate Cox's regression analysis, PLK4 protein expression was associated with neither DFS nor OS rate (both P>0.050). Additionally, PLK4 mRNA expression was further detected in some patients (for which fresh specimens frozen in liquid nitrogen were available) to validate the aforementioned observations, and the expression was elevated in tumor tissues compared with adjacent tissues. Furthermore, increased PLK4 mRNA expression was associated with tumor size ≥7 cm, high TNM stage and reduced DFS rate (all P<0.050). PLK4 possesses a certain clinical utility in monitoring the clinical stage of patients with RCC, while its prognostic value requires further validation.

14.
Front Microbiol ; 13: 880946, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35685935

RESUMO

Ceriporia lacerata is an endophytic white-rot fungus that has lignocellulolytic and terpenoid-biosynthetic abilities. However, little is known about the genomic architecture of this fungus, even at the genus level. In this study, we present the first de novo genome assembly of C. lacerata (CGMCC No. 10485), based on PacBio long-read and Illumina short-read sequencing. The size of the C. lacerata genome is approximately 36 Mb (N50, 3.4 Mb). It encodes a total of 13,243 genes, with further functional analysis revealing that these genes are primarily involved in primary metabolism and host interactions in this strain's saprophytic lifestyle. Phylogenetic analysis based on ITS demonstrated a primary evolutionary position for C. lacerata, while the phylogenetic analysis based on orthogroup inference and average nucleotide identity revealed high-resolution phylogenetic details in which Ceriporia, Phlebia, Phlebiopsis, and Phanerochaete belong to the same evolutionary clade within the order Polyporales. Annotation of carbohydrate-active enzymes across the genome yielded a total of 806 genes encoding enzymes that decompose lignocellulose, particularly ligninolytic enzymes, lytic polysaccharides monooxygenases, and enzymes involved in the biodegradation of aromatic components. These findings illustrate the strain's adaptation to woody habitats, which requires the degradation of lignin and various polycyclic aromatic hydrocarbons. The terpenoid-production potential of C. lacerata was evaluated by comparing the genes of terpenoid biosynthetic pathways across nine Polyporales species. The shared genes highlight the major part of terpenoid synthesis pathways, especially the mevalonic acid pathway, as well as the main pathways of sesquiterpenoid, monoterpenoid, diterpenoid, and triterpenoid synthesis, while the strain-specific genes illustrate the distinct genetic factors determining the synthesis of structurally diverse terpenoids. This is the first genomic analysis of a species from this genus that we are aware of, and it will help advance functional genome research and resource development of this important fungus for applications in renewable energy, pharmaceuticals, and agriculture.

15.
Neurochem Res ; 47(7): 2052-2063, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35469367

RESUMO

Post-stroke depression (PSD) is the most common mental disorder in stroke survivors. However, its specific pathophysiology remains largely unknown. Previous studies suggested a role of hippocampus in PSD. Therefore, we conducted this study to investigate the lipid metabolic signatures in hippocampus of PSD rats. Here, the liquid chromatography mass spectrometry was used to identify the lipid metabolic signatures in the hippocampus of PSD, control and stroke rats. Then, correlations between behavior indices and differential lipid metabolites in PSD rats were explored. Pathway and enrichment analysis were further conducted to uncover the crucial metabolic pathways related to PSD. Finally, we found that the lipid metabolic phenotype in hippocampus of PSD rats was substantially different from that in control and stroke rats, and identified 50 key lipid metabolites that were significantly decreased in PSD rats. These differential metabolites were mainly involved in glycerophospholipid metabolism. Meanwhile, the sucrose preference and immobility time were found to be significantly positively and negatively, respectively, correlated with glycerophospholipid metabolites. The pathway and enrichment analysis showed that the glycerophospholipid metabolism, especially cardiolipin metabolism, was significantly disturbed in PSD rats. These results suggested that the down-regulated glycerophospholipids in hippocampus, especially cardiolipin, might participate in the pathophysiology of PSD. Our findings would be helpful for future exploring the pathophysiology of PSD.


Assuntos
Depressão , Acidente Vascular Cerebral , Animais , Cardiolipinas/metabolismo , Depressão/etiologia , Depressão/metabolismo , Hipocampo/metabolismo , Humanos , Metabolismo dos Lipídeos/fisiologia , Ratos , Acidente Vascular Cerebral/metabolismo
16.
Sheng Wu Gong Cheng Xue Bao ; 38(4): 1408-1420, 2022 Apr 25.
Artigo em Chinês | MEDLINE | ID: mdl-35470615

RESUMO

Ergothioneine is a multifunctional physiological cytoprotector, with broad application in foods, beverage, medicine, cosmetics and so on. Biosynthesis is an increasingly favored method in the production of ergothioneine. This paper summarizes the new progress in the identification of key pathways, the mining of key enzymes, and the development of natural edible mushroom species and high-yield engineering strains for ergothioneine biosynthesis in recent years. Through this review, we aim to reveal the molecular mechanism of ergothioneine biosynthesis and then employ the methods of fermentation engineering, metabolic engineering, and synthetic biology to greatly increase the yield of ergothioneine.


Assuntos
Ergotioneína , Antioxidantes , Ergotioneína/genética , Ergotioneína/metabolismo , Fermentação , Engenharia Metabólica
17.
Nucleic Acids Res ; 50(7): 3958-3973, 2022 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-35349716

RESUMO

Dual-inhibitors of PARP1 and PARP2 are promising anti-cancer drugs. In addition to blocking PARP1&2 enzymatic activity, PARP inhibitors also extend the lifetime of DNA damage-induced PARP1&2 foci, termed trapping. Trapping is important for the therapeutic effects of PARP inhibitors. Using live-cell imaging, we found that PARP inhibitors cause persistent PARP2 foci by switching the mode of PARP2 recruitment from a predominantly PARP1- and PAR-dependent rapid exchange to a WGR domain-mediated stalling of PARP2 on DNA. Specifically, PARP1-deletion markedly reduces but does not abolish PARP2 foci. The residual PARP2 foci in PARP1-deficient cells are DNA-dependent and abrogated by the R140A mutation in the WGR domain. Yet, PARP2-R140A forms normal foci in PARP1-proficient cells. In PARP1-deficient cells, PARP inhibitors - niraparib, talazoparib, and, to a lesser extent, olaparib - enhance PARP2 foci by preventing PARP2 exchange. This trapping of PARP2 is independent of auto-PARylation and is abolished by the R140A mutation in the WGR domain and the H415A mutation in the catalytic domain. Taken together, we found that PARP inhibitors trap PARP2 by physically stalling PARP2 on DNA via the WGR-DNA interaction while suppressing the PARP1- and PAR-dependent rapid exchange of PARP2.


Assuntos
Dano ao DNA , Inibidores de Poli(ADP-Ribose) Polimerases , DNA/metabolismo , Reparo do DNA , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli ADP Ribosilação , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia
18.
J Clin Neurosci ; 95: 129-133, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34929636

RESUMO

BACKGROUND: Acute carbon monoxide poisoning (ACOP) commonly results in delayed neuropsychiatric sequelae (DNS). Currently, there are no reliable predictors. The aim of this article is to establish a practical model for predicting the development of delayed encephalopathy clinically. METHODS: Retrospective analysis of clinical data were performed at a single institution for the past 6 years. 107 patients with ACOP were recruited, of who 67 developed DNS and 40 did not. Clinical characteristics of the patients were analyzed between the two groups. The risk factors associated with DNS development were screened to identify the potential markers for predicting DNS. A predictive model was then built, and the receiver operating characteristic (ROC) curve analysis was used to assess its predictive ability. RESULTS: There were significant differences in 13 clinical features between the two groups. Four potential markers were identified. They were age, source of CO, Glasgow Coma Scale score and the initiation of HBOT. The potential predictive model showed an area under the curve (AUC) of 0.93 in the training set and 0.97 in the testing set. CONCLUSIONS: Our model could calculate the probability of DNS after acute CO poisoning.


Assuntos
Encefalopatias , Intoxicação por Monóxido de Carbono , Intoxicação por Monóxido de Carbono/complicações , Intoxicação por Monóxido de Carbono/diagnóstico , Escala de Coma de Glasgow , Humanos , Curva ROC , Estudos Retrospectivos
19.
Neurochem Res ; 46(9): 2262-2275, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34075523

RESUMO

Brain inflammation induced by ischemic stroke is an important cause of secondary brain injury. The nuclear factor kappa B (NF-κB), mitogen-activated protein kinase (MAPK), and NLRP3 inflammasome signaling are believed to drive the progression of brain inflammation. Spermatogenesis-associated protein2 (SPATA2) functions as a partner protein that recruits CYLD, a negative regulator of NF-κB signaling, to signaling complexes. However, the role of SPATA2 in the central nervous system remains unclear and whether it is involved in regulating inflammatory responses remains controversial. Rats were subjected to transient middle cerebral artery occlusion followed by reperfusion (tMCAO/R) surgery. The expression and localization of SPATA2 in the brain were investigated. The lentivirus-mediated shRNA was employed to inhibit SPATA2 expression. The inflammatory responses and outcomes of Spata2 knockdown were investigated. SPATA2 was co-localized with CYLD in neurons. SPATA2 expression was reduced in tMCAO/R rats. Spata2 knockdown resulted in increased microglia, increased expression of Tnfa, Il-1ß, and Il-18, decreased Garcia score, and increased infarct volume. Spata2 knockdown resulted in the activation of P38MAPK and NLRP3 inflammasome and the increased activation of NF-κB signaling. These results suggest that SPATA2 plays a protective role against brain inflammation induced by ischemia/reperfusion injury. Therefore, SPATA2 could be a potential therapeutic target for treating ischemic stroke.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Infarto da Artéria Cerebral Média/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Traumatismo por Reperfusão/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Técnicas de Silenciamento de Genes , Infarto da Artéria Cerebral Média/patologia , Inflamação/metabolismo , Inflamação/patologia , Masculino , Microglia/metabolismo , NF-kappa B/metabolismo , Ratos Sprague-Dawley , Traumatismo por Reperfusão/patologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
20.
Front Cell Infect Microbiol ; 11: 663967, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33968807

RESUMO

Background: The pathogenesis of post-stroke depression (PSD) remains largely unknown. There is growing evidence indicating that gut microbiota participates in the development of brain diseases through the gut-brain axis. Here, we aim to determine whether and how microbial composition and function altered among control, stroke and PSD rats. Materials and Methods: After the PSD rat model was successfully established, gut microbiome combined with fecal metabolome approach were performed to identify potentially PSD-related gut microbes and their functional metabolites. Then, correlations between behavior indices and altered gut microbes, as well as correlations between altered gut microbial operational taxonomic units (OTUs) with differential metabolites in PSD rats were explored. Enrichment analysis was also conducted to uncover the crucial metabolic pathways related to PSD. Results: Although there were some alterations in the microbiome and metabolism of the control and stroke rats, we found that the microbial and metabolic phenotypes of PSD rats were significantly different. The microbial composition of PSD showed a decreased species richness indices, characterized by 22 depleted OTUs mainly belonging to phylum Firmicutes, genus Blautia and Streptococcus. In addition, PSD was associated with disturbances of fecal metabolomics, among them Glutamate, Maleic acid, 5-Methyluridine, Gallocatechin, 1,5-Anhydroglucitol, L-Kynurenine, Daidzein, Cyanoalanine, Acetyl Alanine and 5-Methoxytryptamine were significantly related to disturbed gut microbiome (P ≤ 0.01). Disordered fecal metabolomics in PSD rats mainly assigned to lipid, amino acid, carbohydrate and nucleotide metabolism. The steroid biosynthesis was particularly enriched in PSD. Conclusions: Our findings suggest that gut microbiome may participate in the development of PSD, the mechanism may be related to the regulation of lipid metabolism.


Assuntos
Microbioma Gastrointestinal , Acidente Vascular Cerebral , Animais , Depressão , Fezes , Metabolismo dos Lipídeos , Metaboloma , Metabolômica , RNA Ribossômico 16S , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA