Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Int J Mol Sci ; 25(2)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38255967

RESUMO

Abiotic stress is an adverse environmental factor that severely affects plant growth and development, and plants have developed complex regulatory mechanisms to adapt to these unfavourable conditions through long-term evolution. In recent years, many transcription factor families of genes have been identified to regulate the ability of plants to respond to abiotic stresses. Among them, the AP2/ERF (APETALA2/ethylene responsive factor) family is a large class of plant-specific proteins that regulate plant response to abiotic stresses and can also play a role in regulating plant growth and development. This paper reviews the structural features and classification of AP2/ERF transcription factors that are involved in transcriptional regulation, reciprocal proteins, downstream genes, and hormone-dependent signalling and hormone-independent signalling pathways in response to abiotic stress. The AP2/ERF transcription factors can synergise with hormone signalling to form cross-regulatory networks in response to and tolerance of abiotic stresses. Many of the AP2/ERF transcription factors activate the expression of abiotic stress-responsive genes that are dependent or independent of abscisic acid and ethylene in response to abscisic acid and ethylene. In addition, the AP2/ERF transcription factors are involved in gibberellin, auxin, brassinosteroid, and cytokinin-mediated abiotic stress responses. The study of AP2/ERF transcription factors and interacting proteins, as well as the identification of their downstream target genes, can provide us with a more comprehensive understanding of the mechanism of plant action in response to abiotic stress, which can improve plants' ability to tolerate abiotic stress and provide a more theoretical basis for increasing plant yield under abiotic stress.


Assuntos
Ácido Abscísico , Proteínas de Plantas , Estresse Fisiológico , Etilenos/farmacologia , Hormônios , Proteínas de Plantas/genética , Fatores de Transcrição/genética
2.
Front Plant Sci ; 14: 1168723, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37089644

RESUMO

Drought stress is a major environmental threat that limits plant growth and crop productivity. Therefore, it is necessary to uncover the molecular mechanisms behind drought tolerance in crops. Here, OsWRKY76 positively regulated drought stress in rice. OsWRKY76 expression was induced by PEG treatment, dehydration stress, and exogenous MeJA rather than by no treatment. Notably, OsWRKY76 knockout weakened drought tolerance at the seedling stage and decreased MeJA sensitivity. OsJAZ12 was significantly induced by drought stress, and its expression was significantly higher in OsWRKY76-knockout mutants than in wild-type ZH11 under drought stress. Yeast two-hybrid and bimolecular fluorescence complementation assays showed that OsWRKY76 interacted with OsJAZ12. OsWRKY76 weakened the interaction between OsbHLH148 and OsJAZ12 in yeast cells. The OsJAZ12 protein repressed the transactivation activity of OsbHLH148, and this repression was partly restored by OsWRKY76 in rice protoplasts. Moreover, OsDREB1E expression was lower in OsWRKY76-knockout mutants than in wild-type ZH11 under drought stress, but it was upregulated under normal growth conditions. Yeast one-hybrid, electrophoretic mobility shift, and dual-luciferase assays showed that OsWRKY76 and OsbHLH148 bound directly to the OsDREB1E promoter and activated OsDREB1E expression in response to drought stress. These results suggest that OsWRKY76 confers drought tolerance through OsbHLH148-mediated jasmonate signaling in rice, offering a new clue to uncover the mechanisms behind drought tolerance.

3.
Med Sci Monit ; 29: e939314, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37041732

RESUMO

BACKGROUND We aimed to investigate the clinical efficacy of continuous renal replacement therapy (CRRT) in combination with peritoneal lavage for the treatment of severe acute pancreatitis. MATERIAL AND METHODS We retrospectively reviewed data from 52 patients with severe acute pancreatitis between January 2014 and December 2021 at Jiangyin People's Hospital. The patients were divided into 2 groups: CRRT (n=26) and CRRT in combination with peritoneal lavage (n=26). The following results and outcomes were retrospectively compared: procalcitonin, interleukin-6, and C-reactive protein levels, duration of systemic inflammatory response, Acute Physiology and Chronic Health Evaluation II (APACHE II) scores, abdominal distention relief time, abdominal pain relief time, length of intensive care unit stay, length of hospital stay, inpatient hospital costs, incidence of complications, and mortality. RESULTS There were significant differences in interleukin-6 and procalcitonin levels and APACHE-II scores after 3 and 7 days of treatment. The duration of systemic inflammatory response, abdominal distention relief time, abdominal pain relief time, length of intensive care unit stay, and length of hospital stay were considerably shorter in the combination group than in the CRRT group (P<0.01). Inpatient hospital costs were significantly lower in the combination group than in the CRRT group (P<0.01). However, incidence of complications and mortality showed no significant differences between the 2 groups. CONCLUSIONS CRRT combined with peritoneal lavage is an important adjuvant therapy in the early stages of acute severe acute pancreatitis and has better clinical efficacy than CRRT alone.


Assuntos
Terapia de Substituição Renal Contínua , Pancreatite , Humanos , Estudos Retrospectivos , Pancreatite/terapia , Lavagem Peritoneal , Interleucina-6 , Doença Aguda , Pró-Calcitonina , Dor Abdominal , Síndrome de Resposta Inflamatória Sistêmica
4.
Plant Cell Rep ; 42(2): 223-234, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36350394

RESUMO

KEY MESSAGE: OsWRKY28 confers salinity tolerance by directly binding to OsDREB1B promoter and increasing its transcriptional activity, and negatively regulates abscisic acid mediated seedling establishment in rice. WRKY transcription factors have been reported to play a vital role in plants growth, development, abiotic and biotic stress responses. In this study, we explored the functions of a transcription factor OsWRKY28 in rice. The transcript level of OsWRKY28 was strikingly increased under drought, chilling, salt and abscisic acid treatments. The OsWRKY28 overexpression lines showed enhanced salinity stress tolerance, whereas the oswrky28 mutants displayed salt sensitivity compared to wild-type plants. Under salt stress treatment, the expression levels of OsbZIP05, OsHKT1;1 and OsDREB1B were significantly lower yet the level of OsHKT2;1 was significantly higher in oswrky28 mutants than those in wide type plants. Our data of yeast one-hybrid assay and dual-luciferase assay supported that OsWRKY28 could directly bind to the promoter of OsDREB1B to enhance salinity tolerance in rice. In addition, OsWRKY28 overexpression lines displayed hyposensitivity and the oswrky28 mutants showed hypersensitivity compared to wild-type plants under exogenous abscisic acid treatment. Based on the results of yeast two-hybrid assay and GAL4-dependent chimeric transactivation assay, OsWRKY28 physically interacts with OsMPK11 and its transcriptional activity could be regulated by OsMPK11. Together, OsWRKY28 confers salinity tolerance through directly targeting OsDREB1B promoter and further activating its transcription in rice.


Assuntos
Oryza , Oryza/metabolismo , Tolerância ao Sal/genética , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas/genética , Secas , Salinidade
5.
Front Plant Sci ; 13: 1007811, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36388558

RESUMO

The AP2/ERF family is a large group of plant-specific transcription factors that play an important role in many biological processes, such as growth, development, and abiotic stress responses. OsDREB2B, a dehydration responsive factor (DRE/CRT) in the DREB subgroup of the AP2/ERF family, is associated with abiotic stress responses, such as cold, drought, salt, and heat stress, in Arabidopsis or rice. However, its role in regulating plant growth and development in rice is unclear. In this study, we reported a new function of OsDREB2B, which negatively regulates plant height in rice. Compared with wild type (WT), OsDREB2B-overexpressing (OE) rice exhibited dwarf phenotypes, such as reduction in plant height, internode length, and seed length, as well as grain yield, while the knockout mutants developed by CRISPR/Cas9 technology exhibited similar phenotypes. Spatial expression analysis revealed that OsDREB2B was highly expressed in the leaf sheaths. Under exogenous GA3 application, OsDREB2B expression was induced, and the length of the second leaf sheath of the OsDREB2B-OE lines recovered to that of the WT. OsDREB2B localized to the nucleus of the rice protoplast acted as a transcription activator and upregulated OsAP2-39 by directly binding to its promoter. OsDREB2B-OE lines reduced endogenous bioactive GA levels by downregulating seven GA biosynthesis genes and upregulating eight GA deactivation genes but not GA signaling genes. The yeast two-hybrid assay and bimolecular fluorescence complementation assay showed that OsDREB2B interacted with OsWRKY21. In summary, our study suggests that OsDREB2B plays a negative role in rice growth and development by regulating GA metabolic gene expression, which is mediated by OsAP2-39 and OsWRKY21, thereby reducing GA content and rice plant height.

6.
Plant J ; 112(2): 383-398, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35996876

RESUMO

Rice (Oryza sativa) is sensitive to low temperatures, which affects the yield and quality of rice. Therefore, uncovering the molecular mechanisms behind chilling tolerance is a critical task for improving cold tolerance in rice cultivars. Here, we report that OsWRKY63, a WRKY transcription factor with an unknown function, negatively regulates chilling tolerance in rice. OsWRKY63-overexpressing rice lines are more sensitive to cold stress. Conversely, OsWRKY63-knockout mutants generated using a CRISPR/Cas9 genome editing approach exhibited increased chilling tolerance. OsWRKY63 was expressed in all rice tissues, and OsWRKY63 expression was induced under cold stress, dehydration stress, high salinity stress, and ABA treatment. OsWRKY63 localized in the nucleus plays a role as a transcription repressor and downregulates many cold stress-related genes and reactive oxygen species scavenging-related genes. Molecular, biochemical, and genetic assays showed that OsWRKY76 is a direct target gene of OsWRKY63 and that its expression is suppressed by OsWRKY63. OsWRKY76-knockout lines had dramatically decreased cold tolerance, and the cold-induced expression of five OsDREB1 genes was repressed. OsWRKY76 interacted with OsbHLH148, transactivating the expression of OsDREB1B to enhance chilling tolerance in rice. Thus, our study suggests that OsWRKY63 negatively regulates chilling tolerance through the OsWRKY63-OsWRKY76-OsDREB1B transcriptional regulatory cascade in rice.


Assuntos
Oryza , Oryza/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Espécies Reativas de Oxigênio/metabolismo , Temperatura Baixa , Resposta ao Choque Frio/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
7.
Int J Mol Sci ; 22(16)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34445331

RESUMO

Plant WRKY transcription factors play crucial roles in plant growth and development, as well as plant responses to biotic and abiotic stresses. In this study, we identified and characterized a WRKY transcription factor in rice, OsWRKY50. OsWRKY50 functions as a transcriptional repressor in the nucleus. The transcription of OsWRKY50 was repressed under salt stress conditions, but activated after abscisic acid (ABA) treatment. OsWRKY50-overexpression (OsWRKY50-OX) plants displayed increased tolerance to salt stress compared to wild type and control plants. The expression of OsLEA3, OsRAB21, OsHKT1;5, and OsP5CS1 in OsWRKY50-OX were much higher than wild type and control plants under salt stress. Furthermore, OsWRKY50-OX displayed hyposensitivity to ABA-regulated seed germination and seedling establishment. The protoplast-based transient expression system and yeast hybrid assay demonstrated that OsWRKY50 directly binds to the promoter of OsNCED5, and thus further inhibits its transcription. Taken together, our results demonstrate that rice transcription repressor OsWRKY50 mediates ABA-dependent seed germination and seedling growth and enhances salt stress tolerance via an ABA-independent pathway.


Assuntos
Ácido Abscísico/farmacologia , Oryza , Tolerância ao Sal , Fatores de Transcrição/fisiologia , Proteínas de Arabidopsis/genética , Clonagem Molecular , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Germinação/efeitos dos fármacos , Germinação/genética , Oryza/efeitos dos fármacos , Oryza/genética , Oryza/crescimento & desenvolvimento , Filogenia , Desenvolvimento Vegetal/efeitos dos fármacos , Desenvolvimento Vegetal/genética , Proteínas de Plantas/genética , Proteínas de Plantas/fisiologia , Plantas Geneticamente Modificadas , Estresse Salino/efeitos dos fármacos , Estresse Salino/genética , Tolerância ao Sal/efeitos dos fármacos , Tolerância ao Sal/genética , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/crescimento & desenvolvimento , Análise de Sequência de DNA , Homologia de Sequência , Fatores de Transcrição/genética
8.
Plant Physiol Biochem ; 167: 22-30, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34329842

RESUMO

Soil salinity is a major environmental stressor that restricts the growth and yield of crops. Plants have evolved more complicated and precise mechanisms to cope with salt stress, as they cannot escape from harmful environments. In the current study we identified and characterized an AP2/ERF transcription factor in rice, OsERF19. The expression of OsERF19 was slightly repressed by salt stress or abscisic acid (ABA) treatment. OsERF19-overexpression (OsERF19-OX) plants displayed enhanced tolerance to salt stress and ABA hypersensitivity compared to wild type and control plants. Furthermore, OsLEA3, OsNHX1, OsHKT6, and OsOTS1 were upregulated in OsERF19-OX plants when the plants were subjected to salt stress. OsRAB21, OsNCED5, and OsP5CS1 were also upregulated in OsERF19-OX plants treated with ABA. Yeast one-hybrid and dual luciferase reporter assays demonstrated that OsERF19 directly targets the promoters of OsOTS1 and OsNCED5 and further increases their transcription. These results suggest that the transcription factor OsERF19 plays a positive role in salt stress and ABA responses in rice.


Assuntos
Ácido Abscísico , Oryza , Proteínas de Plantas , Estresse Salino , Fatores de Transcrição , Ácido Abscísico/farmacologia , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
9.
Genes Genomics ; 43(8): 975-986, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34169463

RESUMO

BACKGROUND: The Northeast Plain of China, which is an important region for the production of high grain quality rice in China. However, the grain quality of the rice produced varies across this region, even for the same cultivar. OBJECTIVE: In order to explore the meteorological factors that have the greatest influence on quality and the transcriptional level differences between different cultivars and different locations at grain filling stage. METHODS: We grew eight rice cultivars in three locations in Northeast China during two growing seasons (2017 and 2018). We recorded meteorological conditions, including air temperature, air temperature range, and photosynthetically active radiation (PAR) during the grain-filling stage of each cultivar, and analyzed the grain quality of those eight cultivars. RESULTS: Across all eight cultivars, meteorological factors had a stronger effect on eating quality than genotype, while genotype had a stronger effect on milling quality. Of the three environmental factors assessed, PAR was significantly correlated with the most grain quality traits. Using RNA-sequencing analysis, we identified 573 environment-specific DEGs (Differentially Expressed Genes), and 119 genotype-specific DEGs; 11 DEGs were responsive to genotype × environment interactions. These DEGs were involved in many key metabolic processes. CONCLUSION: Our results indicated that interactions among environmental factors, especially PAR, affected rice quality in Northeast China. Further analyses of the DEGs identified herein may provide useful information for future breeding programs aiming to develop high grain quality rice varieties suitable for cultivation across Northeast China.


Assuntos
Grão Comestível/genética , Oryza/genética , Melhoramento Vegetal , Locos de Características Quantitativas/genética , China , Grão Comestível/crescimento & desenvolvimento , Genótipo , Oryza/crescimento & desenvolvimento , Temperatura
10.
Rice (N Y) ; 14(1): 42, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33982131

RESUMO

BACKGROUND: Cold stress is the main abiotic stress in rice, which seriously affects the growth and yield of rice. Identification of cold tolerance genes is of great significance for rice to solve these problems. GATA-family transcription factors involve diverse biological functions, however, their role in cold tolerance in rice remains unclear. RESULTS: In this study, a GATA-type zinc finger transcription factor OsGATA16, which can improve cold tolerance, was isolated and characterized from rice. OsGATA16 belongs to OsGATA subfamily-II and contains 11 putative phosphorylation sites, a nuclear localization signal (NLS), and other several conserved domains. OsGATA16 was expressed in all plant tissues, with the strongest in panicles. It was induced by cold and ABA treatments, but was repressed by drought, cytokinin and JA, and acted as a transcriptional suppressor in the nucleus. Overexpression of OsGATA16 improves cold tolerance of rice at seedling stage. Under cold stress treatments, the transcription of four cold-related genes OsWRKY45-1, OsSRFP1, OsCYL4, and OsMYB30 was repressed in OsGATA16-overexpressing (OE) rice compared with wild-type (WT). Interestingly, OsGATA16 bound to the promoter of OsWRKY45-1 and repressed its expression. In addition, haplotype analysis showed that OsGATA16 polarized between the two major rice subspecies japonica and indica, and had a non-synonymous SNP8 (336G) associated with cold tolerance. CONCLUSION: OsGATA16 is a GATA transcription factor, which improves cold tolerance at seedling stage in rice. It acts as a positive regulator of cold tolerance by repressing some cold-related genes such as OsWRKY45-1, OsSRFP1, OsCYL4 and OsMYB30. Additionally, OsGATA16 has a non-synonymous SNP8 (336G) associated with cold tolerance on CDS region. This study provides a theoretical basis for elucidating the mechanism of cold tolerance in rice and new germplasm resources for rice breeding.

11.
Theor Appl Genet ; 134(8): 2587-2601, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33950284

RESUMO

KEY MESSAGE: Novel mutations of OsCOP1 were identified to be responsible for yellowish pericarp and embryo lethal phenotype, which revealed that OsCOP1 plays a crucial role in flavonoid biosynthesis and embryogenesis in rice seed. Successful production of viable seeds is a major component of plant life cycles, and seed development is a complex, highly regulated process that affects characteristics such as seed viability and color. In this study, three yellowish-pericarp embryo lethal (yel) mutants, yel-hc, yel-sk, and yel-cc, were produced from three different japonica cultivars of rice (Oryza sativa L). Mutant seeds had yellowish pericarps and exhibited embryonic lethality, with significantly reduced grain size and weight. Morphological aberrations were apparent by 5 days after pollination, with abnormal embryo development and increased flavonoid accumulation observed in the yel mutants. Genetic analysis and mapping revealed that the phenotype of the three yel mutants was controlled by a single recessive gene, LOC_Os02g53140, an ortholog of Arabidopsis thaliana CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1). The yel-hc, yel-sk, and yel-cc mutants carried mutations in the RING finger, coiled-coil, and WD40 repeat domains, respectively, of OsCOP1. CRISPR/Cas9-targeted mutagenesis was used to knock out OsCOP1 by targeting its functional domains, and transgenic seed displayed the yel mutant phenotype. Overexpression of OsCOP1 in a homozygous yel-hc mutant background restored pericarp color, and the aberrant flavonoid accumulation observed in yel-hc mutant was significantly reduced in the embryo and endosperm. These results demonstrate that OsCOP1 is associated with embryo development and flavonoid biosynthesis in rice grains. This study will facilitate a better understanding of the functional roles of OsCOP1 involved in early embryogenesis and flavonoid biosynthesis in rice seeds.


Assuntos
Endosperma/crescimento & desenvolvimento , Flavonoides/biossíntese , Regulação da Expressão Gênica de Plantas , Mutação , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Endosperma/genética , Endosperma/metabolismo , Oryza/genética , Oryza/metabolismo , Fenótipo , Proteínas de Plantas/genética , Ubiquitina-Proteína Ligases/genética
12.
Int J Mol Sci ; 22(9)2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919349

RESUMO

WRKY transcription factors (TFs) have been reported to respond to biotic and abiotic stresses and regulate plant growth and development. However, the molecular mechanisms of WRKY TFs involved in drought stress and regulating plant height in rice remain largely unknown. In this study, we found that transgenic rice lines overexpressing OsWRKY55 (OsWRKY55-OE) exhibited reduced drought resistance. The OsWRKY55-OE lines showed faster water loss and greater accumulation of hydrogen peroxide (H2O2) and superoxide radical (O2-·) compared to wild-type (WT) plants under drought conditions. OsWRKY55 was expressed in various tissues and was induced by drought and abscisic acid (ABA) treatments. Through yeast two-hybrid assays, we found that OsWRKY55 interacted with four mitogen-activated protein kinases (MAPKs) that could be induced by drought, including OsMPK7, OsMPK9, OsMPK20-1, and OsMPK20-4. The activation effects of the four OsMPKs on OsWRKY55 transcriptional activity were demonstrated by a GAL4-dependent chimeric transactivation assay in rice protoplasts. Furthermore, OsWRKY55 was able to reduce plant height under normal conditions by decreasing the cell size. In addition, based on a dual luciferase reporter assay, OsWRKY55 was shown to bind to the promoter of OsAP2-39 through a yeast one-hybrid assay and positively regulate OsAP2-39 expression. These results suggest that OsWRKY55 plays a critical role in responses to drought stress and the regulation of plant height in rice, further providing valuable information for crop improvement.


Assuntos
Adaptação Fisiológica , Secas , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Estresse Fisiológico , Fatores de Transcrição/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Fatores de Transcrição/genética
13.
Plant Sci ; 304: 110734, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33568286

RESUMO

OVATE family proteins (OFPs) are plant-specific transcription factors that regulate plant growth and development. OFPs interact with 3-aa loop extension (TALE) homeodomain proteins and brassinosteroid (BR) signaling components to modulate gibberellic acid (GA) biosynthesis and BR responses. Bioactive GAs are essential in regulating plant organogenesis and organ growth by promoting cell differentiation and elongation. DELLA proteins act as the central repressors of GA-regulated processes and are targeted to be degraded by the 26S proteasome in the presence of GA. We discovered that the rice OFP22 negatively regulates GA and BR signal transduction. OsOFP22 expression was rapidly up-regulated by exogenous GA and BR application, detected predominantly in the calli and spikelets. Overexpression of OsOFP22 conferred multiple morphological phenotypes, including reduced plant height, dark green leaves, and shortened and widened leaves, floral organs and grains. The GA-induced elongation of the second leaf sheath in the seedlings, and α-amylase activity in the endosperms were attenuated in transgenic lines overexpressing OsOFP22, while GA-biosynthesis gene transcripts and bioactive GA3 and GA4 contents were increased in the transgenic plants. OsOFP22 promotes the protein accumulation of SLR1, the single DELLA in rice protein. Furthermore, Overexpression of OsOFP22 suppresses BR response and the expression of BR-related genes. OsOFP22 is thus involved in the repression of GA and BR signal transduction and integrates GA with BR to regulate plant growth and development.


Assuntos
Brassinosteroides/metabolismo , Giberelinas/metabolismo , Oryza/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Transdução de Sinais , Western Blotting , Regulação da Expressão Gênica de Plantas , Oryza/anatomia & histologia , Oryza/genética , Reguladores de Crescimento de Plantas/fisiologia , Proteínas de Plantas/fisiologia , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/fisiologia
14.
Int J Surg ; 80: 79-83, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32619623

RESUMO

BACKGROUND: We compared laparoscopic splenectomy combined with oesophagogastric devascularisation vs. open splenectomy combined with oesophagogastric devascularisation in patients with portal hypertension secondary to liver cirrhosis. MATERIALS AND METHODS: This study included 192 patients diagnosed with portal hypertension and severe gastroesophageal varices at our hospital between January 2002 and December 2018; 62 patients underwent laparoscopic splenectomy combined with oesophagogastric devascularisation (laparoscopic group), and 130 patients underwent the open procedure (open group). The results and outcomes were compared retrospectively. RESULTS: The median blood loss was significantly less in the laparoscopic group than in the open group (180 vs. 380 mL, P < 0.001). The length of hospitalisation was shorter (6 vs. 11 days, P < 0.001) and the complication rate was lower in the laparoscopic group (P < 0.001). The general complication rates were 23.8% and 4.8% (P < 0.001), and the surgical complication rates were 56.1% and 24.2% (P < 0.001) in the open and laparoscopic groups, respectively. During a postoperative follow-up period of 10-60 months, the incidence of oesophagogastric variceal rebleeding showed no significant difference between groups. CONCLUSION: Laparoscopic splenectomy combined with oesophagogastric devascularisation is technically feasible and safe in selected patients. Compared with the open group, the laparoscopic group showed a less volume of blood loss, shorter length of hospitalisation, and fewer postoperative complications but similar long-term outcomes.


Assuntos
Varizes Esofágicas e Gástricas/cirurgia , Hipertensão Portal/cirurgia , Laparoscopia/métodos , Cirrose Hepática/cirurgia , Esplenectomia/métodos , Procedimentos Cirúrgicos Vasculares/métodos , Adulto , Perda Sanguínea Cirúrgica/estatística & dados numéricos , Varizes Esofágicas e Gástricas/etiologia , Feminino , Humanos , Hipertensão Portal/etiologia , Tempo de Internação , Cirrose Hepática/complicações , Masculino , Pessoa de Meia-Idade , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Estudos Retrospectivos , Resultado do Tratamento
15.
Front Plant Sci ; 11: 709, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32528516

RESUMO

The APETALA 2/ethylene response factors (AP2/ERF) are widespread in the plant kingdom and play essential roles in regulating plant growth and development as well as defense responses. In this study, a novel rice AP2/ERF transcription factor gene, OsRPH1, was isolated and functionally characterized. OsRPH1 falls into group-IVa of the AP2/ERF family. OsRPH1 protein was found to be localized in the nucleus and possessed transcriptional activity. Overexpression of OsRPH1 resulted in a decrease in plant height and length of internode and leaf sheath as well as other abnormal characters in rice. The length of the second leaf sheath of OsRPH1-overexpressing (OE) plants recovered to that of Kitaake (non-transgenic recipient) in response to exogenous gibberellin A3 (GA3) application. The expression of GA biosynthesis genes (OsGA20ox1-OsGA20ox4, OsGA3ox1, and OsGA3ox2) was significantly downregulated, whereas that of GA inactivation genes (OsGA2ox7, OsGA2ox9, and OsGA2ox10) was significantly upregulated in OsRPH1-OE plants. Endogenous bioactive GA contents significantly decreased in OsRPH1-OE plants. OsRPH1 interacted with a blue light receptor, OsCRY1b, in a blue light-dependent manner. Taken together, our results demonstrate that OsRPH1 negatively regulates plant height and bioactive GA content by controlling the expression of GA metabolism genes in rice. OsRPH1 is involved in blue light inhibition of leaf sheath elongation by interacting with OsCRY1b.

16.
Int J Surg ; 56: 203-207, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29935365

RESUMO

BACKGROUND: The aim of this study was to investigate the long-term outcomes and perioperative outcomes of laparoscopic hepatectomy (LH) versus open hepatectomy (OH) for hepatocellular carcinoma (HCC) between well-matched patient groups. METHODS: We retrospectively reviewed data from 1535 hepatocellular carcinoma patients who underwent liver resection between January 2002 and December 2016 at two Chinese centres. Propensity score matching of patients in a ratio of 1:1 was conducted and 157 patients were matched. RESULTS: The median blood loss (150 vs 380 ml, P < 0.001) was significantly less with LH. The laparoscopic group had shorter hospital stay (6 vs 10 days, P < 0.001) and less complication rate (6.4% vs 24.2%,P < 0.001). There were no significant differences in overall survival and disease-free survival between LH and OH. There were no significant differences in perioperative and long-term outcomes. CONCLUSION: Laparoscopic hepatectomy is technically feasible and safe in selected patients. LH showed similar long-term outcomes, associated with less blood loss, shorter hospital stay, and fewer postoperative complications in selected patients with HCC compared with OH.


Assuntos
Carcinoma Hepatocelular/cirurgia , Hepatectomia/métodos , Laparoscopia/métodos , Neoplasias Hepáticas/cirurgia , Complicações Pós-Operatórias/etiologia , Adulto , Idoso , Carcinoma Hepatocelular/mortalidade , Estudos de Casos e Controles , Intervalo Livre de Doença , Feminino , Hepatectomia/mortalidade , Humanos , Laparoscopia/mortalidade , Tempo de Internação , Neoplasias Hepáticas/mortalidade , Masculino , Pessoa de Meia-Idade , Pontuação de Propensão , Estudos Retrospectivos , Resultado do Tratamento
17.
Int J Genomics ; 2018: 5480617, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29951522

RESUMO

Cold stress is one of the most important abiotic stresses in rice. C2H2 zinc finger proteins play important roles in response to abiotic stresses in plants. In the present study, we isolated and functionally characterized a new C2H2 zinc finger protein transcription factor OsCTZFP8 in rice. OsCTZFP8 encodes a C2H2 zinc finger protein, which contains a typical zinc finger motif, as well as a potential nuclear localization signal (NLS) and a leucine-rich region (L-box). Expression of OsCTZFP8 was differentially induced by several abiotic stresses and was strongly induced by cold stress. Subcellular localization assay and yeast one-hybrid analysis revealed that OsCTZFP8 was a nuclear protein and has transactivation activity. To characterize the function of OsCTZFP8 in rice, the full-length cDNA of OsCTZFP8 was isolated and transgenic rice with overexpression of OsCTZFP8 driven by the maize ubiquitin promoter was generated using Agrobacterium-mediated transformation. Among 46 independent transgenic lines, 6 single-copy homozygous overexpressing lines were selected by Southern blot analysis and Basta resistance segregation assay in both T1 and T2 generations. Transgenic rice overexpressing OsCTZFP8 exhibited cold tolerant phenotypes with significantly higher pollen fertilities and seed setting rates than nontransgenic control plants. In addition, yield per plant of OsCTZFP8-expressing lines was significantly (p < 0.01) higher than that of nontransgenic control plants under cold treatments. These results demonstrate that OsCTZFP8 was a C2H2 zinc finger transcription factor that plays an important role in cold tolerance in rice.

18.
PLoS One ; 10(3): e0118966, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25760462

RESUMO

The Arabidopsis ovate family proteins (AtOFPs) have been shown to function as transcriptional repressors and regulate multiple aspects of plant growth and development. There are 31 genes that encode the full-length OVATE-domain containing proteins in the rice genome. In this study, the gene structure analysis revealed that OsOFPs are intron poor. Phylogenetic analysis suggested that OVATE proteins from rice, Arabidopsis and tomato can be divided into 4 groups (I-IV). Real-time quantitative polymerase chain reaction (RT-qPCR) analysis identified OsOFPs with different tissue-specific expression patterns at all stages of development in the rice plant. Interestingly, nearly half of the total number of OsOFP family was more highly expressed during the seed developmental stage. In addition, seed developmental cis-elements were found in the promoter region of the OsOFPs. Subcellular localization analysis revealed that YFP-OsOFP fusion proteins predominantly localized in the nucleus. Our results suggest that OsOFPs may act as regulatory proteins and play pivotal roles in the growth and development of rice.


Assuntos
Oryza/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Repressoras/metabolismo , Evolução Molecular , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Oryza/genética , Filogenia , Reguladores de Crescimento de Plantas/fisiologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Transporte Proteico , Proteínas Repressoras/genética
19.
PLoS One ; 9(2): e86210, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24498271

RESUMO

Plant height is an important agronomic trait that affects grain yield. Previously, we reported a novel semi-dominant dwarf mutant, HD1, derived from chemical mutagenesis using N-methyl-N-nitrosourea (MNU) on a japonica rice cultivar, Hwacheong. In this study, we cloned the gene responsible for the dwarf mutant using a map-based approach. Fine mapping revealed that the mutant gene was located on the short arm of chromosome 1 in a 48 kb region. Sequencing of the candidate genes and rapid amplification of cDNA ends-polymerase chain reaction (RACE-PCR) analysis identified the gene, d-h, which encodes a protein of unknown function but whose sequence is conserved in other cereal crops. Real-time (RT)-PCR analysis and promoter activity assays showed that the d-h gene was primarily expressed in the nodes and the panicle. In the HD1 plant, the d-h gene was found to carry a 63-bp deletion in the ORF region that was subsequently confirmed by transgenic experiments to be directly responsible for the gain-of-function phenotype observed in the mutant. Since the mutant plants exhibit a defect in GA response, but not in the GA synthetic pathway, it appears that the d-h gene may be involved in a GA signaling pathway.


Assuntos
Genes Dominantes , Genes de Plantas/genética , Mutação , Oryza/genética , Proteínas de Plantas/genética , Sequência de Aminoácidos , Sequência de Bases , Núcleo Celular/metabolismo , Mapeamento Cromossômico , Citoplasma/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Microscopia de Fluorescência , Dados de Sequência Molecular , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Deleção de Sequência , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico
20.
Mol Cells ; 32(6): 579-87, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22080374

RESUMO

Low temperature is one of the major environmental stresses in rice cultivation in high-altitude and high-latitude regions. In this study, we cultivated a set of recombinant inbred lines (RIL) derived from Dasanbyeo (indica) / TR22183 (japonica) crosses in Yanji (high-latitude area), Kunming (high-altitude area), Chuncheon (cold water irrigation) and Suwon (normal) to evaluate the main effects of quantitative trait loci (QTL) and epistatic QTL (E-QTL) with regard to their interactions with environments for cold-related traits. Six QTLs for spikelet fertility (SF) were identified in three cold treatment locations. Among them, four QTLs on chromosomes 2, 7, 8, and 10 were validated by several near isogenic lines (NILs) under cold treatment in Chuncheon. A total of 57 QTLs and 76 E-QTLs for nine cold-related traits were identified as distributing on all 12 chromosomes; among them, 19 QTLs and E-QTLs showed significant interactions of QTLs and environments (QEIs). The total phenotypic variation explained by each trait ranged from 13.2 to 29.1% in QTLs, 10.6 to 29.0% in EQTLs, 2.2 to 8.8% in QEIs and 1.0% to 7.7% in E-QTL × environment interactions (E-QEIs). These results demonstrate that epistatic effects and QEIs are important properties of QTL parameters for cold tolerance at the reproductive stage. In order to develop cold tolerant varieties adaptable to wide-ranges of cold stress, a strategy facilitating marker-assisted selection (MAS) is being adopted to accumulate QTLs identified from different environments.


Assuntos
Oryza/genética , Locos de Características Quantitativas , Estresse Fisiológico , Altitude , Mapeamento Cromossômico , Temperatura Baixa , Genes de Plantas , Pleiotropia Genética , Endogamia , Oryza/fisiologia , Fenótipo , Reprodução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA