Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chem Biol Interact ; 400: 111157, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39059604

RESUMO

Non-alcoholic fatty liver disease (NAFLD) was a chronic complication of type 2 diabetes mellitus (T2DM), and this comorbid disease lacked therapeutic drugs. Semen Ziziphi Spinosae (SZS) was the seed of Ziziphus jujuba var. Spinosa (Bunge) Hu ex H.F. Chow, and it could alleviate the symptoms of T2DM patients. As a triterpene saponin, Jujuboside A (Ju A) was the main active substance isolated from SZS and could improve hyperglycemia of diabetic mice. However, it was still unknown whether Ju A has protective effects on T2DM-associated NAFLD. Our study showed that Ju A attenuated T2DM-associated liver damage by alleviating hepatic lipid accumulation, inflammatory response, and oxidative stress in the liver of db/db mice, and high glucose (HG) and free fatty acid (FFA) co-stimulated human hepatocellular carcinomas (HepG2) cells. Along with the improved hyperglycemia and liver injury, Ju A restrained Yin Yang 1 (YY1)/cytochrome P450 2E1 (CYP2E1) signaling in vivo and in vitro. YY1 overexpression intercepted the protective effects of Ju A on T2DM-induced liver injury via promoting hepatic lipid accumulation, inflammatory response, and oxidative stress. While, the blocking effect of YY1 overexpression on Ju A's hepatoprotective effect was counteracted by further treatment of CYP2E1 specific inhibitor diethyldithiocarbamate (DDC) in vitro. In-depth mechanism research showed that Ju A through YY1/CYP2E1 signaling promoted hepatic fatty acid ß-oxidation, and inhibited inflammatory response and oxidative stress by activating peroxisome proliferator-activated receptor alpha (PPARα), leading to the improvement of T2DM-associated NAFLD. Ju A might be a potential agent in the treatment and health care of T2DM-associated liver disease, especially NAFLD.


Assuntos
Citocromo P-450 CYP2E1 , Diabetes Mellitus Tipo 2 , Inflamação , Metabolismo dos Lipídeos , Fígado , Hepatopatia Gordurosa não Alcoólica , Estresse Oxidativo , Transdução de Sinais , Fator de Transcrição YY1 , Estresse Oxidativo/efeitos dos fármacos , Animais , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Humanos , Transdução de Sinais/efeitos dos fármacos , Camundongos , Masculino , Citocromo P-450 CYP2E1/metabolismo , Células Hep G2 , Metabolismo dos Lipídeos/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Fígado/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fator de Transcrição YY1/metabolismo , Camundongos Endogâmicos C57BL , Saponinas/farmacologia , Saponinas/uso terapêutico
2.
Environ Geochem Health ; 46(3): 107, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38446285

RESUMO

Potentially toxic elements (Pb and Cd) contamination of soil can adversely affect human health. Moreover, these metal ions interact with the gut microbiota after entering the human digestive system. Based on the physiologically based extraction test and the simulator of human intestinal microbial ecosystem, the bioaccessibility of Pb and Cd in soils contaminated with lead-acid power plants was assessed. The gastric stage exhibited the greatest average bioaccessibility of lead and cadmium (63.39% and 57.22%), followed by the small intestinal stage (6.86% and 36.29%); due to gut microorganisms, the bioaccessibility of lead and cadmium was further reduced in the colon stage (1.86% and 4.22%). Furthermore, to investigate soil contamination's effects on gut microbes, 16S rRNA high-throughput sequencing was used to identify the gut microbial species after the colon period. Due to Pb and Cd exposure, the relative abundance of Firmicutes and unidentified_Bacteria decreased, while the relative abundance of Proteobacteria, Synergistota, and Bacteroidota increased. The relationship between environmental factors and the number of microbial species in the gut was also examined using Spearman correlation analysis. Pb and Cd exposure has been found to affect the composition and structure of the gut microbiota.


Assuntos
Cádmio , Ecossistema , Humanos , Chumbo , RNA Ribossômico 16S/genética , Centrais Elétricas , Solo
3.
J Hazard Mater ; 463: 132863, 2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-37918077

RESUMO

It is well-known that several Chinese patent medicines use realgar as a specific component. People are more aware of the health dangers associated with realgar since it includes arsenic. Previous research overstated the arsenic toxicity of realgar-containing Chinese prescription medications because little thought was given to the influence of arsenic bioaccessibility by gut microbiota. In light of this, this study examined the total content, bioaccessibility and speciation of targeted medications while also examining intestinal epithelial transit utilizing the diffusive gradients in thin-films (DGT). All samples contained arsenic, and the bioaccessibilities of the colon, intestine and gastric regions ranged from 0.19% to 1.73%, 0.25-1.88% and 0.21-1.70% respectively. The range of DGT-bioaccessibility is 0.01-0.0018%. Three steps of analysis were conducted on inorganic As(III) and As(V). In health risk assessment, the ADDs and HQs of DGT-bioaccessibility were below the threshold levels when compared to computing average daily intake dose (ADD) and hazard quotient (HQ) by bioaccessibility of gastric, intestinal and colon. Additionally, Proteobacteria and Firmicutes were discovered to be the two predominant kinds of gut microbes in this study. Under arsenic exposure, the abundance of Christensenellaceae, Desulfovibrionaceae and Akkermansiaceae increased, but the quantity of Rikenellaceae decreased. These findings revealed that alterations in gut microbiota had an impact on host metabolism.


Assuntos
Arsênio , Arsenicais , Microbioma Gastrointestinal , Humanos , Arsênio/metabolismo , Arsenicais/metabolismo
4.
Ecotoxicol Environ Saf ; 262: 115144, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37352584

RESUMO

Biochar and algae were commonly used as environmental-friendly adsorbents to treat wastewater contaminated with heavy metals. In the study, we used a biochar-microalgae complex of Coconut shell activated carbon (Csac) and Chlorella to evaluate and compare the adsorption ability of arsenic and mercury. The adsorption kinetic study showed that the adsorption efficiency of the biochar-microalgae complex for mercury was better remarkably than arsenic (about 74.84% higher in initial 1 min and 71.62% higher at adsorption equilibrium), which could be interpreted as the complex had excellent adsorption capacity for mercury. The new biochar-microalgae complex adsorbed up to 46.8 µg·g-1 of mercury at 100 µg·L-1 concentration. FTIR and XPS indicated that the surface of biochar-microalgae complex adsorbent had abundant oxygen-containing functional groups that could provide active sites during the adsorption process, i.e., -COOH, -OH and C-O-C et al. Compared with arsenic, the adsorption peaks of mercury moved or changed significantly, suggesting that the complex strongly adsorbed mercury and the main adsorption mechanisms were the ion exchange and complexation between functional groups and mercury ion. What must be emphasized was arsenic mainly existed as negative ions (AsO2-, AsO23-) in water, which was the reason for the weak adsorption capacity of the biochar-microalgae complex for arsenic. In short, the adsorption efficiency and performance of the biochar-microalgae complex was significantly higher than that of arsenic (p < 0.01), and the adsorption of mercury by biochar-microalgae was chemisorption based on the single molecular layer theory.

5.
Front Plant Sci ; 13: 1025162, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36420022

RESUMO

Nitrogen (N) deposition tends to accompany precipitation in temperate forests, and vegetation productivity is mostly controlled by water and N availability. Many studies showed that tree species response to precipitation or N deposition alone influences, while the N deposition and precipitation interactive effects on the traits of tree physiology, especially in non-structural carbohydrates (NSCs) and long-term water use efficiency (WUE), are still unclear. In this study, we measured carbon stable isotope (δ13C), total soluble sugar and starch content, total phenols, and other physiological traits (e.g., leaf C:N:P stoichiometry, lignin, and cellulose content) of two dominant tree species (Quercus variabilis Blume and Liquidambar formosana Hance) under canopy-simulated N deposition and precipitation addition to analyze the changes of long-term WUE and NSC contents and to explain the response strategies of dominant trees to abiotic environmental changes. This study showed that N deposition decreased the root NSC concentrations of L. formosana and the leaf lignin content of Q. variabilis. The increased precipitation showed a negative effect on specific leaf area (SLA) and a positive effect on leaf WUE of Q. variabilis, while it increased the leaf C and N content and decreased the leaf cellulose content of L. formosana. The nitrogen-water interaction reduced the leaf lignin and total phenol content of Q. variabilis and decreased the leaf total phenol content of L. formosana, but it increased the leaf C and N content of L. formosana. Moreover, the response of L. formosana to the nitrogen-water interaction was greater than that of Q. variabilis, highlighting the differences between the two dominant tree species. The results showed that N deposition and precipitation obviously affected the tree growth strategies by affecting the NSC contents and long-term WUE. Canopy-simulated N deposition and precipitation provide a new insight into the effect of the nitrogen-water interaction on tree growth traits in a temperate forest ecosystem, enabling a better prediction of the response of dominant tree species to global change.

6.
Sci Total Environ ; 813: 152488, 2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-34963608

RESUMO

Coconut shell activated carbon (Csac) is one of the most widely used materials to remove cadmium (Cd) from contaminated water. A large diversity of microorganisms exists in various aquatic systems and may aid Cd removal by Csac. In this study, we explored the reactions of Csac with microalgae (Chlorella) in Cd-containing media. The results of scanning electron microscope (SEM) imaging, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), superconducting pulse-Fourier transform nuclear magnetic resonance (pulse-FT NMR) and X-ray photoelectron spectroscopy (XPS) indicated that Chlorella could adhere in the micropores of Csac formed Csac@Chlorella composite adsorbent loading Chlorella. Furthermore, the composite adsorbent surface had abundant functional groups such -COOH, -OH and C-O-C, which served as active sites during the adsorption process. Compared with Csac, Csac@Chlorella had an enhanced Cd adsorption capacity evidently. The results showed that pH 8, 0.2 g Csac, OD680 of 0.1 for Chlorella were optimal conditions for maximum Cd adsorption capacity within one hour contact time. Furthermore, the Cd adsorption process was well described by the pseudo-second-order and Langmuir adsorption isotherm models. The models revealed that the adsorption process was mainly based on chemical adsorption of a single molecular layer, accompanied by electrostatic attraction, complexation and intracellular adsorption, amongst other parameters. Collectively, the findings illustrate that the microalgae (Chlorella)-Csac-Cd interaction is complex and will thus have immense interest to a broad range of biological, environmental, and geoscience communities.


Assuntos
Chlorella , Microalgas , Poluentes Químicos da Água , Adsorção , Cádmio , Carvão Vegetal , Concentração de Íons de Hidrogênio , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA