Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Protistol ; 94: 126075, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38520753

RESUMO

In Euplotes, protein pheromones regulate cell reproduction and mating by binding cells in autocrine or heterologous fashion, respectively. Pheromone binding sites (receptors) are identified with membrane-bound pheromone isoforms determined by the same genes specifying the soluble forms, establishing a structural equivalence in each cell type between the two twin proteins. Based on this equivalence, autocrine and heterologous pheromone/receptor interactions were investigated analyzing how native molecules of pheromones Er-1 and Er-13, distinctive of mating compatible E. raikovi cell types, associate into crystals. Er-1 and Er-13 crystals are equally formed by molecules that associate cooperatively into oligomeric chains rigorously taking a mutually opposite orientation, and each burying two interfaces. A minor interface is pheromone-specific, while a major one is common in Er-1 and Er-13 crystals. A close structural inspection of this interface suggests that it may be used by Er-1 and Er-13 to associate into heterodimers, yet inapt to further associate into higher complexes. Pheromone-molecule homo-oligomerization into chains accounts for clustering and internalization of autocrine pheromone/receptor complexes in growing cells, while the heterodimer unsuitability to oligomerize may explain why heterologous pheromone/receptor complexes fail clustering and internalization. Remaining on the cell surface, they are credited with a key role in cell-cell mating adhesion.


Assuntos
Euplotes , Feromônios , Feromônios/metabolismo , Euplotes/genética , Euplotes/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/química , Multimerização Proteica , Ligação Proteica , Comunicação Autócrina/fisiologia , Receptores de Feromônios/metabolismo , Receptores de Feromônios/genética
2.
Mar Life Sci Technol ; 5(3): 337-358, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37637257

RESUMO

During a study on the diversity of ciliated protists in Lake Weishan Wetland, the largest wetland in northern China, four epibiotic sessilid peritrichs were isolated from aquatic host animals. Two of them, i.e., Epistylis cambari Kellicott, 1885 and Epistylis lwoffi Fauré-Fremiet, 1943, were known species whereas the other two, i.e., Parapiosoma typicum gen. nov., sp. nov. and Orborhabdostyla gracilis sp. nov., are new to science. The new genus Parapiosoma gen. nov. is characterized by its branched non-contractile stalk, everted peristomial lip, obconical macronucleus and transverse silverlines. Two species are assigned to the new genus, namely Parapiosoma typicum sp. nov. and Parapiosoma gasterostei (Fauré-Fremiet, 1905) comb. nov. Morphologically, P. typicum sp. nov. is recognized by its goblet-shaped zooids, single-layered peristomial lip, dichotomously branched stalk, and infundibular polykinety 3 (P3) containing three equal-length rows. Orborhabdostyla gracilis sp. nov. is characterized by its slender zooid, curved macronucleus, and three equal-length rows in infundibular P3. Improved diagnoses and redescriptions of E. cambari and E. lwoffi are provided including, for the first time, data on the ciliature of E. cambari. Phylogenetic analyses based on SSU rDNA, ITS1-5.8S rDNA -ITS2, and LSU rDNA sequence data strongly support the assertion that the family Epistylididae comprises morphospecies with different evolutionary lineages and indicate that Parapiosoma gen. nov. may represent a new taxon at family level.

3.
Microorganisms ; 10(6)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35744607

RESUMO

In ciliates, diffusible cell type-specific pheromones regulate cell growth and mating phenomena acting competitively in both autocrine and heterologous fashion. In Euplotes species, these signaling molecules are represented by species-specific families of structurally homologous small, disulfide-rich proteins, each specified by one of a series of multiple alleles that are inherited without relationships of dominance at the mat-genetic locus of the germinal micronuclear genome, and expressed as individual gene-sized molecules in the somatic macronuclear genome. Here we report the 85-amino acid sequences and the full-length macronuclear nucleotide coding sequences of two pheromones, designated Ef-1 and Ef-2, isolated from the supernatant of a wild-type strain of a psychrophilic species of Euplotes, E. focardii, endemic to Antarctic coastal waters. An overall comparison of the determined E. focardii pheromone and pheromone-gene structures with their homologs from congeneric species provides an initial picture of how an evolutionary increase in the complexity of these structures accompanies Euplotes speciation.

4.
Mar Life Sci Technol ; 4(3): 317-328, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37073165

RESUMO

Ciliated protists are ideal material for studying the origin and evolution of sex, because of their nuclear dimorphism (containing both germline micronucleus and somatic macronucleus in the same cytoplasm), special sexual processes (conjugation and autogamy), and high diversity of mating-type systems. However, the study of sexual process is limited to only a few species, due to the difficulties in inducing or observing conjugation. In the present study, we investigate the conjugation process in Paramecium multimicronucleatum: (1) of the three prezygotic divisions, all micronuclei undergo the first two divisions (meiosis I, II), while a variable number of nuclei undergo the third division (mitosis); (2) the synkaryon divides three times after fertilization, giving rise to eight products that differentiate into four macronuclear anlagen and four micronuclei; (3) cells restore the vegetative stage after two successive cell fissions during which the macronuclear anlagen are distributed into daughter cells without division, while micronuclei divide mitotically; (4) the parental macronucleus begins to fragment following the first meiotic division and finally degenerates completely; (5) the entire process takes about 110 h, of which about 85 h are required for macronuclear development. In addition, we describe for the first time the process of genomic exclusion occurring between amicronucleate and micronucleate cells of P. multimicronucleatum, during which the micronucleate cell contributes a pronucleus to the amicronucleate cell, resulting in both exconjugants being homozygotes. These results provide new insights into the diversity of sexual processes and lay an important cytological basis for future in-depth studies of mating systems in ciliates.

5.
Mar Life Sci Technol ; 4(4): 471-492, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37078084

RESUMO

Ciliates of the heterotrich family Folliculinidae are widespread in various habitats and are distinguished by their transparent loricae of various shapes, conspicuous peristomial lobes, and dimorphic life cycles. They usually attach firmly to the surface of substrates, feed on bacteria and microalgae, and play a significant role in energy flow and material cycling in the microbial food web. However, little is known regarding their biodiversity and systematics. In this work, we establish the terminology of the family Folliculinidae and select six crucial features for genus recognition. Based on previous studies, we revise the classification of Folliculinidae, supply improved diagnoses for each of the 33 folliculinid genera, and provide a key to their identification. Moreover, phylogenetic analyses based on small subunit ribosomal DNA (SSU rDNA) sequences revealed that the family is monophyletic and comprises two subclades (subclades I II) which can be identified by the flexibility of their peristomial lobes and the sculpturing of their necks. Furthermore, we investigate the evolutionary relationships of folliculinids using the six chosen generic features. Supplementary Information: The online version contains supplementary material available at 10.1007/s42995-022-00152-z.

6.
Microorganisms ; 8(3)2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-32106521

RESUMO

While nuclear small subunit ribosomal DNA (nSSU rDNA) is the most commonly-used gene marker in studying phylogeny, ecology, abundance, and biodiversity of microbial eukaryotes, mitochondrial small subunit ribosomal DNA (mtSSU rDNA) provides an alternative. Recently, both copy number variation and sequence variation of nSSU rDNA have been demonstrated for diverse organisms, which can contribute to misinterpretation of microbiome data. Given this, we explore patterns for mtSSU rDNA among 13 selected ciliates (representing five classes), a major component of microbial eukaryotes, estimating copy number and sequence variation and comparing to that of nSSU rDNA. Our study reveals: (1) mtSSU rDNA copy number variation is substantially lower than that for nSSU rDNA; (2) mtSSU rDNA copy number ranges from 1.0 × 104 to 8.1 × 105; (3) a most common sequence of mtSSU rDNA is also found in each cell; (4) the sequence variation of mtSSU rDNA are mainly indels in poly A/T regions, and only half of species have sequence variation, which is fewer than that for nSSU rDNA; and (5) the polymorphisms between haplotypes of mtSSU rDNA would not influence the phylogenetic topology. Together, these data provide more insights into mtSSU rDNA as a powerful marker especially for microbial ecology studies.

7.
Eur J Protistol ; 73: 125675, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32036251

RESUMO

Ciliated protists represent a morphologically and genetically distinct group of single-celled eukaryotes which can reproduce asexually and sexually. Morphogenesis occurs in both asexual and sexual modes of reproduction which is of interest for researchers investigating cell differentiation, regeneration, systematics and evolution. However, studies of morphogenesis have concentrated almost entirely on the asexual mode. Here we use protargol staining to investigate the morphogenetic processes during sexual reproduction in the model species Euplotes vannus (Müller). The major events include: (1) two rounds of morphogenesis occur during sexual reproduction, i.e., conjugational and postconjugational reorganization; (2) in both processes the oral primordium is generated de novo in a pouch beneath the cortex; (3) the frontoventral-transverse cirri anlagen are formed de novo and fragment in a 3:3:3:3:2 pattern; (4) the leftmost cirrus and the paroral membrane do not change during conjugational morphogenesis, but reorganize de novo during postconjugational morphogenesis; (5) marginal cirral anlagen are formed de novo in both morphogenetic processes; (6) two or three caudal cirri are formed at the ends of the rightmost two or three old dorsal kineties; (7) the dorsal kineties are retained entirely. These results can serve as reference to investigate the morphogenetic events in the different stages of sexual reproduction.


Assuntos
Euplotes/classificação , Euplotes/citologia , Reprodução/fisiologia , Especificidade da Espécie
8.
Microorganisms ; 8(2)2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31979289

RESUMO

Ciliates form a distinct group of single-celled eukaryotes that host two types of nuclei (micro and macronucleus) in the same cytoplasm and have a special sexual process known as conjugation, which involves mitosis, meiosis, fertilization, nuclear differentiation, and development. Due to their high species diversity, ciliates have evolved different patterns of nuclear events during conjugation. In the present study, we investigate these events in detail in the marine species Euplotes raikovi. Our results indicate that: (i) conjugation lasts for about 50 hours, the longest stage being the development of the new macronucleus (ca. 36 hours); (ii) there are three prezygotic micronuclear divisions (mitosis and meiosis I and II) and two postzygotic synkaryon divisions; and (iii) a fragment of the parental macronucleus fuses with the new developing macronucleus. In addition, we describe for the first time conjugation in amicronucleate E. raikovi cells. When two amicronucleate cells mate, they separate after about 4 hours without evident nuclear changes; when one amicronucleate cell mates with a micronucleate cell, the micronucleus undergoes regular prezygotic divisions to form migratory and stationary pronuclei, but the two pronuclei fuse in the same cell. In the amicronucleate cell, the parental macronucleus breaks into fragments, which are then recovered to form a new functional macronucleus. These results add new information on the process of conjugation in both micronucleate and amicronucleate Euplotes cells.

9.
Mol Ecol Resour ; 19(5): 1292-1308, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30985983

RESUMO

As a model organism for studies of cell and environmental biology, the free-living and cosmopolitan ciliate Euplotes vannus shows intriguing features like dual genome architecture (i.e., separate germline and somatic nuclei in each cell/organism), "gene-sized" chromosomes, stop codon reassignment, programmed ribosomal frameshifting (PRF) and strong resistance to environmental stressors. However, the molecular mechanisms that account for these remarkable traits remain largely unknown. Here we report a combined analysis of de novo assembled high-quality macronuclear (MAC; i.e., somatic) and partial micronuclear (MIC; i.e., germline) genome sequences for E. vannus, and transcriptome profiling data under varying conditions. The results demonstrate that: (a) the MAC genome contains more than 25,000 complete "gene-sized" nanochromosomes (~85 Mb haploid genome size) with the N50 ~2.7 kb; (b) although there is a high frequency of frameshifting at stop codons UAA and UAG, we did not observe impaired transcript abundance as a result of PRF in this species as has been reported for other euplotids; (c) the sequence motif 5'-TA-3' is conserved at nearly all internally-eliminated sequence (IES) boundaries in the MIC genome, and chromosome breakage sites (CBSs) are duplicated and retained in the MAC genome; (d) by profiling the weighted correlation network of genes in the MAC under different environmental stressors, including nutrient scarcity, extreme temperature, salinity and the presence of ammonia, we identified gene clusters that respond to these external physical or chemical stimulations, and (e) we observed a dramatic increase in HSP70 gene transcription under salinity and chemical stresses but surprisingly, not under temperature changes; we link this temperature-resistance to the evolved loss of temperature stress-sensitive elements in regulatory regions. Together with the genome resources generated in this study, which are available online at Euplotes vannus Genome Database (http://evan.ciliate.org), these data provide molecular evidence for understanding the unique biology of highly adaptable microorganisms.


Assuntos
Adaptação Biológica , Exposição Ambiental , Euplotes/genética , Rearranjo Gênico , Genoma de Protozoário , Perfilação da Expressão Gênica , Anotação de Sequência Molecular
10.
Sci China Life Sci ; 62(2): 203-214, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30671886

RESUMO

Sequence-based approaches, such as analyses of ribosome DNA (rDNA) clone libraries and high-throughput amplicon sequencing, have been used extensively to infer evolutionary relationships and elucidate the biodiversity in microbial communities. However, recent studies demonstrate both rDNA copy number variation and intra-individual (intra-genomic) sequence variation in many organisms, which challenges the application of the rDNA-based surveys. In ciliates, an ecologically important clade of microbial eukaryotes, rDNA copy number and sequence variation are rarely studied. In the present study, we estimate the intraindividual small subunit rDNA (SSU rDNA) copy number and sequence variation in a wide range of taxa covering nine classes and 18 orders of the phylum Ciliophora. Our studies reveal that: (i) intra-individual sequence variation of SSU rDNA is ubiquitous in all groups of ciliates detected and the polymorphic level varies among taxa; (ii) there is a most common version of SSU rDNA sequence in each cell that is highly predominant and may represent the germline micronuclear template; (iii) compared with the most common version, other variant sequences differ in only 1-3 nucleotides, likely generated during macronuclear (somatic) amplification; (iv) the intra-cell sequence variation is unlikely to impact phylogenetic analyses; (v) the rDNA copy number in ciliates is highly variable, ranging from 103 to 106, with the highest record in Stentor roeselii. Overall, these analyses indicate the need for careful consideration of SSU rDNA variation in analyses of the role of ciliates in ecosystems.


Assuntos
Cilióforos/classificação , Cilióforos/genética , DNA Ribossômico/genética , Filogenia , Variações do Número de Cópias de DNA , Genoma de Protozoário/genética , Polimorfismo de Nucleotídeo Único , Subunidades Ribossômicas Menores de Eucariotos/genética , Análise de Sequência de DNA , Análise de Célula Única
11.
Cell Cycle ; 18(3): 288-298, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30563432

RESUMO

Ciliates represent a morphologically and genetically distinct group of single-celled eukaryotes that segregate germline and somatic functions into two types of nuclei and exhibit complex cytogenetic events during the sexual process of conjugation, which is under the control of the so-called "mating type systems". Studying conjugation in ciliates may provide insight into our understanding of the origins and evolution of sex and fertilization. In the present work, we studied in detail the sexual process of conjugation using the model species Euplotes vannus, and compared these nuclear events with those occurring in other ciliates. Our results indicate that in E. vannus: 1) conjugation requires about 75 hours to complete: the longest step is the development of the new macronucleus (ca. 64h), followed by the nuclear division of meiosis I (5h); the mitotic divisions usually take only 2h; 2) there are three prezygotic divisions (mitosis and meiosis I and II), and two of the eight resulting nuclei become pronuclei; 3) after the exchange and fusion of the pronuclei, two postzygotic divisions occur; two of the four products differentiate into the new micronucleus and macronucleus, respectively, and the parental macronucleus degenerates completely; 4) comparison of the nuclear events during conjugation in different ciliates reveals that there are generally three prezygotic divisions while the number of postzygotic divisions is highly variable. These results can serve as reference to investigate the mating type system operating in this species and to analyze genes involved in the different steps of the sexual process.


Assuntos
Conjugação Genética , Euplotes/genética , Núcleo Celular/genética , Cilióforos/genética , Euplotes/citologia , Cinética , Macronúcleo , Meiose , Mitose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA