Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
BMC Ecol Evol ; 21(1): 194, 2021 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-34689746

RESUMO

BACKGROUND: The boreal forest is one of the largest biomes on earth, supporting thousands of species. The global climate fluctuations in the Quaternary, especially the ice ages, had a significant influence on the distribution of boreal forest, as well as the divergence and evolution of species inhabiting this biome. To understand the possible effects of on-going and future climate change it would be useful to reconstruct past population size changes and relate such to climatic events in the past. We sequenced the genomes of 32 individuals from two forest inhabiting bird species, Hazel Grouse (Tetrastes bonasia) and Chinese Grouse (T. sewerzowi) and three representatives of two outgroup species from Europe and China. RESULTS: We estimated the divergence time of Chinese Grouse and Hazel Grouse to 1.76 (0.46-3.37) MYA. The demographic history of different populations in these two sibling species was reconstructed, and showed that peaks and bottlenecks of effective population size occurred at different times for the two species. The northern Qilian population of Chinese Grouse became separated from the rest of the species residing in the south approximately 250,000 years ago and have since then showed consistently lower effective population size than the southern population. The Chinese Hazel Grouse population had a higher effective population size at the peak of the Last Glacial Period (approx. 300,000 years ago) than the European population. Both species have decreased recently and now have low effective population sizes. CONCLUSIONS: Combined with the uplift history and reconstructed climate change during the Quaternary, our results support that cold-adapted grouse species diverged in response to changes in the distribution of palaeo-boreal forest and the formation of the Loess Plateau. The combined effects of climate change and an increased human pressure impose major threats to the survival and conservation of both species.


Assuntos
Mudança Climática , Galliformes , Animais , Ecossistema , Galliformes/genética , Humanos , Densidade Demográfica , Sequenciamento Completo do Genoma
3.
BMC Genomics ; 21(1): 581, 2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32847513

RESUMO

BACKGROUND: The Quaternary had worldwide consequences in forming the contemporary diversity of many populations, species and communities, which is characterized by marked climatic oscillations between glacial and interglacial periods. The origin and evolution of biodiversity in mountainous areas are highly dependent on historical orogenesis and associated climatic changes. The Chinese grouse Tetrastes sewerzowi is a forest-dwelling species endemic to the mountains to the east of the Qinghai-Tibet Plateau, which has been listed as Near Threatened with a decreasing trend by the IUCN because of ongoing deforestation and fragmentation of coniferous forests. It is important to place current population status into a broader ecological and evolutionary context to understand their demographic history. RESULTS: Analyses of the Chinese Grouse genome revealed fluctuations throughout the Pleistocene in effective population size. Populations decreased during early to middle Pleistocene but showed an expansion during late Pleistocene which was then followed by a sharp decline during the last glacial maximum (LGM). Ecological niche modeling indicated that a suitable habitat shift between high altitude regions to low altitude regions was due to a changing climate. This result parallels patterns of population size change in Chinese Grouse estimated from PSMC modelling, which suggested an expansion in population size from the last interglacial period (LIG) and then a peak and a bottleneck occurring at the last glacial maximum (LGM). Furthermore, the present-day distribution of Chinese Grouse is greatly reduced and fragmented. It will likely become even more fragmented in the future since coniferous forest cover is threatened in the region of their distribution and the availability of such habitat restricts their ecological niche. CONCLUSIONS: The Chinese Grouse have experienced substantial population size changes from the beginning to the LIG and reached a peak before the LGM. A sharp decrease and bottleneck occurred during the LGM, when the coniferous forests were subjected to extensive loss. The results inferred from the whole genome sequencing and species distribution models both support historical population fluctuations. The distribution of the Chinese Grouse is strongly dependent on the coniferous forest cover. To protect the fragmented coniferous forests is an essential action to protect the Chinese Grouse.


Assuntos
Ecossistema , Galliformes , Animais , China , Variação Genética , Genômica , Filogenia , Filogeografia , Tibet
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA